### Supplemental Material for:

# Indoor air quality impacts of residential mechanical ventilation system retrofits in existing homes in Chicago, IL

Insung Kang<sup>1</sup>, Anna McCreery<sup>2</sup>, Parham Azimi<sup>3</sup>, Amanda Gramigna<sup>2</sup>, Griselda Baca<sup>2</sup>, Kari Abromitis<sup>1</sup>, Mingyu Wang<sup>1</sup>, Yicheng Zeng<sup>1</sup>, Rachel Scheu<sup>2</sup>, Tim Crowder<sup>2</sup>, Anne Evens<sup>2</sup>, Brent Stephens<sup>1\*</sup>

#### **SI Table of Contents**

| 1. | Study Design and Questionnaires                                                          | 4  |
|----|------------------------------------------------------------------------------------------|----|
| 2. | Measurement Equipment                                                                    | 6  |
|    | 2.1. Air quality instruments                                                             | 6  |
|    | 2.2. Instruments for in-situ HVAC measurements                                           | 9  |
| 3. | Co-location Calibrations of Air Quality Instruments                                      | 10 |
|    | 3.1. Gaseous pollutants: O <sub>3</sub> and NO <sub>2</sub> calibrations                 | 10 |
|    | 3.2. Particulate matter (PM) calibrations                                                | 14 |
|    | 3.3. CO <sub>2</sub> calibrations                                                        | 20 |
| 4. | Supplemental Results: Home Information                                                   | 22 |
|    | 4.1. Housing characteristics and indoor environmental conditions                         | 22 |
|    | 4.2. Results of basic building performance and assignment of ventilation system retrofit | 24 |
| 5. | Supplemental Results: Indoor/Outdoor Pollutant Concentrations                            | 30 |
| 6  | Supplemental Results: Statistical Power Analysis                                         | 33 |

<sup>&</sup>lt;sup>1</sup> Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL USA

<sup>&</sup>lt;sup>2</sup> Elevate, Chicago, IL USA

<sup>&</sup>lt;sup>3</sup> Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA

<sup>\*</sup>Corresponding author: brent@iit.edu

# SI Figures

| Figure S1. Indoor and outdoor monitoring boxes with instrumentation: (a) indoor monitoring box; (b)                            |
|--------------------------------------------------------------------------------------------------------------------------------|
| outdoor monitoring box; (c) air quality instruments (the MetOne GT-526S OPCs, Aeroqual SM50 OEM                                |
| O <sub>3</sub> monitors, Extech SD800 CO <sub>2</sub> monitors, Aeroqual S500 NO <sub>2</sub> monitors, LASCAR CO loggers, and |
| Onset U12-013 HOBO 2-Channel Temperature/Relative Humidity data loggers) along with a small                                    |
| exhaust fan and air intake holes; and (d) all eight indoor and outdoor boxes aligned for a 24-hour co-                         |
| location test                                                                                                                  |
| Figure S2. (a) Raw and (b) adjusted O <sub>3</sub> concentrations from the co-location calibration test, and (c) linear        |
| regressions between the research-grade instrument (2B Technologies model 211) to the eight Aeroqual                            |
| $SM50 O_3$ monitors                                                                                                            |
| Figure S3. (a) Raw and (b) adjusted NO <sub>2</sub> concentrations from the co-location calibration test, and (c)              |
| linear regressions between the research-grade instrument (2B technologies model 405) to the eight                              |
| Aeroqual S500 NO <sub>2</sub> monitors.                                                                                        |
| Figure S4. (a) Raw and (b) adjusted $PM_1$ concentrations from the co-location calibration test, and (c)                       |
| linear regressions between the reference OPC (#690) to the other seven OPCs                                                    |
| Figure S5. (a) Raw and (b) adjusted $PM_{2.5}$ concentrations from the co-location calibration test, and (c)                   |
| linear regressions between the reference OPC (#690) to the other seven OPCs                                                    |
| Figure S6. (a) Raw and (b) adjusted $PM_{10}$ concentrations from the co-location calibration test, and (c)                    |
| linear regressions between the reference OPC (#690) to the other seven OPCs                                                    |
| Figure S7. Indoor co-location PM sampling with gravimetric and OPC measurements: a) $PM_{0.3-1}$ mass                          |
| concentrations estimated using OPCs vs. gravimetric PM1 concentrations; b) PM1-2.5 mass concentrations                         |
| estimated using OPCs vs. gravimetric $PM_{1-2.5}$ concentrations; c) $PM_{2.5-10}$ mass concentrations estimated               |
| using OPCs vs. gravimetric PM <sub>2.5-10</sub> concentrations                                                                 |
| Figure S8. Comparison of PM1, PM2.5, and PM10 concentrations between adjusted MetOne particle data                             |
| and gravimetric particle data from in-situ indoor co-location measurements in a subset of study homes 20                       |
| Figure S9. (a) Raw and (b) adjusted CO2 concentrations from the co-location calibration test, and (c)                          |
| linear regressions between the reference monitor (Extech #870) to the other seven Extech $CO_2$ monitors $21$                  |
| Figure S10. Examples of an exhaust-only system, an intermittent CFIS system, and a balanced system                             |
| with an ERV                                                                                                                    |
| Figure S11. Examples of power draw of an intermittent CFIS system and a continuous balanced system                             |
| with an ERV                                                                                                                    |

### SI Tables

| Table S1. Field measurement and ventilation system retrofit schedules                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Table S2. Instruments used for in-situ HVAC measurements                                                                            |
| Table S3. Calibration factors for in-field ozone (O <sub>3</sub> ) monitors resulting from each quarterly calibration               |
| test conducted throughout the study duration                                                                                        |
| Table S4. Calibration factors for in-field NO <sub>2</sub> monitors resulting from each quarterly calibration test                  |
| conducted throughout the study duration                                                                                             |
| Table S5. Inclusion criteria (C1-4) and performance metrics for PM calibration factors for all quarterly                            |
| visits using PM <sub>2.5</sub> as the primary endpoint                                                                              |
| Table S6. Calibration factors for in-field PM monitors (for estimated $PM_1$ , $PM_{2.5}$ , and $PM_{10}$                           |
| $concentrations) \ resulting \ from \ successful \ co-location \ calibration \ tests \ conducted \ throughout \ the \ study \ \ 18$ |
| Table S7. Calibration factors for in-field CO <sub>2</sub> monitors resulting from each quarterly calibration test                  |
| conducted throughout the study duration                                                                                             |
| Table S8. Housing characteristics of the 40 study homes                                                                             |
| Table S9. Summary of HVAC system runtime data for each season of the entire study period24                                          |
| Table S10. Summary of basic building performance from initial home walkthroughs25                                                   |
| $Table\ S11.\ Summary\ of\ residential\ mechanical\ ventilation\ retrofits\ and\ upfront/installation\ costs\ (USD) 26.$            |
| Table S12. Summary of airflow rate measurements through the AHU                                                                     |
| Table S13. ASHRAE 62.2 ventilation requirements, measured outdoor airflow rate, calculated required                                 |
| average runtime, estimated annual delivered flow volume, and measured power draw of mechanical                                      |
| ventilation systems                                                                                                                 |
| Table 14. Statistical summary of measured pollutant concentrations and environmental conditions during                              |
| each season, averaged across all study homes                                                                                        |
| Table S15. Average indoor/outdoor pollutant concentrations during pre-intervention period31                                         |
| Table S16. Statistical power analysis of the one-way ANOVA for home characteristics                                                 |
| Table S17. Statistical power analysis of the Wilcoxon's Signed-Rank tests for indoor and outdoor                                    |
| pollutant concentrations for all ventilation system types                                                                           |
| Table S18. Statistical power analysis of the Wilcoxon's Signed-Rank tests for the I/O ratio of pollutants                           |
| for all and specific ventilation system types                                                                                       |

