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1  | INTRODUC TION

The built environment (BE) is the sum total of all habitable artificial 
structures and includes, but is not limited to, apartments, houses, 
office buildings, shopping malls, restaurants, and enclosed modes of 

transportation. It has been estimated that humans in industrialized 
nations spend up to 90% of their time inside the BE.1,2 This shift to-
ward indoor living has also created unique habitats for microorgan-
isms, especially bacteria and fungi, with novel selection pressures 
that likely shape microbial evolution.3 During the past two decades, 
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Abstract
Indoor microbial communities vary in composition and diversity depending on mate-
rial type, moisture levels, and occupancy. In this study, we integrated bacterial cell 
counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) 
with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to 
investigate the influence of wetting on medium density fiberboard (MDF) and gyp-
sum wallboard. Surface samples were collected longitudinally from wetted materials 
maintained at high relative humidity (~95%). Bacterial and fungal growth patterns 
were strongly time-dependent and material-specific. Fungal growth phenotypes dif-
fered between materials: spores dominated MDF surfaces while fungi transitioned 
from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells 
were intact (viable) on both materials over the course of the study. Integrated cell 
count and biomass data (quantitative profiling) revealed that small changes in relative 
abundance often resulted from large changes in absolute abundance, while negative 
correlations in relative abundances were explained by rapid growth of only one group 
of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks 
suggested a top-down control of fungi on bacterial growth, possibly via antibiotic 
production. In conclusion, quantitative profiling provides novel insights into microbial 
growth dynamics on building materials with potential implications for human health.
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there has been a substantial effort from researchers around the 
world to apply culture-independent molecular methods (eg, ampli-
con and metagenomic sequencing) and computational methods to 
characterize the microbial ecology and distribution dynamics of the 
BE.4-8

Despite the overall diversity of indoor microbial systems being 
increasingly well described, the molecular characterization has oc-
curred predominantly on dry surfaces.9 Culture-independent micro-
biology studies in wet BE environments have primarily focused on 
sinks, toilets, water pipes, and other surfaces specifically designed for 
high levels of moisture,10 but the effects of moisture on microbial dy-
namics on materials such as wood materials and drywall have received 
much less attention.11,12 Dry surface studies have proven highly use-
ful for understanding the source and movement of microbes in the 
BE,13 and the effects of BE design on indoor microbial diversity.14 
However, surfaces are also an "ecological desert" with a largely inac-
tive microbial community.9 Culture-based studies have long showed 
the importance of water for stimulating microbial growth, both fungal 
and bacterial.15-17 Fungal growth and material decay typically occur 
at RH conditions above 75%, depending on building material type.18 
Approximately 50% of homes in the United States have experienced 
dampness or the occurrence of visible mold19 due to plumbing leaks, 
flooding, groundwater entry or insufficient ventilation.20 Depending 
upon the extent of water damage and environmental factors, Indoor 
Air Quality can decrease significantly in damp buildings due to in-
creased levels of volatile compounds, microbial particulate matter 
and mycotoxins, sometimes resulting in serious health problems.21-25

The vast majority of studies investigating the impact of moisture 
on microbial growth in the BE have used traditional culturing tech-
niques. However, recent studies have applied multiple -omics tech-
niques to investigate bacterial, fungal, and even metabolic growth 
dynamics at a community-level scale.10 In particular, Lax et al applied 

a multi-omics approach using amplicon sequencing of 16S rRNA and 
ITS rRNA gene markers, metabolomics, and fluorescent microscopy 
to investigate bacterial-fungal interactions over time on different 
building materials exposed to liquid water and high humidity con-
ditions.26 The results of this study revealed the dramatic effects 
of wetting on bacterial/fungal diversity, including high microbial 
growth rates, low alpha-diversity, material-specific communities, 
and evidence of metabolic and competitive interactions within and 
between the bacterial and fungal communities.

In addition to -omics technologies, culture-independent 
biomass analysis can provide insight into microbial community 

Practical Implications

•	 Our combinatorial approach linking bacterial cell count-
ing, fungal biomass, and live/dead staining directly to 
amplicon sequencing of bacterial and fungal communi-
ties provided new insights into the effects of wetting 
and material type on growth patterns in built environ-
ments. Specifically, we showed a strong material and 
time-dependent effect on bacterial and fungal growth 
and diversity.

•	 Fungal/bacterial interactions were very different be-
tween material types, including among fungi and bac-
teria known for antibiotic production and resistance, 
respectively.

•	 Our results provide a road map for studying how differ-
ent materials encourage the growth of microbes over 
time and how they also may contribute to the develop-
ment of antibiotic resistance.

F I G U R E  1   Comparison between relative (A) and quantitative abundance (B). Quantitative abundance is calculated with biomass 1000 
for sample1 and 2000 for sample2. In relative profiling, the abundance of bacteria2 from sample1 to sample2 appears to decrease, while 
the abundance of bacteria1 appears to increase (ie, they are negatively correlated). However, after adjusting for cell counts via quantitative 
profiling, we observed that the abundance of bacteria2 did not change, while the abundance of bacteria1 tripled, meaning that the negative 
correlation was an artifact of the compositional nature of the sequence data. Vandeputte et al (2017) used a similar principle to show that a 
purported trade-off between Bacteriodes and Prevotella was an artifact of relative microbiome analysis70
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dynamics. Culture-independent counting techniques, such as 
DNA/RNA staining of bacterial cells and viral-like particles (VLPs), 
have often been used in other environments and have proven 
highly useful for characterizing ecosystem biomass and ecologi-
cal interactions.27,28 Methods such as fluorescence-assisted cell 
sorting (FACS) and qPCR, both of which can be used to quantify 
bacterial abundances, can aid in the interpretation of ecological in-
teractions.29,30 However, these methods have rarely been applied 
to the BE; as such, our best understanding of BE microbial ecology 
and dynamics is based on relative abundance counts from ampli-
con or metagenomic sequencing approaches. Results from the few 
studies applying quantitative methods show their potential for il-
luminating differential growth patterns on various materials types 
under different environmental conditions and for quantifying 
total indoor VLP or bacterial particle abundances in the BE.26,31,32 
Recently, Vandeputte et al showed that these data can also be di-
rectly incorporated into sequence-based microbial profiling. Not 
only did they find microbial load, per se, to be a significant indi-
cator of disease state, they also showed that "quantitative profil-
ing" (combining biomass data with sequencing data) corrected for 
artifacts imposed by the compositional nature of sequence data 
analysis (Figure 1).

