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INDOOR PARTICLES AND HEALTH



Temperature (°C)

Particulate matter (PM): Indoors and outdoors

Solid and liquid particles suspended in air
Both indoor and outdoor sources

Outdoors: Traffic, industry, natural, atmospheric rxns

http://photo-junction.blogspot.com/2010/05/air-pollution-photos.html
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— Indoors: Appliances, cleaning, combustion, others
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Particulate matter (PM): Indoors and outdoors

« Wide range of sizes and constituents
— <5 nanometers to >50 micrometers

— Size governs deposition in the
respiratory tract

— Most particles of outdoor origin are 10000

Urb Costabile et al., 2009
r a_n Atmos Chem Phys
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— PM, 5 and PMyq are regulated in the
U.S. as part of the National Ambient Air

Quality Standards (NAAQS)
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1980 adjusted mortality(deaths/yr/100,000)

Adjusted mortality relative risk
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Outdoor PM and health (epidemiology)

Associations with ambient fine particulate matter (PM, s)
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Outdoor PM and health (epidemiology)

Meta-analyses

| PM in outdoor air
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Outdoor PM and health (models)

Percentage of total deaths due to PM21.5 and ozone

. <%

iz An estimated ~130,000 deaths in 2005 in
— s the US were due to outdoor PM, ;
7.3t 98%

But most of this exposure occurs indoors (mostly at home)

Fann et al. 2012 Risk Analysis 7



Indoor PM and health (models)

Residential indoor air exposures account for ~5-14% of the non-
communicable/non-psychiatric U.S. disease burden
 Likely the most harmful pollutants inside residences:
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Indoor PM and health (models)

A framework for estimating the US mortality burden of fine
particulate matter exposure attributable to indoor and outdoor
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Indoor PM and health (epidemiology)

Health benefits of particle filtration

Fisk 2013 /ndoor Air

Photo from M.S. Waring and J.A. Siegel

New EPA Guidance on air cleaners in the home:
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PM in indoor air

Air cleaners typically reduce indoor
PM concentrations by ~50%
« Usually PM5 5
« Sometimes PM;, or
total number counts (TNC)

(e.g. <1 um)

Documented health improvements

with (mostly portable) air cleaners

include:

* Modest improvements in lung
function in asthmatics

« Fewer asthma-related doctor visits

* Modest improvements in markers of
cardiovascular/pulmonary function

» Very few studies on central filtration

https://www.epa.gov/indoor-air-quality-iag/air-cleaners-and-air-filters-home 10



https://www.epa.gov/indoor-air-quality-iaq/air-cleaners-and-air-filters-home

Residential particle filtration

Better filters can help improve |IAQ, but there are a
few things to consider:

1. Fine or ultrafine PM removal
2. Pressure drop, airflow, and energy use
3. System runtimes

4. Dust loading



How is filtration efficiency typically measured/reported?

. . COMPONENTS & DIMENSIONS 1
* Filters are evaluated in - o s
laboratory tests: | N

= ASHRAE Standard 52.2 ~ E==r——R1_—"%
most widely used MENT )

Overall View of Test Duct

* Test results: 100%
= Size-resolved efficiency %
= 0.3to 10 ym particles _—
°; 70%
i i S 60% -
« Reporting metrics: g E, 5 E,
* Minimum Efficiency Reporting 5 , 0.3-1pm~ 13um  3-104m
Value (MERV) E Ly - |
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MERYV efficiency table

Standard 52.2 Composite Average Particle Size Efficiency, % in Size Range, um

cency  fangel  Range2  Ranged i
Reporting Value (5;?1?0) (1?3?3?0) (3?0?8.0) Arrestance, %
(MERV)
1 n/a n/a E3<20 Aavg <65
2 n/a n/a E3<20 65 < Agyq <70
3 n/a n/a E3< 20 70 < Agyq <75
4 n/a n/a E3<20 75 < Ajyg
5 n/a n/a 20<E3z<35 n/a
6 n/a n/a 35<E3<50 n/a
7 n/a n/a 50<E3<70 n/a
8 n/a 20<E, 70<Ej3 n/a
9 n/a 35<E 75<E3 n/a
10 n/a 50<E»<65 80<Ej3 n/a
11 20 < E, 65<E;<80 85<Ej3 n/a
12 35<E; 80 <E, 90 <E3 n/a
13 50 < Eq 85<E, 90 <Ej3 n/a
14 75<E1 <85 90 <E, 95<E3 n/a
15 85<E;<95 90 <E,y 95<E3 n/a
16 95 < E; 95<Ey 95<E3 n/a

https://www.nafahq.org/wp-content/uploads/52-2-Brochure-November-2014-BW.pdf



https://www.nafahq.org/wp-content/uploads/52-2-Brochure-November-2014-BW.pdf

What size are most outdoor particles?

We gathered 194 long-term average (1-year or more) outdoor particle
size distributions from the literature from all over the world...

MERV

Almost all PM (by number) is <0.3 pm!
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What size are most indoor particles?

We gathered 201 residential indoor particle size distributions...