# 1. Study Design and Questionnaires

Table S1. Field measurement and ventilation system retrofit schedules

|     | Initial | 1 <sup>st</sup> visit | 2 <sup>nd</sup> visit | 3 <sup>rd</sup> visit | 4 <sup>th</sup> visit | Vent.    | 5 <sup>th</sup> visit | 6 <sup>th</sup> visit | 7 <sup>th</sup> visit | 8 <sup>th</sup> visit* |
|-----|---------|-----------------------|-----------------------|-----------------------|-----------------------|----------|-----------------------|-----------------------|-----------------------|------------------------|
| ID  | walk-   |                       |                       |                       |                       | System   |                       |                       |                       |                        |
|     | through |                       |                       |                       |                       | Retrofit |                       |                       |                       |                        |
| H1  | Oct-17  | Oct-17                | Jan-18                | Apr-18                | Aug-18                | Feb-19   | May-19                | Sep-19                | Jan-20                | N/A                    |
| H2  | Aug-17  | Aug-17                | Nov-17                | Mar-18                | Jun-18                | Oct-18   | Feb-19                | Oct-19                | Dec-19                | Mar-20                 |
| Н3  | Jul-17  | Jul-17                | Nov-17                | Jan-18                | May-18                | Nov-18   | Mar-19                | Jul-19                | Nov-19                | Feb-20                 |
| H4  | Sep-17  | Oct-17                | Feb-18                | May-18                | Aug-18                | Jan-19   | May-19                | Oct-19                | Jan-20                | N/A                    |
| H5  | Aug-17  | Aug-17                | Nov-17                | Feb-18                | May-18                | Oct-18   | Feb-19                | Aug-19                | Nov-19                | Feb-20                 |
| Н6  | Jul-17  | Jul-17                | Oct-17                | Jan-18                | May-18                | Feb-19   | Mar-19                | Jul-19                | Nov-19                | Feb-20                 |
| H7  | Sep-17  | Sep-17                | Dec-17                | Feb-18                | Jun-18                | Feb-19   | Apr-19                | Sep-19                | Dec-19                | N/A                    |
| Н8  | Aug-17  | Aug-17                | Nov-17                | Feb-18                | May-18                | Sep-18   | Apr-19                | Sep-19                | Dec-19                | Mar-20                 |
| H9  | Aug-17  | Sep-17                | Dec-17                | Feb-18                | Jun-18                | Oct-18   | Feb-19                | Jun-19                | Nov-19                | N/A                    |
| H10 | Aug-17  | Sep-17                | Nov-17                | Mar-18                | Jun-18                | Oct-18   | Mar-19                | Jun-19                | Nov-19                | Mar-20                 |
| H11 | Jul-17  | Jul-17                | Nov-17                | Jan-18                | Apr-18                | Oct-18   | Mar-19                | Jul-19                | Oct-19                | Feb-20                 |
| H12 | Aug-17  | Aug-17                | Nov-17                | Mar-18                | Jun-18                | Oct-18   | Feb-19                | Aug-19                | Dec-19                | Feb-20                 |
| H13 | Sep-17  | Sep-17                | Jan-18                | Apr-18                | Aug-18                | Jan-19   | May-19                | Sep-19                | Jan-20                | N/A                    |
| H14 | Aug-17  | Aug-17                | Nov-17                | Feb-18                | May-18                | Oct-18   | Apr-19                | Aug-19                | Dec-19                | Mar-20                 |
| H15 | Jul-17  | Jul-17                | Nov-17                | Feb-18                | May-18                | Feb-19   | Apr-19                | Jul-19                | Nov-19                | Jan-20                 |
| H16 | Aug-17  | Aug-17                | Nov-17                | Feb-18                | May-18                | Feb-19   | Mar-19                | Jul-19                | Dec-19                | Feb-20                 |
| H17 | Aug-17  | Aug-17                | Nov-17                | Mar-18                | Jun-18                | Oct-18   | Apr-19                | Jul-19                | Dec-19                | Feb-20                 |
| H18 | Oct-17  | Oct-17                | Jan-18                | Apr-18                | Aug-18                | Jan-19   | Jun-19                | Oct-19                | Feb-20                | N/A                    |
| H19 | Oct-17  | Dec-17                | Jan-18                | Apr-18                | Aug-18                | Jan-19   | Jun-19                | Oct-19                | Jan-20                | N/A                    |
| H20 | Aug-17  | Aug-17                | Nov-17                | Feb-18                | May-18                | Feb-19   | Mar-19                | Aug-19                | Nov-19                | Feb-20                 |
| H21 | Sep-17  | Sep-17                | Nov-17                | Mar-18                | Jun-18                | Feb-19   | Jun-19                | Sep-19                | Jan-20                | N/A                    |
| H22 | Oct-17  | Oct-17                | Jan-18                | Apr-18                | Aug-18                | Jan-19   | Mar-19                | Jun-19                | Nov-19                | N/A                    |
| H23 | Aug-17  | Aug-17                | Nov-17                | Mar-18                | Jun-18                | Nov-18   | Apr-19                | Jul-19                | Nov-19                | Feb-20                 |
| H24 | Sep-17  | Sep-17                | Dec-17                | Mar-18                | Aug-18                | Jan-19   | Jun-19                | Sep-19                | Feb-20                | N/A                    |
| H25 | Aug-17  | Aug-17                | Nov-17                | Mar-18                | Jun-18                | Feb-19   | May-19                | Sep-19                | Dec-19                | Feb-20                 |
| H26 | Sep-17  | Sep-17                | Jan-18                | Aug-18                | Dec-18                | Jan-19   | May-19                | Sep-19                | Jan-20                | N/A                    |
| H27 | Aug-17  | Sep-17                | Jan-18                | Apr-18                | Aug-18                | Sep-18   | Jun-19                | Sep-19                | Jan-20                | N/A                    |
| H28 | Jul-17  | Aug-17                | Nov-17                | Mar-18                | Jun-18                | Mar-19   | Apr-19                | Aug-19                | Dec-19                | N/A                    |
| H29 | Aug-17  | Aug-17                | Nov-17                | Feb-18                | May-18                | Oct-18   | Mar-19                | Aug-19                | Nov-19                | Feb-20                 |
| H30 | Oct-17  | Oct-17                | Jan-18                | Apr-18                | Aug-18                | Jan-19   | May-19                | Sep-19                | Jan-20                | N/A                    |
| H31 | Aug-17  | Sep-17                | Dec-17                | Feb-18                | May-18                | Oct-18   | Feb-19                | Aug-19                | Dec-19                | Mar-20                 |
| H32 | Jul-17  | Jul-17                | Nov-17                | Feb-18                | May-18                | Sep-18   | Mar-19                | Jul-19                | Nov-19                | Feb-20                 |
| H33 | Oct-17  | Oct-17                | Jan-18                | Apr-18                | Aug-18                | Jan-19   | May-19                | Oct-19                | Jan-20                | N/A                    |
| H34 | Jul-17  | Jul-17                | Oct-17                | Feb-18                | May-18                | Sep-18   | Feb-19                | Jun-19                | Nov-19                | Feb-20                 |
| H35 | Sep-17  | Nov-17                | Feb-18                | May-18                | Aug-18                | Jan-19   | May-19                | Oct-19                | Jan-20                | N/A                    |
| H36 | Sep-17  | Oct-17                | Jan-18                | Apr-18                | Jul-18                | Feb-19   | May-19                | Oct-19                | Jan-20                | N/A                    |
| H37 | Sep-17  | Sep-17                | Dec-17                | Mar-18                | Jul-18                | Feb-19   | May-19                | Sep-19                | Dec-19                | N/A                    |
| H38 | Sep-17  | Sep-17                | Dec-17                | Mar-18                | Jun-18                | Jan-19   | Feb-19                | Aug-19                | Dec-19                | Mar-20                 |
| H39 | Oct-17  | Dec-17                | Jan-18                | Jun-18                | Aug-18                | Mar-19   | May-19                | Oct-19                | Jan-20                | N/A                    |
| H40 | Oct-17  | Oct-17                | Jan-18                | Apr-18                | Jul-18                | Nov-18   | May-19                | Sep-19                | Jan-20                | N/A                    |

\*There are only 20 visits summarized as 'Visit 8' because field work was stopped in March 2020 due to COVID-19 stay-at-home orders. For all other visits the sample size is 40 approximately weeklong home visits (one per home). Some visits span multiple seasons, as not every quarterly visit at every home aligned in the same season.

Baseline survey and end-line surveys were completed by one adult asthmatic participant in each home at the beginning and the end of the study, respectively. Some examples of survey questions are shown as follows:

- 1) Please enter your name and participant ID
- 2) What is your date of birth?
- 3) What is your gender?
  - Answer options: a) male, b) female
- 4) What is the highest level of school you completed or the highest degree?

  Answer options: a) never completed high school, b) completed high school or GED, c) completed some college no degree, d) completed college undergraduate degree, e) completed graduate degree
- 5) Approximately what was your total combined household income during the past year? Answer options: a) \$10,000 to \$19,999, b) \$20,000 to \$29,999, c) \$30,000 to \$39,999, d) \$40,000 to \$49,999, e) \$50,000 to \$75,000, f) more than \$75,000
- 6) What is your race or ethnicity? Please choose all that apply:
  Answer options: a) White, b) Black or African American, c) Hispanic or Latin, d) Asian
- 7) How many people currently live in your home, including yourself?
- 8) How many days per week do you typically work away from home? (Please do not count any days you work at home).
- 9) On a typical workday about how many hours do you spend outside or away from your home?
- 10) On a typical non-work or weekend day about how many hours do you spend outside or away from your home?
- 11) Do you have an electric or gas stove in your kitchen?
  - 11a. If you have a fan over the stove in your kitchen, how often is it used when someone cooks? Answer options: a) always, b) frequently, c) sometimes, d) rarely, e) never
- 12) If you have a fan in one or more bathrooms, how often is it used when someone takes a bath or shower?
  - Answer options: a) always, b) frequently, c) sometimes, d) rarely, e) never
- 13) In the last 2 years, has there been water or dampness in your home due to broken pipes, leaks, heavy rain, floods, or for other reasons?
  - Answer options: a) yes, b) no
  - 13a. Approximately when did you have water or dampness in your home, in the last 2 years?
  - 13b. About how often in the last 2 years has there been water or dampness in your home, for any reason?
  - Answer options: a) always, b) frequently, c) sometimes, d) rarely, e) never
  - 13c. Please explain what kind of issue led to the water or dampness in your home.
- 14) In the last 12 months how often have you noticed any musty smells inside your home? (Musty smells are smells of dampness, mold or mildew).
  - Answer options: a) always, b) frequently, c) sometimes, d) rarely, e) never
- 15) Do you use any "air fresheners" or deodorizers in your home, such as scented candles, aerosol cans, or plug-in devices?
  - Answer options: a) yes, b) no
- 16) When weather allows, do you open the window(s)?

16a. About how many windows do you typically open when the weather allows?

16b. When you open the window(s), how often do you use a window fan?

Answer options: a) always, b) frequently, c) sometimes, d) rarely, e) never

- 17) How satisfied are you currently with the ventilation system we installed in your home?
- 18) How satisfied are you currently with the temperature in your home?
- 19) How satisfied are you currently with humidity levels in your home?
- 20) How satisfied are you currently with air quality (including odors)?
- 21) How satisfied are you currently with air movement (such as drafts)?
- 22) How satisfied are you currently with your home's electricity bills?
- 23) How satisfied are you currently with your home's gas bills?

  Questions 17-23 answer options: a) very satisfied, b) satisfied, c) neutral, d) dissatisfied, e) very dissatisfied
- 24) Did you stay overnight in hospital for asthma, last 12 months?
  - Answer options: a) yes, b) no
- 25) Did you visit ER/urgent care for asthma in last 12 months?
  - Answer options: a) yes, b) no
- 26) If you have any other chronic health conditions besides asthma, please list them.

#### 2. Measurement Equipment

#### 2.1. Air quality instruments

In considering how to conduct the planned indoor and outdoor measurements, the following instruments were identified as reasonable solutions that balance equipment costs, accuracy, and practicality. The selected instruments are described in Table 1 in the main text and described in more detail below.

A MetOne GT-526 optical particle counter (OPC) with six channels of user-selected particle size bins was used to measure indoor and outdoor fine and coarse particulate matter in several defined size bins: 0.3-0.5, 0.5-1, 1-2.5, 2.5-5, and 5-10 μm. The resulting number concentration data were used to calculate PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> mass concentrations by making assumptions for spherical particle shape, particle density (i.e., unit density of 1.5 g/cm<sup>3</sup>), and the geometric mean diameter of each particle size bin. Similar procedures have been used successfully in several other recent studies of both indoor and outdoor particulate matter measurements [1–3]. We have also demonstrated in prior work that an assumption of constant particle density does not substantially impact PM mass concentration estimates compared to an assumption of size-varying density [4].

An Aeroqual SM50 OEM gas-sensitive semiconductor (GSS) ozone (O<sub>3</sub>) sensor was used to measure indoor and outdoor ozone concentrations. The O<sub>3</sub> sensor has a manufacturer-reported accuracy of

±15%, range of 0-0.5 ppm, and limit of detection (LOD) of 1 ppb. The O<sub>3</sub> sensor output signal was recorded by an Onset HOBO U12 data logger. Prior testing of this device against a federal equivalent method (FEM) instrument (2B Technologies Model 211) demonstrated a higher functional LOD than reported by the manufacturer [5], but strong correlations with ambient FEM O<sub>3</sub> monitors without needing to correct for temperature or RH [6].