Here, we built upon the Lax et al results by performing a 
new study that combined three culture-independent micros-
copy methods with deep sequencing analysis of bacterial and 

fungal communities to perform quantitative profiling of building 
material microbial communities impacted by wetting and high 
humidity. We hypothesized that the combination of biomass 
analysis and quantitative profiling would significantly change 
the interpretation of microbial community growth on different 
materials compared with sequence-only based relative abun-
dance profiling, and reveal strong time-dependent patterns of 
microbial growth and composition. Using a replicated repeated 
measures design (Figure 2), we followed the growth and evolu-
tion of naturally formed communities on two common building 
material types: medium density fiberboard (MDF) and gypsum 
wallboard (referred to as "gypsum"). Amplicon sequencing of the 
16S and ITS rRNA genes was used to characterize bacterial and 
fungal microbial diversity. To quantitate microbial growth and 
biomass, we applied bacterial- and viral-like particle counting, 
light microscopy for fungal-fungal biomass estimation, and FACS 
to determine patterns of bacterial, viral, and fungal growth on 
MDF and gypsum over time. We also quantitatively profiled the 
microbial communities by combining bacterial cell counts and 
fungal microscopy results with the 16S and ITS rRNA amplicon 
sequencing data. Our results show that quantitative data by 
itself, and in combination with compositional taxonomic data, 
provides deeper insight into the growth and evolution of BE mi-
crobial communities and can significantly alter the interpretation 
of microbial interactions.

F I G U R E  2   (A) Study timeline. After sterilization, coupons for medium density fiberboard (MDF) and gypsum were naturally inoculated for 
30 d and soaked in tap water. Coupons were swabbed on days 1, 8, 15, 22, and 29. (B) Pictures of coupons of both the material types taken 
at different points
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2  | METHODS

2.1 | Sample collection

Two building material types were used for this study: gypsum wall-
board and medium density fiberboard (MDF). These materials were 
cut into 10 cm × 10 cm identical sized coupons, and the coupon sur-
faces were sterilized using ultraviolet light and 70% ethanol solution. 
Three duplicate coupons of each material were naturally inoculated 
with indoor microbial flora. Both sets of coupons were placed open to 
the environment on a bench inside the sitting area of our laboratory at 
San Diego State University and left undisturbed for 30 days. The top 
surface was marked, and the same side was swabbed at different time 
points in the study. To encourage fungal growth on each material, all 
of the material coupons were soaked in tap water for ~14 hours. They 
were then moved to trays and were incubated at 25°C inside an in-
cubator. Individual coupons were sealed in airtight plastic containers 
with a supersaturated potassium nitrate (KNO3, Sigma-Aldrich) solu-
tion was used to maintain high relative humidity (RH) near ~95% for 
the duration of the experiment.33 Temperature and RH in the cham-
ber air were recorded every 10 minutes using an Onset HOBO U12 
data logger. A check of the log showed that the RH did not drop below 
90% over the course of the experiment. Samples for microbiological 
analysis, microscopy, 16S rRNA and ITS sequencing were preserved in 
0.85% NaCl solution, 4% paraformaldehyde and 1X phosphate buffer 
saline (PBS). All solutions were prepared with 0.02 μm filtered mo-
lecular biology grade Sigma water. Samples were taken at 5 weekly 
time points: T1, T2, T3, T4, and T5. T1 was collected immediately after 
soaking the materials in water for ~14 hours. To maintain the constant 
RH, the containers were opened only briefly to swab the coupons (ap-
proximately 5  seconds) before resealing the containers. Thereafter, 
samples were collected at each time point (every 7 days). BD Screw 
Cap SWUBE™ Polyester swabs were used for sampling coupon sur-
faces. A set of three coupons was re-swabbed for each material type 
at each time point. The entire coupon surface was passed over once 
with a swab in one direction. The tips were broken off into 1.5 mL 
microtubes containing 700 μL 0.85% NaCl solution (prepared using 
0.02 μm filtered Sigma water) and vortexed for 20 seconds. A total 
of 200 μL was preserved for microscopy in 4% paraformaldehyde. 
A total of 250 μL was aliquoted separately and used for live-count 
counts using flow cytometry and for DNA extractions. The rest of 
sample was preserved for sorting live-dead cells using FACS. All the 
samples were stored at −80°C before further analysis.

2.2 | Viral-like particle and bacterial 
microscopy counts

Epifluorescence microscopy was used to estimate abundance of 
virus-like particles and bacteria in all the samples. Samples fixed 
using paraformaldehyde were thawed on ice before staining. A total 
of 100 μL of PFA-fixed sample was resuspended in 5 mL of 0.02 μm 
filtered Sigma water (Sigma-Aldrich). The diluted sample was then 

filtered onto 0.02  μm anodisc filters (Whatman). The filters were 
stained with 1X SYBR Gold in dark for 10 minutes and washed with 
filtered water for 5 minutes. SYBR Gold binds to nucleic acids in cells 
(excitation—300nm, 495  nm; emission—537  nm). The disks were 
mounted on the glass slides and imaged on an Olympus 60× object 
magnification oil-immersion microscope connected to QImaging 
Retiga EXi Fast Cooled Mono 12-bit microscope. Images were ana-
lyzed using Image Pro software (Media Cybernetics) to estimate VLP 
and bacterial abundance, with size cutoffs for VLPs between 0.02 
and 0.2 microns and bacteria between 0.2 and 10 microns.