7.E+06
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Estimating fine & ultrafine particle removal efficiency

MERYV, FPR, MPR - none tell you about PM, s or UFP removal efficiency

Using size-resolved removal efficiency to estimate removal of PM, s and UFPs
» Mapping size-resolved filtration efficiency for typical MERV filters to outdoor particles
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Estimating fine & ultrafine particle removal efficiency

MERYV, FPR, MPR - none tell you about PM, s or UFP removal efficiency

Using size-resolved removal efficiency to estimate removal of PM, s and UFPs
» Mapping size-resolved filtration efficiency for typical MERV filters to outdoor particles

HEPA
MERV16
MERV14

MERV12 (#2)

MERV12 (#1)
MERV10

MERVS

MERV?7 (#2)

MERV7 (#1) [EEER
MERV6 :
MERV5

Key point:
MERV # MERV!

BPM, 5

mUFP

0% 20%

Azimi et al. 2014 Atmos Environ
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Measuring fine & ultrafine particle removal efficiency

« We have been making measurements of
particle removal efficiency of a large number of
residential HVAC filters

« Particles from 10 nm to 10 ym

« Database now includes 50 filters

« Size-resolved + mapped to total UFPs & PM, 5

« http://built-envi.com/portfolio/filter-testing/

7

— e | J

Fazli et al., under review /ndoor Air
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Removal Efficiency (-)
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Measuring fine & ultrafine particle removal efficiency
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Removal Efficiency (-)

Measuring fine & ultrafine particle removal efficiency

MERV filters
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Measuring fine & ultrafine particle removal efficiency
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Estimating fine & ultrafine particle removal efficiency
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Airflow rate (m3/hr)

Pressure drop, airflow, and energy use of in-duct filters

Measurements of pressure drop and flow
1800 -

MERV13-2" (Flanders)
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FPR10-4" (Honeywell)
FPR9-1" (Honeywell)
® MPR1000-1" (3M)
& MERV11-4" (Airguard)
® MERV11-2" (Culus)
® MERV11-2" (Flanders)
& MERV8-4" (Airguard)
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® No Filter
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1600 A
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Fazli and Stephens 2016 ASHRAE Conf.
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Filter pressure drop (Pa)

Key points:

Higher efficiency residential filters often
have a higher pressure drop, which:

- reduces airflow rates (PSC blowers)

- increases power draw (BPM blowers)
But the energy impacts are usually small

® MERV16-5" (Healthy Solutions)

Percent change in annual HVAC energy costs

F =4

Modeling energy impacts

35% 1
30% - Existing Home: PSC
Change in HVAC energy costs 2
25% - MERV <5 to MERV 11 /
/
20% - g
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10% .,Z_/
............................... 2
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5% 1 L Y 25 x
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External Static Pressure (Pa)
Fazli et al. 2015 Energy and Buildings 3

Others: Stephens et al. 2010 ASHRAE Trans; Stephens et al. 2010 HVAC&R Res; Walker et al. 2012 LBNL-6143E



Filter pressure drop vs. MERV (and depth)

100 Increased filter depth helps keep pressure drop low |
® 2.5cm (1inch) depth o
A 5.1cm (2inch) depth o
80 - ¢ =210.2 cm (24 inch) depth
60 - y=7.13x-541 @ o .
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a 40 - s o
g A o A e
e Y ’ ....................... °
S e ®
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HVAC runtimes limit the effectiveness of in-duct filters

Air handler runtimes from over 7000 homes in North America

1.0
0971
0871 -
ol | . /| Median runtime = 18%
5 | 7/
g 0.6 M Smart thermostat
: 0.5 —_— Cetin
E = Kinney
(3]
=S 04V 4 Y S A | Olson
g — — — — Stephens
O 037 Davis
— — e FTGDCINO0A.
0.21
Francisco B
0.1 Toronto A
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Runtime (%)

Touchie and Siegel 2018 Indoor Air



HVAC runtimes limit the effectiveness of in-duct filters

100

MERV 14 () = 82%)
90 | — —— MERV 11 (n = 35%)
— — == MERV 8 (m = 14%)

--------- MERYV 3 (m = 5%)

80 +

Key point:
Central heating and cooling systems
typically don’t run often enough to
reduce indoor PM concentrations as
much as you might think
---|* Increase runtime - increase removal

PM, . effectiveness relative to system off (%)

30 40 S0 60 70 8 90 100
Runtime (%)

Touchie and Siegel 2018 Indoor Air



Dust loading affects removal efficiency of filters

. some get worse!

Some get better...

Electret media filters
(MERV 11 when clean)

Non-electret media filters

(MERV 5 when clean)

10 weeks

12 weeks
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Residential particle filtration: key points

1. Fine or ultrafine PM removal
Filters aren’t tested or rated for fine or ultrafine PM removal

2. Pressure drop, airflow, and energy use

Relationships between pressure drop, airflow, and energy
use are complicated, and not always straightforward

3. System runtimes
Low system runtimes often limit filtration effectiveness

4. Dust loading

Filtration efficiency changes over time with dust loading
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