An Aeroqual Series 500 IAQ monitor with NO<sub>2</sub> gas-sensitive electrochemical (GSE) sensor head attachment was used to measure indoor and outdoor NO<sub>2</sub> concentrations. The NO<sub>2</sub> sensor has a manufacturer-reported accuracy of ±20 ppb, a resolution of 1 ppb, and a limit of detection of 5 ppb. It has been used successfully in a few recent studies of indoor and outdoor environments [5,7–9]. A recent study reported the measurement uncertainty of this sensor to be outside of conventional accuracy targets (e.g., the National Institute for Occupational Safety and Health (NIOSH) accuracy criterion of <25%) for reading absolute concentrations below ~40 ppb (mean <10 ppb) [10], while another reported reasonably strong correlations against a reference instrument in ambient air, especially after correcting for sensitivity to O<sub>3</sub> concentrations measured by a co-located SM50 sensor [11,12].

A Lascar EL-USB-CO data logger was used to measure indoor and outdoor CO concentrations. The instrument has a manufacturer-reported accuracy of  $\pm 6\%$  of reading and a resolution of 0.5 ppm CO. These inexpensive instruments are typically most useful when there are large CO sources from combustion (e.g., environmental tobacco smoke or water pipe smoking) [13,14], but other recent residential indoor investigations have used them with success as well [15].

A GrayWolf Sensing Solutions FM-801 formaldehyde meter was used to measure indoor formaldehyde concentrations (outdoor formaldehyde concentrations are typically low [16] and thus were not measured). The instrument was used by passively exposing its sensor cartridges to indoor air and returning them to the active monitor to read out the concentration. This instrument has been shown to be useful for accurately quantifying indoor formaldehyde concentrations, even at low levels (i.e., less than 30 ppb) [17].

Finally, an Extech SD800 monitor was used to measure indoor and outdoor  $CO_2$  concentrations, with data logged to an internal SD card [18–20]. The instrument has a manufacturer-reported accuracy of  $\pm 40$  ppm from 0-1000 ppm and  $\pm 5\%$  over 1000 ppm.

All instruments were placed inside custom protective cases tailored for indoor (Figure S1a) and outdoor environments (Figure S1b). The indoor monitoring case utilized a rolling portable tool cart [5] and the outdoor monitoring case utilized an outdoor deck box commonly used to store items outdoors while protecting them from rain, snow, and wind. Each monitoring box had holes cut to allow air to be

drawn in from openings using small CPU fans installed in an exhaust configuration, with an uninterruptable power supply (UPS) placed inside (Figure S1c).

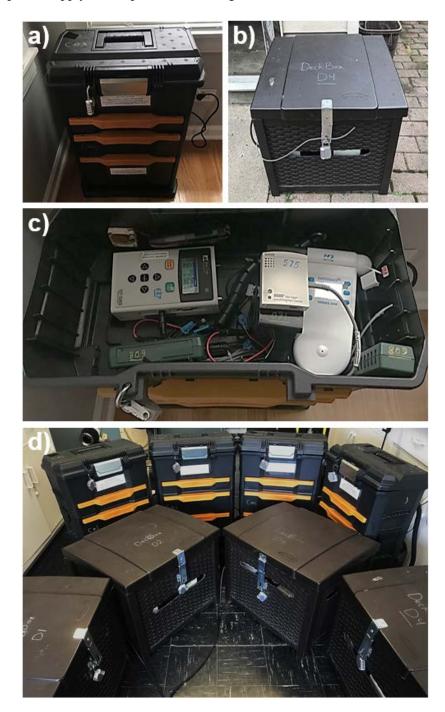



Figure S1. Indoor and outdoor monitoring boxes with instrumentation: (a) indoor monitoring box; (b) outdoor monitoring box; (c) air quality instruments (MetOne GT-526S OPCs, Aeroqual SM50 OEM O3 monitors, Extech SD800 CO2 monitors, Aeroqual S500 NO2 monitors, LASCAR CO loggers, and Onset U12-013 HOBO Temperature/Relative Humidity data loggers) along with a small exhaust fan and air intake holes; and (d) all eight indoor and outdoor boxes arranged for a 24-hour co-location test.

#### 2.2. Instruments for in-situ HVAC measurements

Table S2 summarizes the instrumentation used for in-situ HVAC measurements. We measured the operational runtimes of the central HVAC systems in homes that had them by installing a Digi-Sense data logging vane anemometer on a convenient supply register to indicate whether the air handler fan was operating. To separately detect periods of heating, cooling, and ventilating, we attached an Onset HOBO U12 temperature and RH data logger on a convenient supply register. We also attached an Onset HOBO UX90 Motor On/Off data logger on the air handling unit fan to indicate system runtime.

Additionally, airflow rates through the central forced-air air-handling units were measured using the TrueFlow® Air Handler Flow Meter [22], which consists of a calibrated metering plate, a static pressure probe, tubing, and a DG-700 pressure gauge. The metering plate temporarily replaces the existing filter in the air handling unit during the initial airflow measurement procedure, which were conducted during the initial home walkthrough visits. Field personnel then measured the operating pressure in the supply plenum at each site visit, which was used to calculate the airflow rate through the air handling unit during normal operation at each quarterly visit. For homes that received a powered ventilation system at the intervention stage (i.e., a powered CFIS ventilator or an ERV), ventilation system runtime and energy usage was measured using an Onset HOBO UX120 Plug Load Data Logger logging at 10-sec intervals.

Table S2. Instruments used for in-situ HVAC measurements

| Parameter                    | Manufacturer/<br>Model                     | Logging<br>Interval            | Manufacturer Specifications                                                                                                               | Location                   |
|------------------------------|--------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                              | Digi-Sense<br>20250-22 Vane<br>Anemometer  | 30-second                      | • Range: 1.1 to 20 m/s • Accuracy: ±0.2 m/s / ±3% (whichever is greater) • Resolution: 0.01 m/s                                           | Exhaust or supply register |
| HVAC system runtimes         | Onset HOBO<br>U12                          | 30-second                      | • Temperature range: -20 to 70°C • Temperature accuracy: ±0.35°C (from 0-50°C) • RH range: 5 to 95% • RH accuracy: ±2.5% (from 10-90% RH) | Supply<br>register         |
|                              | Onset HOBO<br>UX90 Motor<br>On/Off         | 30-second                      | <ul> <li>Resolution: 1 pulse</li> <li>Time accuracy: ±1 minute per month at 25°C</li> <li>Runtime: 1 second</li> </ul>                    | Motor in<br>AHU            |
| Ventilation rates            | TrueFlow® Air<br>Handler Flow<br>Meter     | Readings<br>for 2-4<br>minutes | • Accuracy: ± 7% when used with the DG-700 pressure gauge                                                                                 | Filter in<br>AHU           |
| Power and energy consumption | Onset HOBO<br>UX120 Plug<br>Load 10-second |                                | Accuracy: 0.5% (<14 Amp); 1% (>14 Amp)     Resolution: 10mV; 0.1mA     Time accuracy: ±1 minute per month at 25°C                         | CFIS or<br>ERV             |

#### 3. Co-location Calibrations of Air Quality Instruments

Because multiple versions of each instrument were used indoors and outdoors to measure each parameter simultaneously, instrument calibration via co-location was conducted on a quarterly basis throughout the study duration. For each co-location calibration test, four indoor air quality boxes and four outdoor air quality boxes were placed in an unoccupied room in the Built Environment Research Group Laboratory at Illinois Institute of Technology. A mixing fan was operated to achieve well-mixed conditions inside the room (Figure 1d). One of two co-location calibration methods was performed for each instrument: (1) co-locations against factory-calibrated research-grade instruments (when available), and (2) co-locations against each other (using one instrument as an arbitrary reference). The former calibration approach was applied to ozone (O<sub>3</sub>) and nitrogen dioxide (NO<sub>2</sub>), allowing an instrument to provide a reasonably accurate measure of the absolute value of the parameter in question. The latter calibration approach was applied to particulate matter (PM) and carbon dioxide (CO<sub>2</sub>), and allows an instrument to provide a reasonably accurate measure of the relative value of the parameter (e.g., using one of the eight monitors as a reference for relative comparisons between data collected from other monitors). However, the carbon monoxide (CO) monitors and formaldehyde (HCHO) strips were not calibrated due to instrument limitations.

#### 3.1. Gaseous pollutants: O<sub>3</sub> and NO<sub>2</sub> calibrations

O<sub>3</sub> and NO<sub>2</sub> calibration tests were conducted using co-location against factory-calibrated research-grade instruments. Aeroqual SM50 O<sub>3</sub> monitors were calibrated using co-location measurements with a 2B Technologies Model 211 O<sub>3</sub> monitor as the reference instrument by placing them alongside each other in the room. We considered the Model 211 monitor to be the reference against which other O<sub>3</sub> measurements were compared [23,24]. The Model 211 monitor was calibrated beforehand using a 2B Technologies Model 306 O<sub>3</sub> calibration source. Data were recorded from each instrument at 1-minute intervals (the minimum response time of the SM50 monitor) for approximately three hours while the O<sub>3</sub> concentration was elevated using a UV O<sub>3</sub> generator (CAP Model OZN-1) and then allowed to decay back to background levels. Only those data that fit a straight line on a log-linear concentration versus time scatter plot were used to avoid potential errors in readings and to ensure that reasonably well-mixed conditions had been achieved.

Figure S2 shows an example of the results of  $O_3$  co-location calibration conducted in October 2019. Figure S2a shows time-series raw  $O_3$  concentration data for all eight Aeroqual SM50  $O_3$  monitors during the injection and decay calibration test along with the same values measured by the 2B

Technologies Model 211 O<sub>3</sub> monitor. It is noticeable that some SM50 monitors have much higher practical limits of detection (LOD) than the Model 211 monitor (e.g., monitor ID #703), which means that the monitors simply record a constant value near zero concentrations below a certain value. On the other hand, some SM50 monitors detect higher values than the Model 211 monitor at steady state or baseline conditions (e.g., monitor ID #731). Figure S2b shows the adjusted ozone concentration after applying colocation calibration factors to provide concentrations that reasonably approximate what is observed by the 2B Technologies Model 211 O<sub>3</sub> monitor. The linear regressions used to calibrate the SM50 O<sub>3</sub> concentration data to the co-located Model 211 O<sub>3</sub> concentration data for this October 2019 test are shown in Figure S2c. Table S2 summarizes O<sub>3</sub> calibration factors for each quarterly calibration test conducted throughout the entire study duration.