2.3 | Fungal spore counts and measuring 
hyphae length

The 0.02  μm Anodisc filters used for VLP, and bacterial counts 
were imaged at 20× and 40× magnification with a Zeiss AxioPlan 
2e fluorescent microscope equipped with an AxioCam HrM mono-
chromatic camera. Images were analyzed using open source ImageJ 
software.34

2.4 | Flow cytometry analysis and sorting

Flow cytometric analysis was carried out using LIVE/DEAD 
BacLight bacterial viability kit (Catalog number: L34856, Thermo 
Fisher Scientific). The assay consists of two fluorescent dyes with 
different cell permeability characteristics that can be used to dif-
ferentiate cells on the basis of their membrane integrity. SYTO 9, a 
green fluorescent dye, penetrates cells with both intact and dam-
aged membrane and, thus, labels all cells. Propidium iodide (PI), a 
red fluorescent stain, can only penetrate cells with damaged mem-
branes. Therefore, this two-stain combination differentially labels 
viable and non-viable cells, which can then be enumerated using 
flow cytometer. Figure  S1 shows the workflow for flow cytom-
etry experiments. Samples were thawed on ice, and 20 μL sample 
volume was stained using 1.5 μL of 3.34 mmol/L SYTO 9 nucleic 
acid stain and 1.5 μL of 30  mmol/L propidium iodide. Ten μL of 
microsphere standard beads (concentration of 1.0 × 108 beads) 
(6 μm diameter) was added to each reaction to serve as reference 
standard for sample volume. Total volume of reaction was 1 mL. 
The rest of volume was made up using a 0.85% NaCl solution. The 
reaction mixture was incubated for 15  minutes on ice for stain-
ing. Analysis was performed with a BD (Beckson-Dickson) FACS 
Canto using the high-throughput sampler unit. Fifty μL of sam-
ple was analyzed on standard mode using the 488 nm excitation 
laser for PI and SYTO 9 fluorescence. Three technical replicates 
were analyzed for each sample. Cells stained with PI were cap-
tured in PerCP-Cy5-5 channel (670 nm long-pass filter preceded 
by a 655 nm long-pass mirror), and cells stained with SYTO 9 were 
captured in FITC channel (530/30 nm band-pass filter preceded by 
a 502  nm long-pass mirror). To ensure consistency between dif-
ferent experimental days, a preparation of dead E coli cells (fixed 
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with 4% PFA) at different dilutions—1:5, 1:100 and 1:500 were an-
alyzed with every experiment. Flow rate was maintained at 0.5 μL/
second. The populations were gated based on the intensity in the 
FITC (for dead cell population) and PerCP (for live cell population) 
channel. The numbers of live and dead bacteria were calculated 
using the following formulas:

Data were collected using FACSDiva 6.1.1. FCS files were ex-
ported and analyzed using FCS Express 6. Live and dead bacterial 
populations were sorted using BD FACS Aria I. PI and Syto 9 stained 
cells were excited using 488nm laser. The two fractions were sorted 
into 15 mL conical tubes containing 5 mL of 1× PBS. Samples were 
moved to dry ice immediately after sorting and stored at −80°C.

2.5 | DNA extraction and sequencing

For each coupon, 150 μL of sample stored in 0.85% NaCl solution 
was used for DNA extraction. The sorted fractions of live and dead 
cells were pelleted at 6000 g for 5 minutes, which was suspended in 
150 μL of 1× PBS. DNA extractions were performed using PowerSoil 
DNA Isolation kit (MoBio Laboratories, Inc) as directed by the manu-
facturer. Genomic DNA was quantified using a Nanodrop spectro-
photometer (Thermo Fisher Scientific). Extracted DNA samples 
were stored at −80°C.

The DNA obtained from the extractions was used for amplifica-
tion of both 16S rRNA/ITS region. For each sample, the V4 region 
of the bacterial 16S rRNA gene was amplified using the primer pairs 
515F/806R. For the fungal ITS sequencing, we amplified the highly 
variable internal transcribed spacer region 1 located between the 
5.8S and 18S rRNA genes, using the ITS1f and ITS2 primer pairs.35 
Each of the reverse primers (806R and ITS2) had a unique 12 base 
pair barcode for sample identification. Both the 16S and ITS ampli-
fication reaction used the same reaction mixture and thermocycling 
conditions. The parameters for PCR were as follows: (1) 94°C for 
3 minutes, (2) 94°C for 45 seconds, (3) 50°C for 60 seconds, (4) 72°C 
for 90 seconds, (5) Steps (2)-(4) were repeated 35 times, (6) 72°C for 
10 minutes, and (7) 4°C HOLD. Five μL of PCR product was loaded 
on 2% agarose gel to check 300 bp amplified product. The rest of 
the PCR product was stored at −80°C. Two negative controls con-
sisted of Sigma molecular biology grade water extracted by the DNA 
extraction protocol described above. Sequencing was performed on 
the Illumina MiSeq platform.

2.6 | 16S rRNA sequencing data processing

Sample barcodes were extracted from sequencing files with forward 
reads using the QIIME1 extract_barcodes script.36 Raw sequence 

reads were then imported into QIIME2 (version 2019.01) in “EMP 
protocol” multiplexed single-end fastq format with the qiime tools 
import method.37 Sequences were later demultiplexed using qiime 
demux emp-single method. DADA2 software38 in QIIME2 was used 
for quality filtering (denoising) and generating output sequence 

variants (SVs) using the q2-dada2 plugin denoise-single method. 
Reads with quality score lower than 25 were removed. SVs were 
taxonomically classified using a pre-trained Naive Bayes classifier 
based on Greengenes 13_8 99% OTUs from 515F/806R region of 
sequences.39 Results were filtered to only include features classified 
at least at the class taxonomic level. Retained SVs were then used to 
generate a phylogenetic tree using align-to-tree-mafft-fasttree pipe-
line from the q2-phylogeny plugin.40,41

2.7 | ITS sequencing data processing

Barcode extraction, denoising, and sequence-quality filtering for 
the ITS data were performed in the same manner as with the 16S 
rRNA sequencing data. For the taxonomic classification of fungal 
ITS sequences, a custom BLAST database was built using the QIIME 
release of UINTE database (UNITE Community (2019): UNITE 
QIIME release for Fungi. Version 18.11.2018. UNITE Community. 
https://doi.org/10.15156/​BIO/786334). SVs were then blasted 
against this custom database. SV identifiers were later replaced with 
UNITE database identifiers according to BLAST results, and reads 
with the same identifiers were grouped together. A pre-built ghost 
tree42 using the same version of UNITE database was generated 
with a midpoint root using the FastTree program41 to incorporate 
phylogenetic information. In addition, the q2-feature-table filter-
features method43 was implemented to match ghost-tree tips with 
SV sequences.