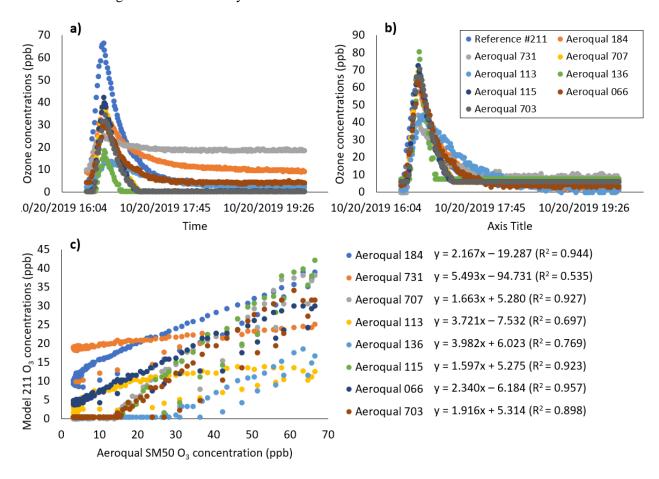



Figure S2. (a) Raw and (b) adjusted  $O_3$  concentrations from the co-location calibration test, and (c) linear regressions between the research-grade instrument (2B Technologies model 211) to the eight Aeroqual SM50  $O_3$  monitors.

Table S3. Calibration factors for in-field ozone  $(O_3)$  monitors resulting from each quarterly calibration test conducted throughout the study duration

|         |              |         | Pre            | -Inter | venti | on Per         | riod       |       |                |            |      | Post           | -Inte | rventi | on Pe          | riod       |       |                |
|---------|--------------|---------|----------------|--------|-------|----------------|------------|-------|----------------|------------|------|----------------|-------|--------|----------------|------------|-------|----------------|
| Monitor | Summer '17 – |         | Winter '18     |        |       | Spr            | ing '1     | 8 –   | Winter '19 –   |            |      | Summer '19     |       |        | Fall '19 –     |            |       |                |
| ID      | F            | all '1' | 7              |        |       |                | Summer '18 |       |                | Spring '19 |      |                |       |        |                | Winter '20 |       |                |
|         | a            | b       | $\mathbb{R}^2$ | a      | b     | $\mathbb{R}^2$ | a          | b     | $\mathbb{R}^2$ | a          | b    | $\mathbb{R}^2$ | a     | b      | $\mathbb{R}^2$ | a          | b     | $\mathbb{R}^2$ |
| 083     | 1.59         | -6.30   | 0.99           | 1.05   | 2.48  | 0.99           | 1.04       | 5.08  | 0.99           | ı          | -    | -              | 0.82  | 0.03   | 0.86           | 1          | ı     | -              |
| 091     | 0.71         | 23.9    | 0.58           | 0.94   | 1.16  | 0.99           | 1.09       | -1.07 | 0.99           | 0.82       | 0.29 | 0.76           | 1.01  | -2.84  | 0.99           | 1          | ı     | -              |
| 138     | 1.59         | -11.6   | 0.99           | 1.17   | -5.24 | 0.94           | 1.53       | -6.93 | 0.94           | 0.63       | 4.29 | 0.56           | 0.79  | 3.44   | 0.77           | 1          | ı     | -              |
| 136     | 1.96         | 18.9    | 0.82           | 0.51   | 12.1  | 0.96           | 0.52       | 13.9  | 0.92           | 0.14       | 13.8 | 0.60           | 1     | -      | ı              | 3.98       | 6.02  | 0.77           |
| 094     | 1.68         | 11.3    | 0.92           | 0.37   | 12.1  | 0.97           | 0.43       | 13.9  | 0.96           | 0.11       | 13.8 | 0.81           | 0.94  | -0.03  | 0.95           | 1          | ı     | -              |
| 066     | 1.18         | 8.26    | 0.96           | 0.29   | 12.1  | 0.97           | 0.28       | 13.9  | 0.97           | ı          | -    | 1              | 6.31  | 11.2   | 0.80           | 2.34       | -6.18 | 0.96           |
| 097     | 1.22         | 6.60    | 0.97           | 0.38   | 12.1  | 0.96           | 0.26       | 13.9  | 0.96           | 0.13       | 13.5 | 0.59           | 1     | -      | ı              | 1          | ı     | -              |
| 731     | ı            | -       | -              | 1      | 1     | -              | 0.36       | 14.0  | 0.96           | 0.28       | 11.0 | 0.39           | 20.5  | -308   | 0.82           | 5.49       | -94.7 | 0.54           |
| 184     | ı            | -       | -              | 1      | 1     | -              | 1          | ı     | 1              | ı          | -    | 1              | 1     | -      | ı              | 2.17       | -19.3 | 0.94           |
| 707     | ı            | -       | -              | 1      | 1     | -              | 1          | ı     | 1              | ı          | -    | 1              | 1     | -      | ı              | 1.66       | 5.28  | 0.93           |
| 113     | -            | -       | -              | -      | -     | -              | -          | -     | -              | -          | -    | -              | -     | -      | -              | 3.72       | -7.53 | 0.70           |
| 115     | -            | -       | -              | -      | -     | -              | -          | -     | -              | -          | -    | -              | -     | -      | -              | 1.60       | 5.28  | 0.92           |
| 703     | -            | -       | -              | -      | -     | -              | -          | -     | -              | -          | -    | -              | -     | _      | -              | 1.92       | 5.31  | 0.90           |

Similar to the O<sub>3</sub> monitor calibration procedure, co-location calibration tests were conducted using eight Aeroqual S500 data loggers with NO<sub>2</sub> sensor heads alongside a 2B Technologies Model 405 NO/NO<sub>2</sub>/NO<sub>x</sub> monitor. Figure S3 shows an example of the results of an NO<sub>2</sub> co-location calibration test conducted in April 2019. Figure S3a shows time-series raw NO<sub>2</sub> concentration data for all eight Aeroqual S500 NO<sub>2</sub> monitors during the injection and decay calibration test along with the same values measured by the 2B Technologies Model 405 NO<sub>2</sub> monitor. It is noticeable that the eight Aeroqual S500 NO<sub>2</sub> monitors have a positive offset compared to the Model 405 NO<sub>2</sub> monitor. Figure S3b shows the adjusted NO<sub>2</sub> concentration calibrated via co-location to provide concentrations that are reasonably equivalent to the 2B Technologies Model 405 NO<sub>2</sub> monitor. The linear regressions used to calibrate the S500 NO<sub>2</sub> concentration data to the co-located Model 405 NO<sub>2</sub> concentration data are shown in Figure S3c. Table S3 summarizes NO<sub>2</sub> calibration factors for each quarterly calibration test conducted throughout the entire study duration.

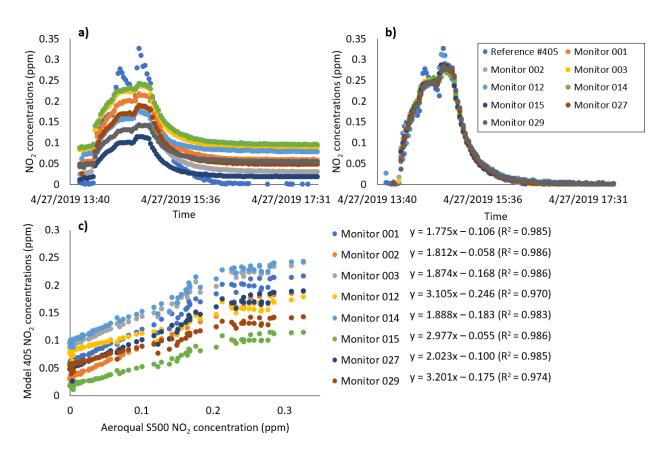



Figure S3. (a) Raw and (b) adjusted  $NO_2$  concentrations from the co-location calibration test, and (c) linear regressions between the research-grade instrument (2B technologies model 405) to the eight Aeroqual S500  $NO_2$  monitors.

Table S4. Calibration factors for in-field NO<sub>2</sub> monitors resulting from each quarterly calibration test conducted throughout the study duration

|            |       |            |                |       | Pre-      | Interve        | ntion Pe   | riod     |                |                       |         |                |
|------------|-------|------------|----------------|-------|-----------|----------------|------------|----------|----------------|-----------------------|---------|----------------|
| Monitor ID | Summe | er '17 – I | Fall '17       | V     | Vinter '1 | 8              | S          | pring '1 | 8              | St                    | ımmer ' | 18             |
|            | a     | b          | $\mathbb{R}^2$ | a     | b         | $\mathbb{R}^2$ | a          | b        | $\mathbb{R}^2$ | a                     | b       | $\mathbb{R}^2$ |
| 001        | -     | -          | -              | -     | -         | -              | -          | -        | -              | 1.000                 | 0.028   | 1.00           |
| 002        | 0.971 | 0.020      | 1.00           | 0.996 | 0.035     | 1.00           | 0.975      | 0.030    | 1.00           | 1.000                 | 0.028   | 1.00           |
| 003        | 0.992 | -0.026     | 1.00           | 1.157 | -0.024    | 1.00           | 0.997      | -0.017   | 1.00           | 1.023                 | -0.021  | 0.99           |
| 012        | 1.211 | -0.036     | 0.99           | 1.407 | -0.004    | 0.99           | 1.553      | -0.068   | 0.99           | 1.550                 | -0.050  | 0.97           |
| 013        | 1.201 | -0.053     | 0.99           | 1.415 | -0.046    | 0.98           | 1.553      | -0.079   | 0.97           | -                     | -       | -              |
| 014        | 0.971 | -0.038     | 0.99           | 0.994 | -0.036    | 0.99           | 0.997      | -0.035   | 1.00           | 1.012                 | -0.028  | 0.98           |
| 015        | 0.994 | 0.029      | 0.99           | 1.238 | 0.054     | 0.99           | 1.296      | 0.042    | 1.00           | 1.241                 | 0.037   | 0.99           |
| 027        | -     | -          | 1              | ı     | -         | -              | -          | -        | -              | 0.873                 | 0.036   | 0.99           |
| 029        | 1.244 | -0.018     | 1.00           | 1.323 | -0.023    | 0.99           | 1.462      | -0.029   | 1.00           | 1.377                 | -0.021  | 0.99           |
|            |       |            |                |       | Post-     | -Interve       | ntion Pe   | eriod    |                |                       |         |                |
| Monitor ID | V     | Vinter '1  |                | S     | pring '1  |                | Summer '19 |          |                | Fall '19 – Winter '20 |         |                |
|            | a     | b          | $\mathbb{R}^2$ | a     | b         | $\mathbb{R}^2$ | a          | b        | $\mathbb{R}^2$ | a                     | b       | $\mathbb{R}^2$ |
| 001        | -     | -          | -              | ı     | -         | -              | -          | -        | -              | 1.775                 | -0.073  | 0.92           |
| 002        | 0.936 | 0.026      | 0.98           | 1.024 | 0.027     | 1.00           | 0.793      | 0.034    | 0.95           | 1.110                 | -0.042  | 0.99           |
| 003        | 0.929 | -0.026     | 0.93           | 1.059 | -0.036    | 1.00           | 0.857      | -0.017   | 0.96           | 1.298                 | -0.125  | 0.97           |
| 012        | 0.868 | 0.001      | 0.55           | 1.737 | -0.078    | 0.99           | 1.456      | -0.053   | 0.97           | 2.278                 | -0.182  | 0.97           |
| 014        | 0.778 | -0.013     | 0.93           | 1.056 | -0.042    | 1.00           | 0.971      | -0.032   | 0.97           | 1.344                 | -0.135  | 0.96           |
| 015        | 1.134 | 0.044      | 0.83           | 1.686 | 0.028     | 1.00           | 1.203      | 0.036    | 0.98           | 1.834                 | -0.039  | 0.99           |
| 027        | 0.835 | 0.019      | 0.96           | 1.140 | 0.004     | 1.00           | 1.025      | 0.013    | 0.98           | 1.381                 | -0.056  | 0.80           |
| 029        | 1.249 | -0.011     | 0.81           | 1.842 | -0.044    | 1.00           | 1.508      | -0.025   | 0.98           | 2.068                 | -0.120  | 0.96           |