2.8 | Data analysis

Statistical analyses of bacterial- and viral-like particle counts, fungal 
spores and hyphal-length estimates, and FACS live/dead ratios were 
performed in R (version 3.5.2). The following data analysis and visu-
alization methods were used on both the 16S rRNA and ITS datasets. 
Feature tables, taxonomy tables, and phylogenetic trees were initial 
generated as QIIME2 artifacts9, and the biomformat package (version 
1.10.1)44 was used to export these datasets into R (version 3.5.2)45 
compatible formats for downstream analysis. Relative (proportional) 
abundance was generated through dividing each read count by the 
total number of reads in that sample. Quantitative abundances were 
then generated using a custom R script (available at https://github.

Number of live bacteria=(number of events in live region) ∕ (number of events in bead region)×concentration of beads×dilution factor

Number of dead bacteria=(number of events in dead region) ∕ (number of events in bead region)×concentration of beads×dilution factor

https://doi.org/10.15156/BIO/786334
https://github.com/vera-yxu/Thesis-QuantitativeAnalysis
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com/vera-yxu/Thesi​s-Quant​itati​veAna​lysis) which multiplied epif-
luorescence microscopy cell counts, or a combination of spores and 
hyphal-length measurements, per sample to the proportional abun-
dance of each bacterial or fungal taxonomic group, respectively. 
The Phyloseq package (version 1.26.1)46 was used for manipulating 
data and preparing for further analyses including visualizations with 
ggplot2 (version 3.2.0)47 was implemented for data visualization. 
Log2-fold analysis was performed using the DESeq2 package (ver-
sion 1.22.2)48 in R. DESeq2 is a deferential expression analysis that 
uses normalization factors to adjust for the differences in library 

depth. Correlation analyses of relative and quantitative abundances, 
and visualization of correlation matrices, were implemented using 
the corrplot package (version 0.84).49 Correlations were performed 
on the relative abundances or quantitative abundances following 
Vandeputte et al. Relative and quantitative abundances were calcu-
lated separately and summed at the genus level, and they had to be 
present in at least 10% of the samples to be included in the analyses. 
Network analysis was performed with the igraph package (version 
1.2.1.4).50 Jupyter notebook scripts, including the datasets, for the 
Phyloseq, DESeq2, corrplot, and igraph analyses are all available for 

F I G U R E  3   Box plots of mean abundances of VLP (A) and bacterial (B) fungal spores (C) and fungal hyphae (D) on gypsum (n = 3) and MDF 
(n = 3) resampling coupons over a period of 29 d

https://github.com/vera-yxu/Thesis-QuantitativeAnalysis
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download at the github link: https://github.com/vera-yxu/Thesi​s-
Quant​itati​veAna​lysis.

To compare beta-diversity, Bray-Curtis51 and Weighted 
UniFrac52 distance matrices were generated and visualized using 
principal coordinates analysis (PCoA). Feature tables were rarefied 
to even sampling depths (a rounded number approximately 90% of 
lowest sampling depth) using q2-diversity core-metrics-phyloge-
netic method,53 with distance metric artifacts generated at the same 
time. The rarefied feature tables were then converted to relative 
abundance with the q2-feature-table relative-frequency method. 
The q2-diversity pcoa-biplot method54 was implemented to gen-
erate biplot artifacts. Finally, PCoA plots were visualized using the 
EMPeror plugin55,56 in QIIME2 with taxa biplots overlaid.

3  | RESULTS

3.1 | Visible growth on coupons

Coupon images (Figure 2) showed higher visible fungal growth on 
the paper-covered surface of gypsum compared to MDF. Fungal 
growth was visible on both types of materials by the first week. 
Gypsum coupons were completely covered with fungi by day 15 
(time point 3). Figure 3 shows that mean VLP and bacteria abun-
dances increased after wetting on both material types. Bacterial 
and VLP abundances were consistently higher on gypsum com-
pared to MDF. Estimates of fungal biomass were obtained by com-
bining spore counts and hyphal-length measurements. Except for 
time point 1, box plots revealed a higher spore counts on gypsum 
coupons than MDF (T1; Figure  3C). Evidence of fungal hyphae 
growth was detected only on gypsum coupons and only by the 
third week of the experiment. The mean hyphae length was highly 
variable (Figure 3D).

Similar to previous studies, both Pearson's and Spearman's co-
efficients between VLPs and bacterial abundances were  >  0.8 
(Table  1), indicating a strong linear relationship.26,31 Positive, al-
beit weaker, correlations were also detected between bacteria cell 
counts and fungal spore counts and VLPs and fungal spore counts 
(Table 1). Type II ANOVAs for VLP, bacterial and fungal counts iden-
tified a statistical interaction between material and time with fungal 
spores counts (Table 2). On MDF coupons, mean spore abundances 
peaked at T2 before declining substantially by T3 and then increasing 

slightly, while on gypsum mean spore abundances were greatest at 
T3 (Figure 3C). On gypsum coupons, hyphae increased at T3 when 
we observed germination of spores (Figure  4; pers. obs.). Hyphae 
were not observed on slides made from MDF coupons (Figure 3D).

To further characterize interactions between material and 
time point, interaction contrasts were performed for counts of 
VLPs, bacteria, fungal spores, and fungal hyphae length (Table  2; 
Figure S2). Both microbial and fungal growth were higher on gypsum 
(Figure S2B, C), indicating that the gypsum wallboard was more sup-
portive of microbial growth after wetting. Comparison of interaction 
contrasts over time for VLP and bacteria found an initial depression 
in counts (at T2 and T3), followed by an increase (Figure S2A). Fungal 
biomass on gypsum increased continuously over the course of the 
experiment, while growth on MDF was characterized by a sharp in-
crease followed by a decline after week 2 (Figure  S2C). Figure  S3 
shows example images of spores and hyphae from the coupons.