#### 3.2. Particulate matter (PM) calibrations

MetOne GT-526S OPCs were calibrated via co-location with one of the OPCs (i.e., Monitor ID: 690) as an arbitrary reference particle counter. Prior internal laboratory investigations with these monitors demonstrated very strong correlations with more expensive research grade equipment (e.g.,  $R^2 > 0.97$  with slopes near 1.0 when compared to data from a TSI Model 3330 Optical Particle Sizer, or OPS) [5].

We primarily used estimates of PM mass concentrations rather than number concentrations for the calibration and subsequent analyses because of their greater, or at least better known, implications for human health. The mass concentrations of PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> were approximated using a procedure described in the main text (i.e., spherical shape with assumed uniform density of 1.5 g/cm<sup>3</sup>). Figure S4, Figure S5, and Figure S6 show an example of co-location calibration results of PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> mass concentrations, respectively, measured by all eight MetOne GT-526S OPCs for a period of approximately 24 hours in October 2017. Here we compare raw and adjusted PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> mass concentrations based on the co-location calibration tests. Also, linear regressions are presented which were used to adjust the raw PM concentrations based on those measured by the arbitrary reference monitor based on the co-location calibration test data. During the pre-intervention period, MetOne #690

was used as the reference monitor to adjust the other monitors based on the demonstration from the prior co-location calibration test [5], while MetOne #343 (the most recently factory-calibrated instrument at the time) was selected as the reference monitor during the post-intervention period.

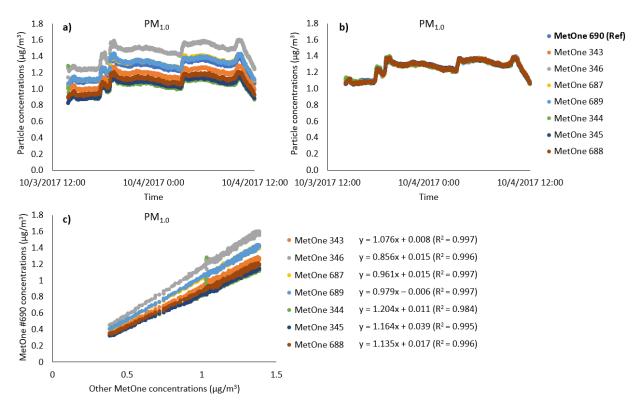



Figure S4. (a) Raw and (b) adjusted  $PM_1$  concentrations from the co-location calibration test, and (c) linear regressions between the reference OPC (#690) to the other seven OPCs.

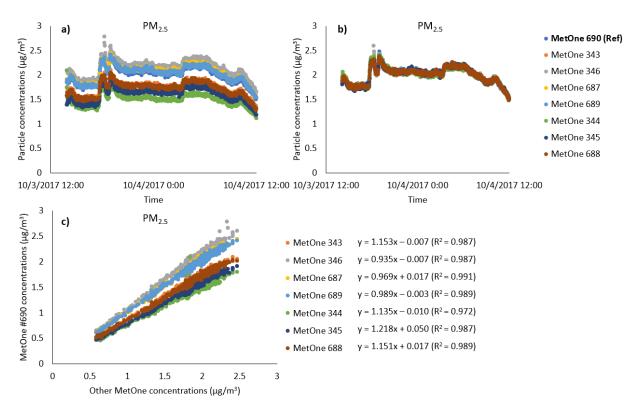



Figure S5. (a) Raw and (b) adjusted  $PM_{2.5}$  concentrations from the co-location calibration test, and (c) linear regressions between the reference OPC (#690) to the other seven OPCs.

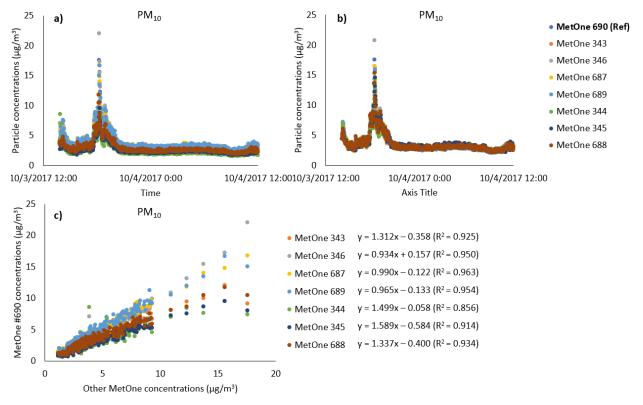



Figure S6. (a) Raw and (b) adjusted  $PM_{10}$  concentrations from the co-location calibration test, and (c) linear regressions between the reference OPC (#690) to the other seven OPCs.

Not all eight quarterly PM calibration factors over the two-year period (i.e., 4 seasons during the pre-intervention period and 4 seasons during the post-intervention period) were applied to adjust the raw PM concentrations. This is because several seasonal calibration factors showed a poor goodness-of-fit measure for linear regression models, which was especially apparent when we observed low variations in PM concentrations (primarily because we did not artificially elevate particle concentrations – the goal was not to calibrate for a specific aerosols source type but rather for typical background sources). In exploring calibration approaches, we established four criteria for inclusion of calibration tests (Table S4): (C1) the maximum calculated PM<sub>2.5</sub> concentration of the reference monitor measured during the co-location calibration test must be greater than 2.0 µg/m³; (C2) the maximum PM<sub>2.5</sub> concentration of the reference monitor must be higher than twice the minimum PM<sub>2.5</sub> concentration of the reference monitor; (C3) the absolute range of PM<sub>2.5</sub> concentrations of the reference monitor must be greater than 1  $\mu$ g/m<sup>3</sup>; (C4) the coefficients of determination (R<sup>2</sup>) for each monitor must be greater than 0.8. Accordingly, only colocation calibration tests in the fall 2017, the winter 2018 and the fall 2019 met all criteria and their PM calibration factors for the pre- and post-intervention periods were applied into the study. Resulting calibration factors from these applicable seasons are shown in Table S5 (data across successful quarterly visits were lumped into either pre-intervention or post-intervention calibration factors). The interceptions of linear regression lines were forced to zero since all monitors were assumed to be successful in zero calibration.

Table S5. Inclusion criteria (C1-4) and performance metrics for PM calibration factors for all quarterly visits using  $PM_{2.5}$  as the primary endpoint

| Period       | Season     | PM <sub>2.5</sub> | PM <sub>2.5</sub> | PM <sub>2.5</sub> | PM <sub>2.5</sub> | C1  | C2  | C3  | C4  | Decision |
|--------------|------------|-------------------|-------------------|-------------------|-------------------|-----|-----|-----|-----|----------|
|              |            | Min               | Max               | Max-Min           | Absolute          |     |     |     |     |          |
|              |            | $(\mu g/m^3)$     | $(\mu g/m^3)$     | ratio             | range             |     |     |     |     |          |
|              | Fall '17   | 0.58              | 2.47              | 4.3               | 1.9               | Yes | Yes | Yes | Yes | Included |
| Pre-         | Winter '18 | 1.29              | 3.09              | 2.4               | 1.8               | Yes | Yes | Yes | Yes | Included |
| intervention | Spring '18 | 0.54              | 1.07              | 2.0               | 0.5               | No  | Yes | No  | No  | Excluded |
|              | Summer '18 | 1.05              | 1.38              | 1.3               | 0.3               | No  | No  | No  | No  | Excluded |
|              | Winter '19 | 0.23              | 0.71              | 3.1               | 0.5               | No  | Yes | No  | No  | Excluded |
| Post-        | Spring '19 | 0.37              | 1.27              | 3.4               | 0.9               | No  | Yes | No  | No  | Excluded |
| intervention | Summer '19 | 1.47              | 2.15              | 1.5               | 0.7               | Yes | No  | No  | No  | Excluded |
|              | Fall '19   | 0.71              | 3.32              | 4.7               | 2.6               | Yes | Yes | Yes | Yes | Included |