Figure  S4 shows comparisons of the number of live and dead 
cells estimated by FACS analysis over time on the different material 
types. The increased trend in the number of live and dead cells on 
gypsum coupons during initial time points corroborated the micros-
copy count data for both microbes and fungi. The abundances of 
both live and dead cells differed between materials and among time 
points, and there was a significant interaction between material type 
and time with live cells (Table 3).

3.2 | Sequencing data

A total of 3 412 839 16S rRNA sequence reads were generated 
from a total of 98 amplicon libraries from the same sequencing 
run. Trimming at position 252 during DADA2 quality filtering38 in 
QIIME37 resulted in a total of 1 565 387 sequence reads belonging 
to 1317 SV features (n = 96, sequence reads in PCR control2 and 
extraction control2 samples were 0 after DADA2). The number of 
SV features was declined to 945 after filtering taxonomy annotation 
results to only include SVs classified at class level or lower (n = 93, all 
sequences in MDF2 at TP3 and TP4, MDF3 at TP4 were filtered out).

ITS rRNA sequencing generated a total of 1 406 950 reads from 
46 amplicon libraries (MDF3 at TP1 and gypsum2 at TP1 were ab-
sent due to low DNA concentration). A total of 1 062 966 reads were 
kept after trimming at position 244 during DADA2 filtering10, be-
longing to 297 SV features. One amplicon library sample (gypsum 

Pearson product moment 
correlation Spearman's coefficient

df P-value
Correlation 
constant P-value rho

VLP:Bacteria 28 1.072e−08 0.84 1.09 
e−06

0.81

VLP:Fungal_Spores 28 .023 0.41 .019 0.43

Bacteria:Fungal_Spores 28 .004 0.51 .006 0.50

TA B L E  1   Values of Pearson product 
moment correlation and Spearman's 
coefficient for abundance counts of VLPs, 
bacteria and fungi spores

https://github.com/vera-yxu/Thesis-QuantitativeAnalysis
https://github.com/vera-yxu/Thesis-QuantitativeAnalysis
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at TP1) was filtered out after denoising. SVs were grouped into 151 
features after replacing SV IDs with UNITE database IDs according 
to BLAST results. Out of 151 SV features, 138 of them that matched 
to ghost-tree tips were used for generating UniFrac distances an 
PCoA biplots (the MDF sample at TP0 was filtered out because no 
reads mapped to the pre-built ghost tree).

After removing the PCR and negative extraction control sam-
ples, which had negligible sequence counts, we were left with a total 
of 27 16S rRNA amplicon libraries. From these sample swab samples, 
we successfully generated 23 amplicon libraries for 16S rRNA FACS 
separated live-only samples, and 24 FACS separated dead-only sam-
ples (Figure S1). Bacterial and VLP counts were generated for all 27 

whole-community samples. After removing the PCR and negative 
control samples, we were left with 28 ITS amplicon library samples; 
fungal spore counts and hyphae length data were generated for 23 
of these samples.

Figure 5 shows a sample by sample comparison of relative and 
quantitative bacterial taxonomic abundances on MDF and gypsum. 
Gypsum samples had higher bacteria quantitative abundance than 
MDF samples and showed a pattern of steady bacterial growth over 
time. Growth was discontinuous on MDF samples with the great-
est abundances on all the coupons at the final time point. Figure 6 
shows a sample by sample comparison of relative and quantitative 
(combination of spore counts and hyphae lengths) fungal taxonomic 
abundances on MDF and gypsum. Fungal growth on gypsum was 
also more pronounced than on MDF, with approximately three times 
greater biomass abundance, and there were completely different 
growth patterns on the two materials (Figure  6). For MDF, fungal 
growth spiked at TP2 and then dropped significantly by TP3. In con-
trast, there continued to be a steady amount of biomass after TP2 
on gypsum surfaces.

Beta-diversity PCoA biplots using weighted UniFrac and 
Bray-Curtis distances, respectively, determined that weighted 
UniFrac explained more of the variation in the first 3 principal co-
ordinates for both the bacterial (total percent variation weighted 
UniFrac = 55.7%, Figure 7A; Bray-Curtis = 26.1%, Figure 7B) and 
fungal (weighted UniFrac = 83.6%, Figure 7C; Bray-Curtis = 62.5%, 
Figure 7D) datasets. The PCoA plots identified clear visual sepa-
ration of both bacterial and fungal communities, which was con-
firmed by PERMANOVA tests (P = .002 for 16S community with 
weighted UniFrac and P = .001 for all other 3; Figure  7), but R2 
values were higher with the fungal communities (Figure  7C,D) 
than with the bacterial communities (Figure 7A,B). The results of 

TA B L E  2   ANOVA (Type II) on microscopy counts ~ material and 
time

Interaction df
Sum 
Sq F-Value P-value Significance

VLP counts

Material 1 33.0 20.9 1.86 e−04 ***

Time 4 5.3 2.7 .058 .

Material:Time 4 3.6 0.8 .516

Bacterial counts

Material 1 14.3 29.5 2.57 e−05 ***

Time 4 14.1 7.3 8.79 e−04 ***

Material:Time 4 2.2 1.1 .367

Fungal spore counts

Material 1 34.8 28.2 3.35 e−05 ***

Time 4 16.0 3.2 .033 *

Material:Time 4 38.0 7.7 6.26 e−04 ***

Note: Significance codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

F I G U R E  4   Relationship between 
number of spores and hyphae length over 
time on gypsum resampling coupons
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the log2-fold analysis with relative abundance data are shown in 
Figure 8. The bacterial Staphylococcus, Acinetobacter, and Thermus 
were relatively higher on MDF compared with gypsum, while 
Pseudomonas, Bacillus, and Sphingobium were higher on gypsum 
compared with MDF (Figure 8A). For the fungal data, members of 
the genera Trichodema, Naganishia, and Cladosporium were higher 
on MDF, while Didymella, Acremonium, and Lecanicillium were 
relative higher on gypsum (Figure  8B). We also found differen-
tial material-specific abundances of a number of Aspergillus and 
Penicillium SVs (Figure 8B).

Pearson correlations were used to detect potential interactions 
between bacteria, between fungi, and between bacteria and fungi. 
For these analyses, we grouped taxa at the genus level for both 
bacteria and fungi, and only kept taxa prevalent in at least 10% of 
the samples. Figure 9 shows the results of correlation tests using 
both relative and quantitative abundance counts for bacteria-bac-
teria (Figure 9A) and fungi-fungi (Figure 9B) interactions on MDF 
coupons. In general, the addition of quantitative data increased 
the number of significant interactions detected for both bacteria 
and fungi. The number of significant interactions (Pearson's: P < 
.05; rho > 0.3) increased from 10 to 12 with the bacteria and from 
15 to 28 with the fungi. In comparison with the MDF coupons, we 
determined many more statistical correlations with both bacteria 
and fungi on the gypsum, particularly the bacteria for which we 
detected almost 5 times more correlations (Figure 9). On gypsum 
surfaces, the number of correlations did not change dramatically 
after incorporating quantitative data. However, in the fungi-fungi 
correlation matrix, five negative correlations were detected with 
the quantitative data that were not detected with relative abun-
dance data.

Correlation analysis of the combined bacteria and fungi datasets 
revealed the number of total correlations (bacteria–fungi) was much 
greater on gypsum than MDF (Figure  10). Additionally, Penicillium 
was negatively correlated with a set of bacteria but were positively 
correlated with Bacillus (Figure  10B). Finally, correlations were vi-
sualized as a series of co-occurrence networks. Comparisons of 
networks generated using relative and quantitative profiling for bac-
teria-bacteria, fungi-fungi, and bacteria-fungi on MDF and Gypsum 

are shown in Figures S5 and S6, respectively. On both materials, 
networks built using relative abundances were both sparser and 
less connected than with abundances adjusted using quantitative 
profiling.

4  | DISCUSSION

The application of multiple culture-independent quantitative mi-
croscopy techniques, both independently and in combination with 
16S rRNA and ITS amplicon sequencing (quantitative profiling), 
provided deeper insight into the effects of water and high humid-
ity on building material microbial growth. As we hypothesized, the 
quantitative data revealed strong differences between material 
types in both total bacterial and fungal loads and growth patterns 
over the course of the experiment (Figure  3). The combination of 
abundance data and sequence counts (ie, quantitative profiling) also 
clearly identified periods of both growth and decline of bacterial and 
fungal taxonomic groups not observable via relative abundance data 
(Figures 5 and 6). Moreover, quantitative profiling often directly con-
tradicted conclusions based solely on relative abundance informa-
tion for the same samples. Overall, our results strongly suggested 
that combining quantitative and qualitative data not only improves 
the understanding of BE microbiome dynamics but also avoids incor-
rect inferences made from analyses based on relative abundances, 
particularly in high growth conditions.

Microscopy analysis also provided unexpected insight into ma-
terial- and time-dependent difference in fungal growth morphology. 
Close examination of the gypsum fungal growth patterns showed 
a significant change in growth morphology from spores to hyphae 
starting at week three. By T5, hyphae dominated the gypsum cou-
pons (Figure  3B; Figure  4). Many fungal species are known to be 
"dimorphic" and have the ability to switch between a unicellular 
yeast-like form and a multicellular filamentous form in response 
to changing environmental conditions (temperature, pH and water 
availability) and/or cell densities (via quorum sensing).57 Many fungi 
can reproduce in both form unicellular and multicellular forms, and 
some can do so reversibly. The "spores" we observed under the 

Interaction df Sum Sq F-Value P-value Significance

Live cell counts

Material 1 11.5 70.7 5.33 e−08 ***

Time 4 32.8 50.3 3.69 e−10 ***

Material:Time 4 5.9 9.1 2.41 e−04 ***

Residuals 20 3.3

Dead cell counts

Material 1 20.3 37.1 5.91 e−06 ***

Time 4 44.5 20.3 8.06 e−07 ***

Material:Time 4 2.3 1.0 .41

Residuals 20 11.0

Note: Significance codes: 0 "***" 0.001 "**" 0.01 "*" 0.05"." 0.1 " " 1

TA B L E  3   ANOVA (Type II) on flow 
cytometry cell counts ~ material and time
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microscope were likely the unicellular growth forms, and as the 
conditions changed over time on the gypsum, perhaps as a result of 
lower local water availability or cell densities, fungi switched from 

unicellular to multicellular growth by T3. With the MDF coupons, on 
the other hand, we suspect the environmental conditions or cell den-
sities did not favor a switch in growth forms, which would explain 

F I G U R E  5   Bacteria taxonomy abundance for 16S rRNA whole samples on gypsum and MDF, comparing relative abundance (A, B) and 
quantitative abundance (C, D). Samples were grouped according to material type and coupon number, plotted from TP1 to TP5. (Note 
the different scales of the y-axis between (C) and (D).) The abundances of SVs that share the same Phylum classification were added 
together and shown in one color. All SVs in one sample were stacked. Samples with asterisks indicate no reads remained after DADA2 and 
classification filtering
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the lack of observed hyphal growth. Our personal observations in-
dicated that the MDF coupons became much drier after T2 while 
the gypsum coupons remained wet throughout. Future work should 
include measurements of moisture content of specific material to 

determine how locally available water and material porosity affects 
growth patterns and fungal dimorphism.