Table S6. Calibration factors for in-field PM monitors (for estimated  $PM_1$ ,  $PM_{2.5}$ , and  $PM_{10}$  concentrations) resulting from successful co-location calibration tests conducted throughout the study

| Period       | Monitor ID |       | PM <sub>1</sub> |                |       | PM <sub>2.5</sub> |                | $PM_{10}$ |   |                |  |
|--------------|------------|-------|-----------------|----------------|-------|-------------------|----------------|-----------|---|----------------|--|
|              |            | a     | b               | $\mathbb{R}^2$ | a     | b                 | $\mathbb{R}^2$ | a         | b | $\mathbb{R}^2$ |  |
|              | 690 (Ref)  | 1     | -               | 1              | 1     | -                 | 1              | 1         | - | 1              |  |
|              | 343        | 1.083 | -               | 1.00           | 1.149 | -                 | 0.99           | 1.204     | - | 0.92           |  |
|              | 346        | 0.880 | -               | 0.99           | 0.990 | -                 | 0.92           | 1.205     | - | 0.92           |  |
| Pre-         | 687        | 0.929 | -               | 0.95           | 0.982 | -                 | 0.97           | 1.098     | - | 0.96           |  |
| intervention | 689        | 0.956 | -               | 0.99           | 1.000 | -                 | 0.98           | 1.064     | - | 0.96           |  |
| intervention | 344        | 1.215 | -               | 0.98           | 1.338 | -                 | 0.97           | 1.478     | - | 0.86           |  |
|              | 345        | 1.188 | -               | 0.98           | 1.305 | -                 | 0.95           | 1.677     | - | 0.91           |  |
|              | 686        | 1.115 | -               | 0.97           | 1.189 | -                 | 0.98           | 1.466     | - | 0.88           |  |
|              | 688        | 1.048 | -               | 0.97           | 1.175 | -                 | 0.96           | 1.386     | - | 0.96           |  |
|              | 689 (Ref)  | 1     | -               | 1              | 1     | -                 | 1              | 1         | - | 1              |  |
|              | 690        | 1.536 | -               | 1.00           | 1.456 | -                 | 0.99           | 1.399     | - | 0.98           |  |
|              | 343        | 0.581 | -               | 0.99           | 0.723 | -                 | 1.00           | 0.887     | - | 0.98           |  |
| Post-        | 346        | 1.081 | -               | 1.00           | 1.176 | -                 | 1.00           | 1.341     | - | 0.98           |  |
| intervention | 344        | 0.651 | -               | 0.99           | 0.773 | -                 | 1.00           | 0.962     | - | 0.98           |  |
|              | 345        | 0.691 | -               | 1.00           | 0.831 | -                 | 1.00           | 1.102     | - | 0.98           |  |
|              | 686        | 0.793 | -               | 0.99           | 0.989 | -                 | 1.00           | 1.405     | - | 0.97           |  |
|              | 688        | 0.640 | -               | 0.99           | 0.773 | -                 | 1.00           | 1.071     | - | 0.98           |  |

In addition to these OPC co-location measurements in the laboratory, we also conducted a limited set of in-situ indoor co-location measurements with a size-resolved filter-based gravimetric sampler (Sioutas Cascade Impactor [25]) in a subset of approximately weeklong study home visits. This additional gravimetric sampling approach was deployed for the duration of a total of 20 field visits in 16 homes (4 homes were sampled twice). The Sioutas impactors were operated at 9 L/min (SKC Leland Legacy Pump) and collected gravimetric samples on PTFE filter substrates in the following aerodynamic particle diameter ranges: <0.25, 0.25-0.5, 0.5-1.0, 1.0-2.5, and >2.5 μm. Each size-resolved filter sample was weighed before and after sampling using an A&M BM-20 Microbalance after they had equilibrated over 24-hour periods in a conditioning chamber (which was held at 20-23°C, 35-40% RH). Time-integrated mass concentrations in each size bin were calculated by dividing the pre/post gravimetric readings by the cumulative sample volume from the field deployment. Gravimetric mass concentrations from relevant size bins were compared to weeklong average estimates of indoor PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> mass concentrations estimated using the co-located OPC after all previously described co-location calibration factors were applied to all OPCs.

We first compared time-averaged estimates of  $PM_{0.3-1}$  concentrations from OPC measurements to co-located gravimetric  $PM_1$  mass concentrations across the sampled homes (Figure S7-a). A linear regression between these two variables suggested that the actual gravimetric  $PM_1$  mass concentrations were approximately ~5 times higher than estimates of  $PM_{0.3-1}$  concentrations from the MetOne OPCs ( $R^2$ 

= 0.86; slope = 5.038), indicating that the PM<sub>0.3-1</sub> estimates from OPCs miss a large fraction of actual PM<sub>1</sub> mass due to a combination of not measuring below 0.3  $\mu$ m and other issues in mass estimation from number concentrations. Next, we then compared only the 1-2.5  $\mu$ m and 2.5-10  $\mu$ m size bins, producing correlations between estimated PM<sub>1-2.5</sub> and PM<sub>2.5-10</sub> mass concentrations from the OPCs to gravimetric mass concentrations of PM<sub>1-2.5</sub> and PM<sub>>2.5</sub> size bins. Both comparisons resulted in strong correlations (R<sup>2</sup> = 0.89 and 0.92, respectively) and slopes under 1 (0.638 and 0.418, respectively) (Figure S7-b), which suggests that the OPC mass estimation approach overestimates gravimetric mass in these size bins but that the OPCs can be used to infer PM mass with reasonable accuracy. Therefore, we applied these three size-binned calibration factors to our originally calibrated OPC mass concentration estimates (i.e., for PM<sub>1</sub>, PM<sub>1-2.5</sub>, and PM<sub>2.5-10</sub>) to estimate integral mass equivalent concentrations of PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> from these co-location samples, as shown in Figure S8. Ultimately, estimated PM concentrations for these three metrics using this calibration approach were strongly correlated with gravimetric measures (all three R<sup>2</sup> values > 0.8).

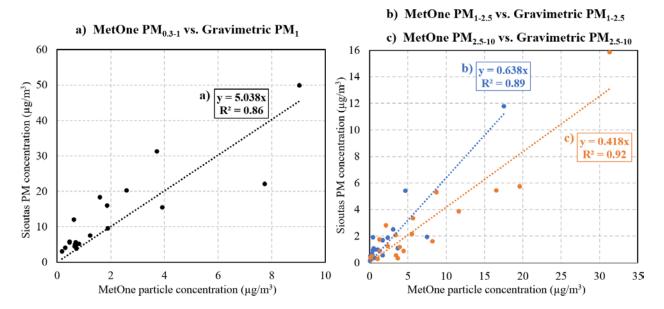



Figure S7. Indoor co-location PM sampling with gravimetric and OPC measurements: a)  $PM_{0.3-1}$  mass concentrations estimated using OPCs vs. gravimetric  $PM_1$  concentrations; b)  $PM_{1-2.5}$  mass concentrations estimated using OPCs vs. gravimetric  $PM_{1-2.5}$  concentrations; c)  $PM_{2.5-10}$  mass concentrations estimated using OPCs vs. gravimetric  $PM_{2.5-10}$  concentrations

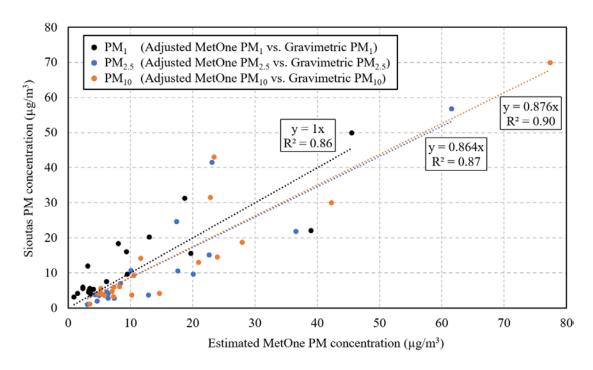



Figure S8. Comparison of  $PM_1$ ,  $PM_{2.5}$ , and  $PM_{10}$  concentrations between adjusted MetOne particle data and gravimetric particle data from in-situ indoor co-location measurements in a subset of study homes

#### 3.3. CO<sub>2</sub> calibrations

The arbitrary reference approach was also applied to CO<sub>2</sub> monitor co-location calibrations. Eight Extech SD800 CO<sub>2</sub> monitors were calibrated using co-location measurements by placing them alongside each other with one of the monitors (i.e., Monitor ID: 870) designated as the arbitrary reference monitor. CO<sub>2</sub> concentrations were elevated twice using a CO<sub>2</sub> tank placed inside the room, and then concentrations were left for decay more than 1 hour. Figure S9 shows an example of the results of CO<sub>2</sub> co-location calibration conducted in October 2019, comparing raw (a) and adjusted data (b) from the co-location test. Seven Extech SD800 CO<sub>2</sub> monitors were calibrated to provide concentrations that are equivalent to the reference Extech monitor #870, with the calibration factors from linear regressions shown in Figure S7c. Table S6 summarizes the CO<sub>2</sub> calibration factors obtained during each quarterly co-location calibration test throughout the entire study duration.

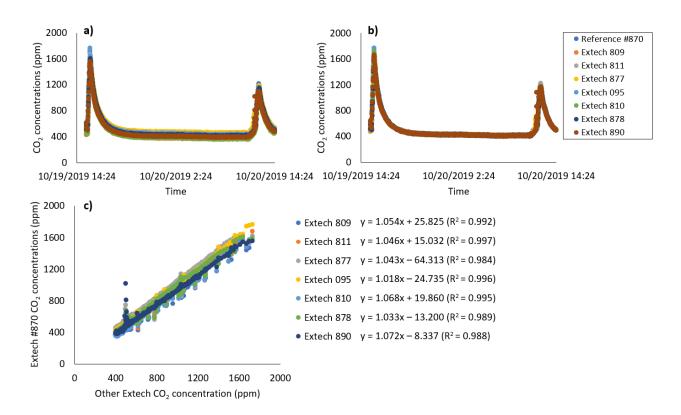



Figure S9. (a) Raw and (b) adjusted  $CO_2$  concentrations from the co-location calibration test, and (c) linear regressions between the reference monitor (Extech #870) to the other seven Extech  $CO_2$  monitors