As with previous studies,20,21 we determined a strong positive 
correlation between bacteria and VLPs (r = 0.81; Table 1) but also 

F I G U R E  6   Fungi taxonomy abundance on gypsum and MDF, comparing relative abundance (A, B) and quantitative abundance (C, D). 
The log10 transformed abundances of SVs that share the same Class classification were added together and showed in one color. (Note the 
different scales of the y-axis between (C) and (D)). Quantitative abundance was not applied to gypsum3 coupon since fungi spore counts and 
hyphae length were not calculated for that coupon
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a positive correlation between bacterial and fungal spore counts 
(r = 0.5; Table  1). The strong bacteria-VLP correlation was likely 
because the VLP were mainly bacteriophage. The bacteria-fungi 
correlation, on the other hand, may have indicated that the growth 
conditions (water, high humidity) and substrate availability generally 
favored microbial growth, especially on gypsum. It is also possible 
that some synergy existed between fungi and bacteria. However, 
unlike with gypsum, bacterial and fungal growth patterns diverged 
on MDF coupons and there was a significant interaction between 
fungal spore counts and material type (Table 2).

Direct microscopic examination of fungal diversity iden-
tified Ulocladium, Alternaria and Chaetomium spores based on 
their physical appearance and characteristics (Figure  S3). These 
genera are commonly associated with water-damaged and damp 
buildings.58,59 Many indoor fungi, including Chaetomium, secrete 
enzymes to breakdown cellulose and lignin in paper and wood to 
produce easily assimilated molecules.60 These cellulose-derived 
products can also fuel subsequent microbial growth. Spores from 
Alternaria species have been identified on water-damaged sur-
faces and are known allergens that have been identified as a risk 

F I G U R E  7   PCoA biplot in three-dimensional space. 16S rRNA samples represented using weighted UniFrac distances (A) and Bray-Curtis 
distances (B). ITS samples represented using weighted UniFrac distances (C) and Bray-Curtis distances (D). Gypsum samples are shown 
in blue while MDF samples are shown in red. Feature tables were rarefied to even sampling depth and converted to relative abundances. 
The three axes indicate the top three principle components with numbers in parenthesis explaining sample variation. Vectors all start from 
center (0,0,0), labeled in the lowest classified taxonomy level. Smaller angle between two vectors represents higher positive correlation, 
while two vectors pointing to opposite directions show a high negative correlation

(A) (B)

(C) (D)
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factor for the development and persistence of asthma.61,62 Both 
Ulocladium and Chaetomium are cellulolytic fungi and tertiary col-
onizers, and the presence of these fungi has been used as an indi-
cator of long-term water damage.60

Overall, our microbial biomass analysis of the wetted BE materi-
als provided at least as strong a signal of the effects of material type 
and time as did sequence-based taxonomic profiling. Not only was 
the overall bacterial and fungal biomass higher on gypsum than MDF 

coupons, but we also observed differential time-dependent growth 
patterns on the two materials (Table 2; Figure S2), and highly differ-
entiated fungal growth morphologies (Figure 3B). FACS analysis of 
live and dead bacterial cells also identified differences between the 
material types. FACS confirmed there were substantial numbers of 
live cells on both materials types, and by week 2, gypsum coupons 
had higher ratios of live to dead cells than MDF coupons. On MDF 
coupons, the proportion of live cells did not exceed the number of 
dead cells until the third week of the experiment (Figure  S4) and 
there was a significant interaction between material type and the 
live cell FACS counts (Table 3).

4.1 | Bacterial and fungal community dynamics

Incorporation of quantitative bacterial count and fungal biomass in-
formation made a dramatic difference in the interpretation of bacte-
rial and fungal community growth dynamics. At the phylum level, the 
quantitative microbial profiling results often contradicted the rela-
tive profile interpretations. For example, relative profiling indicated 
a negative abundance relationship between the Firmicutes and the 
Proteobacteria (Figure 5A). However, quantitative profile shows this 
pattern was clearly an artifact. For example, the relative increase in 
Firmicutes from T3 to T4 on MDF1 was entirely a result of a decrease 
in Proteobacteria, while Firmicute abundance remained unchanged 
(Figure 5C). In other cases, when the relative abundance indicated a 
decrease in a particular taxonomic group from one time point to the 
next, quantitative profiling showed an increase in this phylum's abun-
dance. For example, from T3 to T4 on coupon Gypsum2 we observed 
a decrease in the relative abundance of Proteobacteria (Figure 5B), 
but in fact Proteobacteria actually increased in number, a pattern 
obscured by the greater increase in the number of Actinobacteria 
(Figure 5D).

Similar patterns were observed in the comparisons of fungal 
relative and quantitative profiling. For instance, the relative abun-
dances of Sordariomycetes and Eurotiomycetes appeared mutu-
ally exclusive in the relative abundance profiling (Figure  6A, B). 
However, these negative correlations appeared to be an artifact 
of the compositional nature of the data. For example, on coupon 
MDF2 the relative abundance of Eurotiomycetes decreased from 
T1 to T2 (Figure 6A), but the quantitative profiling indicated a large 
increase of Eurotiomycetes, a pattern undetectable via relative 
profiling because of the relative increase of Sordariomycetes and 
Dothideomycetes (Figure  6C). Similar patterns can be observed 
with gypsum (eg, T1 to T2 on Gypsum1; Figure  6D). As with the 
bacteria, we also observed many instances in which a small change 
in relative profiling actually corresponded to a large change in quan-
titative abundance (eg, T2 to T3 on MDF2; Figure 9C). These results 
showed not only the power and clarity of quantitative profiling for 
describing microbial communities, but also the usefulness of longi-
tudinal analyses and repeated measures for determining whether 
changes in microbial diversity are the results of growth or decline 
of particular organisms.

F I G U R E  8   Log2-fold analysis for taxonomic abundance 
differentiation on MDF relative to gypsum (MDF/gypsum) 
comparing 16S rRNA whole samples (A) and ITS samples with raw 
counts (B). Each dot represents a SV, and those share the same 
genus classification are shown on the same line. SVs are also 
colored according to its classification in class level for comparison 
at a higher level. Positive log2 values indicate the organism being 
more abundant on MDF surfaces relative to gypsum surfaces, vice 
versa

(A)

(B)
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Analysis of community beta-diversity indicated strong as-
sociations between material type and both bacterial and fungal 
community composition (Figure  7). PCoA biplot analysis found 
several bacterial genera strongly associated with gypsum, namely, 
Bacillus, Methylobacterium, and Promicromonospora (Figure 7A,B). 
These three genera are common in the BE and Methylobacterium 

occur in high abundance in moist environments (eg, leaf sur-
faces) and are highly abundant in wet BE environments, such as 
shower curtains, tap water, and sinks.4,63 There also has been 
study showing Promicromonospora was isolated from indoor wall 
material under moisture condition.64 The log2fold change anal-
ysis also several bacterial genera highly differentiated between 

F I G U R E  9   Correlation matrix for bacteria (A) and fungi (B) on MDF surfaces and bacteria (C) and fungi (D) on gypsum surfaces. The dots 
represent r values: only significant correlations with r > 0.3 (Pearson's r) and P < .05 are shown. Red dots represent negative correlations, 
and blue dots represent positive correlations. Lower triangle shows r values calculated with relative abundance, while upper triangle shows r 
values calculated with quantitative abundance
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MDF and gypsum. Gypsum harbored a higher proportion of wet-
adapted species relative to MDF common in indoor settings such 
as Pseudomonas, Bacillus, and Sphingobium, whereas MDF had 
higher relative numbers of desiccation tolerant genera such as 
Thermus and Staphylococcus (Figure 8A). In the fungal community, 
the weighted UniFrac distance-based analysis also showed that 
gypsum samples were positively correlated with axis1 along with 
Chaetomiaceae and Lecanicillium (Figure 7C). Both of these fungal 
genera belong to Sordariomycete class of fungi which is known 
to be plant and animal pathogens and mycoparasites.65 Both are 
also known to grow well on rotting woods, and cellulose has long 
been known to be a rich growth substrate for Chaetomiaceae.66 
Aspergillus, a member of the Trichocomaceae family, was nega-
tively correlated with axis1 and therefore associated with MDF. 
Trichocomaceae tend to be associated with food spoilage and 
mycotoxin production. They can occur in indoor environments 
and cause health hazards by releasing mycotoxins and surface 
proteins.67

Introducing quantitative data into correlation and network 
analyses changed the overall number of correlations on both 
MDF and gypsum (Figure 9), but particularly with the fungi-fungi 
correlations on MDF (Figure  9B). We also noticed a general in-
crease in the overall connectivity of the correlation networks on 
both MDF and gypsum (Figures S5 and S6). While the majority 
of the correlations identified with relative abundance data were 
also present with the quantitative data, some were no longer 
detected, such as the negative correlations between Aspergillus 
and Penicillium on MDF (Figure  9B). On the other hand, on 

gypsum we determined some novel negative correlations between 
Rhodoturla and Aspergillus, Cladosporium and Mycosphaerella; 
Paraphaeosphaeria and Didymella; and Didymella and Alternaria 
(Figure 9D). Species of Rhodoturla are common indoor yeast-like 
fungi that have emerged over the last two decades as serious op-
portunistic pathogens for immunocompromised and hospitalized 
patients.68 Identifying organisms with negative abundance pat-
terns could potentially be used to identify antifungal molecules 
for controlling Rhodoturla infections. Moreover, our study helped 
identify the types of building materials (eg, gypsum) and condi-
tions are most likely to encourage the growth of Rhodoturla and 
other possible pathogenic microbes.

One set of correlations detected in both relative and quanti-
tative correlation tables, was the negative correlation between 
Bacillus and 12 different bacterial genera on gypsum, especially 
Geobacillus (Figure 9C). Interestingly, the correlation matrix of bac-
teria and fungi on Gypsum also showed that Penicillium was nega-
tively correlated with all the same bacteria as Bacillus, but positive 
correlated with Bacillus (Figure 10). In fact, the addition of quanti-
tative data indicated that four different fungal genera, Penicillium, 
Aspergillus, Cladosporium, and Mycosphaerella, were all negatively 
correlated with the same 10 bacterial genera, but also all positively 
correlated with Bacillus (Figure  10B). We suggest that Penicillium 
and these other fungi repressed the growth of these bacterial 
genera with antibiotics (ie, penicillin), a situation which favors the 
growth of the Bacillus, a soil organisms that interacts in nature with 
these fungi and which is known to be antibiotic-resistant.69 To test 
this hypothesis, future work could involve direct co-culturing of 

F I G U R E  1 0   Correlation matrix for bacteria and fungi community combined on MDF (A) and gypsum (B) surfaces. The correlation analysis 
only included samples that had sequence libraries for both 16S and ITS, and both bacterial cell counts and fungal biomass microscopic 
quantitation. The dots represent r values: only significant correlations with r > 0.3 (Pearson's r) and P < .05 are shown. Red dots represent 
negative correlations, and blue dots represent positive correlations. Lower triangle shows r values calculated with relative abundance, while 
upper triangle shows r values calculated with quantitative abundance
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BE Penicillium isolates with BE isolated bacteria, such as strains of 
Bacillus and Geobacillus.

5  | CONCLUSION

Overall, our results show the power of introducing quantitative bio-
mass measures into BE microbial community analyses, particularly 
in actively growing environments. These data were particularly en-
lightening when combined with a longitudinal study design. With this 
combination, we were able to show that both biomass and growth 
patterns differed markedly on materials and over time and that in-
corporation of quantitative data in taxonomic profiling can signifi-
cantly alter interpretations of microbial diversity. In particular, the 
incorporation of quantitative information highlighted differences in 
microbial community growth on the two materials, MDF and gyp-
sum. While differences in chemical composition between MDF and 
gypsum probably played a role in selecting for such radically differ-
ent community dynamics, physical differences may have also con-
tributed. The gypsum paper was thinner than the MDF material and 
appeared to remain moister throughout the experiment, likely en-
couraging more microbial growth. Future quantitative studies should 
directly investigate the influence of water, chemistry, and porosity 
on microbial community composition. Our results also showed the 
importance of incorporating analysis of fungal community and abun-
dance in addition to just looking at bacteria community especially 
when studying microorganism interactions and dynamics. A solitary 
focus on bacteria-bacteria interactions would have missed the fungi 
as being potential regulators of overall community dynamics.
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