Table S7. Calibration factors for in-field CO<sub>2</sub> monitors resulting from each quarterly calibration test conducted throughout the study duration

|                   |       |           |                |       | Pre-      | Interve        | ntion Pe | riod     |                |         |                |                |
|-------------------|-------|-----------|----------------|-------|-----------|----------------|----------|----------|----------------|---------|----------------|----------------|
| Monitor ID        | Sumi  | ner – Fa  | ll '17         | V     | Vinter '1 | 8              | S        | pring '1 | 8              | Sı      | ımmer '        | 18             |
|                   | a     | b         | $\mathbb{R}^2$ | a     | b         | $\mathbb{R}^2$ | a        | b        | $\mathbb{R}^2$ | a       | b              | $\mathbb{R}^2$ |
| 870               | 1     | 0         | 1              | 1     | 0         | 1              | 0.847    | 60.69    | 0.96           | 1       | 0              | 1              |
| 809               | 0.986 | 57.01     | 0.99           | 1.100 | 6.05      | 0.99           | 0.873    | 93.82    | 0.96           | 1.021   | 38.37          | 0.99           |
| 811               | 0.987 | 37.41     | 0.99           | 1.058 | 0.74      | 1.00           | 0.867    | 78.93    | 0.94           | 1.015   | 21.03          | 0.99           |
| 877               | 0.955 | -7.16     | 0.99           | 1.135 | -106.1    | 0.99           | 0.867    | 18.22    | 0.96           | 1.023   | -56.75         | 0.99           |
| 095               | 0.954 | 26.22     | 0.99           | 0.946 | 19.26     | 0.99           | 0.674    | 134.0    | 0.83           | 1.024   | -23.63         | 0.98           |
| 810               | 0.939 | 81.05     | 0.98           | 0.925 | 72.81     | 0.99           | 0.681    | 165.6    | 0.84           | 0.986   | 44.33          | 0.97           |
| 878               | 0.855 | 75.30     | 0.97           | 0.879 | 50.10     | 0.99           | 0.712    | 121.9    | 0.91           | 0.951   | 18.42          | 0.89           |
| 890               | 0.812 | 125.1     | 0.95           | 0.948 | 42.39     | 0.99           | 0.788    | 108.2    | 0.94           | 0.999   | 20.99          | 0.99           |
|                   |       |           |                |       | Post      | -Interve       | ntion Pe | eriod    |                |         |                |                |
| <b>Monitor ID</b> | V     | Vinter '1 | 9              | S     | pring '1  | 9              | Su       | ımmer '  | 19             | Fall '1 | 9 – Winter '20 |                |
|                   | a     | b         | $\mathbb{R}^2$ | a     | b         | $\mathbb{R}^2$ | a        | b        | $\mathbb{R}^2$ | a       | b              | $\mathbb{R}^2$ |
| 870               | 1     | 0         | 1              | 1     | 0         | 1              | 1        | 0        | 1              | 1       | 0              | 1              |
| 809               | 1.011 | 48.11     | 1.00           | 1.004 | 45.17     | 1.00           | 1.049    | -74.55   | 0.98           | 1.054   | 25.83          | 0.99           |
| 811               | 1.014 | 30.48     | 1.00           | 1.058 | 8.62      | 0.98           | 1.053    | -60.28   | 0.98           | 1.046   | 15.03          | 1.00           |
| 877               | 1.023 | -52.24    | 1.00           | 1.077 | -83.65    | 0.98           | 1.068    | 12.40    | 0.99           | 1.043   | -64.31         | 0.98           |
| 095               | 0.994 | -4.49     | 1.00           | 0.998 | -10.76    | 0.99           | 0.996    | 18.59    | 1.00           | 1.018   | -24.74         | 1.00           |
| 810               | 1.015 | 35.22     | 0.99           | 0.919 | 79.67     | 0.98           | 1.097    | -96.43   | 0.97           | 1.068   | 19.86          | 1.00           |
| 878               | 0.995 | 3.80      | 0.99           | 0.976 | 15.13     | 0.81           | 1.166    | -80.05   | 0.97           | 1.033   | -13.20         | 0.99           |

| 890                                       | 1.019 | 14.56 | 0.99 | 1.049 | -2.37 | 0.99 | 1.102 | -74.26 | 0.97 | 1.072 | -8.34 | 0.99 |
|-------------------------------------------|-------|-------|------|-------|-------|------|-------|--------|------|-------|-------|------|
| 4. Supplemental Results: Home Information |       |       |      |       |       |      |       |        |      |       |       |      |
|                                           |       |       |      |       |       |      |       |        |      |       |       |      |

## 4.1. Housing characteristics and indoor environmental conditions

Table S8 summarizes information on housing characteristics and indoor environmental conditions of all homes obtained from the baseline and end-line surveys.

Table S8. Housing characteristics of the 40 study homes

| Home | Year  | Bedr Occu Floor Basement Attic HVAC |       | HVAC      | Filter        |               |             |           |
|------|-------|-------------------------------------|-------|-----------|---------------|---------------|-------------|-----------|
| ID   | built | ooms                                | pants | area (m²) | type          | type          | system      | type      |
| H1   | 1919  | 2                                   | 1     | 99        | Finished      | N/A           | Boiler only | N/A       |
| H2   | 1951  | 4                                   | 5     | 214       | Finished      | Finished      | Central AHU | MERV 5-8  |
| Н3   | 1902  | 3                                   | 3     | 284       | Finished      | Finished      | Central AHU | MERV 1-4  |
| H4   | 1913  | 2                                   | 1     | 91        | N/A           | N/A           | Central AHU | MERV 5-8  |
| H5   | 1928  | 4                                   | 2     | 294       | Finished      | Crawl space   | Central AHU | MERV 1-4  |
| Н6   | 1916  | 3                                   | 2     | 214       | Finished      | Finished      | Central AHU | MERV 1-4  |
| H7   | 1919  | 6                                   | 7     | 441       | Half-finished | Finished      | Central AHU | MERV 1-4  |
| H8   | 1919  | 4                                   | 1     | 180       | Finished      | Finished      | Boiler only | N/A       |
| H9   | 1922  | 3                                   | 4     | 64        | Unfinished    | Crawl space   | Central AHU | MERV 5-8  |
| H10  | 1949  | 3                                   | 3     | 145       | Finished      | Crawl space   | Central AHU | MERV 5-8  |
| H11  | 1927  | 4                                   | 3     | 237       | Finished      | Unfinished    | Central AHU | MERV 5-8  |
| H12  | 1923  | 3                                   | 4     | 102       | Unfinished    | Crawl space   | Central AHU | MERV 1-4  |
| H13  | 1967  | 3                                   | 3     | 213       | Finished      | Crawl space   | Central AHU | MERV 1-4  |
| H14  | 1928  | 3                                   | 4     | 179       | Finished      | N/A           | Boiler only | N/A       |
| H15  | 1917  | 3                                   | 2     | 167       | Unfinished    | Unfinished    | Central AHU | MERV 9-12 |
| H16  | 1917  | 2                                   | 3     | 127       | Unfinished    | Unfinished    | Central AHU | ≥MERV 13  |
| H17  | 1924  | 4                                   | 6     | 265       | Finished      | Finished      | Boiler only | N/A       |
| H18  | 1924  | 3                                   | 4     | 325       | Unfinished    | Unfinished    | Boiler only | N/A       |
| H19  | 1925  | 3                                   | 4     | 200       | Finished      | Finished      | Boiler only | N/A       |
| H20  | 1926  | 5                                   | 5     | 199       | Finished      | Finished      | Central AHU | MERV 5-8  |
| H21  | 1919  | 2                                   | 3     | 255       | Finished      | Finished      | Central AHU | MERV 5-8  |
| H22  | 1921  | 4                                   | 2     | 263       | Half-finished | Half-finished | Boiler only | N/A       |
| H23  | 1923  | 3                                   | 1     | 296       | Finished      | Finished      | Central AHU | MERV 9-12 |
| H24  | 1927  | 3                                   | 2     | 269       | Finished      | Finished      | Boiler only | N/A       |
| H25  | 1927  | 4                                   | 6     | 228       | Finished      | Finished      | Central AHU | MERV 9-12 |
| H26  | 1914  | 4                                   | 2     | 297       | Finished      | Finished      | Central AHU | MERV 5-8  |
| H27  | 1922  | 2                                   | 1     | 141       | Unfinished    | Finished      | Boiler only | N/A       |
| H28  | 1920  | 2                                   | 2     | 257       | Half-finished | Finished      | Central AHU | MERV 9-12 |
| H29  | 1925  | 3                                   | 5     | 325       | Finished      | Finished      | Central AHU | MERV 9-12 |
| H30  | 1929  | 6                                   | 6     | 267       | Finished      | Finished      | Boiler only | N/A       |
| H31  | 1954  | 3                                   | 1     | 160       | Finished      | Crawl space   | Central AHU | MERV 9-12 |
| H32  | 1927  | 3                                   | 1     | 167       | Half-finished | Unfinished    | Central AHU | MERV 9-12 |
| H33  | 1885  | 4                                   | 3     | 232       | Finished      | Finished      | Central AHU | MERV 9-12 |
| H34  | 1928  | 4                                   | 2     | 176       | Unfinished    | Finished      | Central AHU | MERV 5-8  |
| H35  | 1915  | 4                                   | 2     | 177       | Finished      | Finished      | Central AHU | MERV 1-4  |
| H36  | 1892  | 4                                   | 2     | 331       | Unfinished    | Finished      | Central AHU | MERV 5-8  |
| H37  | 1924  | 2                                   | 3     | 177       | Half-finished | Unfinished    | Central AHU | ≥MERV 13  |
| H38  | 1912  | 4                                   | 3     | 253       | Finished      | Finished      | Boiler only | N/A       |
| H39  | 1920  | 4                                   | 4     | 228       | Finished      | Finished      | Central AHU | MERV 5-8  |
| H40  | 1924  | 3                                   | 3     | 249       | Finished      | Crawl space   | Boiler only | N/A       |

Table S8. Housing characteristics of the 40 study homes (continued)

| Home<br>ID | Stove<br>type | Bathroom<br>fan | Use of stove fan | Use of<br>bathroom<br>fan | Dampness<br>(last 12<br>months) | Musty smell<br>(last 12<br>months) | Air freshener<br>(last 12<br>months) |
|------------|---------------|-----------------|------------------|---------------------------|---------------------------------|------------------------------------|--------------------------------------|
| H1         | Gas           | Yes             | Rarely           | Always                    | Yes                             | Yes                                | Yes                                  |
| H2         | Gas           | Yes             | Never            | Sometimes                 | No                              | Yes                                | No                                   |
| Н3         | Gas           | Yes             | Rarely           | Sometimes                 | Yes                             | Yes                                | No                                   |
| H4         | Gas           | No              | Never            | Never                     | No                              | No                                 | No                                   |
| H5         | Gas           | Yes             | Rarely           | Rarely                    | No                              | Yes                                | No                                   |
| Н6         | Gas           | Yes             | Rarely           | Always                    | Yes                             | Yes                                | No                                   |
| H7         | Gas           | Yes             | Never            | Never                     | No                              | No                                 | No                                   |
| Н8         | Gas           | No              | Sometimes        | Never                     | Yes                             | No                                 | Yes                                  |
| Н9         | Gas           | No              | Always           | Never                     | Yes                             | No                                 | Yes                                  |
| H10        | Gas           | No              | Rarely           | Never                     | No                              | No                                 | Yes                                  |
| H11        | Gas           | No              | Never            | Never                     | Yes                             | No                                 | Yes                                  |
| H12        | Gas           | Yes             | Rarely           | Always                    | No                              | No                                 | Yes                                  |
| H13        | Gas           | Yes             | Sometimes        | Sometimes                 | No                              | Yes                                | Yes                                  |
| H14        | Gas           | Yes             | Sometimes        | Frequently                | Yes                             | Yes                                | Yes                                  |
| H15        | Gas           | No              | Never            | Never                     | Yes                             | Yes                                | Yes                                  |
| H16        | Gas           | No              | Always           | Never                     | No                              | No                                 | Yes                                  |
| H17        | Gas           | No              | Never            | Never                     | N/A                             | N/A                                | No                                   |
| H18        | Gas           | Yes             | Always           | Always                    | Yes                             | Yes                                | No                                   |
| H19        | Gas           | Yes             | Sometimes        | Always                    | No                              | No                                 | Yes                                  |
| H20        | Gas           | Yes             | Sometimes        | Always                    | No                              | Yes                                | Yes                                  |
| H21        | Gas           | Yes             | Sometimes        | Always                    | Yes                             | Yes                                | Yes                                  |
| H22        | Gas           | Yes             | Sometimes        | Frequently                | Yes                             | Yes                                | Yes                                  |
| H23        | Gas           | No              | Never            | Never                     | No                              | Yes                                | Yes                                  |
| H24        | Gas           | Yes             | Always           | Frequently                | Yes                             | Yes                                | Yes                                  |
| H25        | Elec.         | Yes             | Always           | Always                    | No                              | Yes                                | Yes                                  |
| H26        | Gas           | Yes             | Sometimes        | Frequently                | No                              | Yes                                | Yes                                  |
| H27        | Gas           | No              | Sometimes        | Never                     | No                              | Yes                                | No                                   |
| H28        | Gas           | Yes             | Frequently       | Always                    | No                              | No                                 | No                                   |
| H29        | Gas           | No              | Frequently       | Never                     | Yes                             | Yes                                | No                                   |
| H30        | Gas           | Yes             | Sometimes        | Always                    | No                              | Yes                                | No                                   |
| H31        | Elec.         | No              | Always           | Never                     | Yes                             | Yes                                | Yes                                  |
| H32        | Gas           | No              | Never            | Never                     | No                              | No                                 | No                                   |
| H33        | Elec.         | Yes             | Always           | Frequently                | No                              | No                                 | No                                   |
| H34        | Gas           | Yes             | Sometimes        | Sometimes                 | N/A                             | No                                 | Yes                                  |
| H35        | Gas           | Yes             | Sometimes        | Frequently                | No                              | No                                 | Yes                                  |
| H36        | Elec.         | No              | Never            | Never                     | Yes                             | Yes                                | Yes                                  |
| H37        | Gas           | Yes             | Always           | Sometimes                 | Yes                             | Yes                                | Yes                                  |
| H38        | Gas           | Yes             | Sometimes        | Sometimes                 | Yes                             | Yes                                | Yes                                  |
| H39        | Gas           | Yes             | Sometimes        | Sometimes                 | No                              | No                                 | No                                   |
| H40        | Gas           | No              | Always           | Never                     | N/A                             | Yes                                | Yes                                  |

Table S9 summarizes HVAC system runtime for all homes at each season of the entire study period and at pre- and post-intervention period, measured by Digi-Sense data logging vane anemometers installed on a convenient supply register.

Table S9. Summary of HVAC system runtime data for each season of the entire study period

| HVAC            |                | Pre       | -intervent     | ion         |                | Post-intervention |             |                |           |                |  |  |
|-----------------|----------------|-----------|----------------|-------------|----------------|-------------------|-------------|----------------|-----------|----------------|--|--|
| Runtime<br>Data | Summer<br>2017 | Fall 2017 | Winter<br>2018 | Spring 2018 | Summer<br>2018 | Winter<br>2019    | Spring 2019 | Summer<br>2019 | Fall 2019 | Winter<br>2020 |  |  |
| Average         | 30.0%          | 35.6%     | 33.9%          | 17.8%       | 26.6%          | 34.1%             | 13.2%       | 34.2%          | 33.0%     | 37.4%          |  |  |
| SD              | 25.1%          | 24.8%     | 18.8%          | 23.4%       | 21.7%          | 28.0%             | 20.7%       | 33.8%          | 24.2%     | 22.2%          |  |  |
| Median          | 19.3%          | 28.9%     | 29.9%          | 7.2%        | 23.4%          | 31.1%             | 6.0%        | 19.0%          | 24.0%     | 32.9%          |  |  |
| Min             | 0.1%           | 1.5%      | 3.8%           | 0.0%        | 0.2%           | 0.2%              | 0.0%        | 4.6%           | 4.6%      | 3.9%           |  |  |
| Max             | 86.2%          | 88.4%     | 81.3%          | 98.0%       | 65.7%          | 94.4%             | 78.6%       | 99.7%          | 96.6%     | 86.1%          |  |  |

Table S9. Summary of HVAC system runtime data for each season of the entire study period (continued)

| Summary | Pre-intervention | Post-intervention | Entire duration |
|---------|------------------|-------------------|-----------------|
| Average | 28.3%            | 29.4%             | 28.8%           |
| SD      | 23.4%            | 26.8%             | 24.8%           |
| Median  | 25.4%            | 23.0%             | 23.5%           |
| Min     | 0.0%             | 0.0%              | 0.0%            |
| Max     | 98.0%            | 99.7%             | 99.7%           |

### 4.2. Results of basic building performance and assignment of ventilation system retrofit

Table S10 summarizes the results of blower door tests, TrueFlow meter tests, and both kitchen and bathroom exhaust fan flow tests from initial home walkthroughs.

Table S10. Summary of basic building performance from initial home walkthroughs

| Home | <b>Blower Door Test,</b> |                    | AHU Flo     | ow Rate   | Exhaust Far | Flow Rate              |
|------|--------------------------|--------------------|-------------|-----------|-------------|------------------------|
| ID   | L/s@50Pa                 | Hour at 50 Pascals | AHU flow,   | Operating | Bathroom,   | Kitchen <sup>a</sup> , |
|      | (CFM50)                  | (ACH50)            | L/s (CFM)   | Mode      | L/s (CFM)   | L/s (CFM)              |
| H1   | 1,285 (2,723)            | 17.0               | N/A         | N/A       | 18 (38)     | N/A                    |
| H2   | 1,233 (2,613)            | 7.6                | 563 (1,192) | Cooling   | 17 (36)     | N/A                    |
| H3   | 2,582 (5,471)            | 11.9               | 441 (923)   | Heating   | 25 (53)     | N/A                    |
| H4   | 1,683 (3,567)            | 24.2               | 295 (626)   | Heating   | N/A         | N/A                    |
| H5   | 1,486 (3,148)            | 6.6                | 419 (888)   | Cooling   | 32 (67)     | N/A                    |
| Н6   | 1,402 (2,971)            | 8.6                | 214 (454)   | Cooling   | 25 (53)     | N/A                    |
| H7   | 4,441 (9,411)            | 13.2               | N/A         | N/A       | 18 (38)     | N/A                    |
| H8   | 2,179 (4,618)            | 15.9               | N/A         | N/A       | N/A         | N/A                    |
| H9   | 1,258 (2,665)            | 26.0               | 289 (612)   | Cooling   | N/A         | N/A                    |
| H10  | 800 (1,695)              | 7.3                | 393 (833)   | Cooling   | N/A         | 18 (38)                |
| H11  | 2,345 (4,970)            | 13.0               | 577 (1,223) | Cooling   | N/A         | N/A                    |
| H12  | 1,274 (2,699)            | 16.4               | 554 (1,173) | Cooling   | 12 (26)     | N/A                    |
| H13  | 1,800 (3,815)            | 11.1               | 417 (883)   | Cooling   | 25 (52)*    | N/A                    |
| H14  | 2,544 (5,392)            | 18.7               | N/A         | N/A       | 23 (48)     | N/A                    |
| H15  | 1,521 (3,224)            | 12.0               | 265 (561)   | Cooling   | N/A         | N/A                    |
| H16  | 1,196 (2,534)            | 12.3               | 472 (1,000) | Cooling   | N/A         | 49 (104)               |
| H17  | 940 (1,991)              | 4.7                | N/A         | N/A       | N/A         | N/A                    |
| H18  | 2,093 (4,436)            | 8.4                | N/A         | N/A       | N/A         | 57 (121)               |
| H19  | 1,495 (3,168)            | 9.8                | N/A         | N/A       | 30 (64)     | 25 (52)                |
| H20  | 2,496 (5,290)            | 16.4               | 470 (995)   | Cooling   | 19 (41)*    | N/A                    |
| H21  | 1,808 (3,831)            | 9.3                | 460 (975)   | Heating   | 47 (100)    | N/A                    |
| H22  | 4,017 (8,512)            | 20.0               | N/A         | N/A       | N/A         | N/A                    |
| H23  | 2,955 (6,262)            | 13.1               | 353 (747)   | Cooling   | N/A         | N/A                    |
| H24  | 1,363 (2,888)            | 6.6                | N/A         | N/A       | 18 (38)     | 57 (120)               |
| H25  | 1,832 (3,882)            | 10.5               | 382 (809)   | Cooling   | 16 (33)*    | N/A                    |
| H26  | 2,172 (4,603)            | 9.6                | 569 (1,206) | Cooling   | 8 (17)*     | N/A                    |
| H27  | 1,755 (3,720)            | 16.3               | N/A         | N/A       | N/A         | N/A                    |
| H28  | 1,915 (4,058)            | 9.8                | 310 (657)   | Cooling   | 21 (44)*    | 42 (90)                |
| H29  | 2,025 (4,291)            | 8.2                | 340 (721)   | Cooling   | N/A         | N/A                    |
| H30  | 2,694 (5,709)            | 13.3               | N/A         | N/A       | 21 (45)     | 34 (71)                |
| H31  | 1,176 (2,492)            | 9.6                | 318 (673)   | Cooling   | N/A         | N/A                    |
| H32  | 2,092 (4,434)            | 16.4               | 405 (859)   | Cooling   | N/A         | N/A                    |
| H33  | 716 (1,517)              | 4.0                | 429 (909)   | Cooling   | 14 (29)*    | 124 (262)              |
| H34  | N/A                      | N/A                | 327 (693)   | Fan-only  | 30 (63)     | N/A                    |
| H35  | 806 (1,708)              | 6.0                | 431 (913)   | Heating   | 18 (39)*    | N/A                    |
| H36  | 1,263 (2,677)            | 5.0                | 608 (1,289) | Cooling   | N/A         | N/A                    |
| H37  | 1,178 (2,497)            | 8.8                | 395 (837)   | Cooling   | 20 (42)     | 42 (90)                |
| H38  | 1,153 (2,443)            | 6.0                | N/A         | N/A       | 33 (69)     | N/A                    |
| H39  | 2,146 (4,547)            | 12.4               | 378 (800)   | Heating   | N/A         | N/A                    |
| H40  | 1,755 (3,720)            | 9.3                | N/A         | N/A       | 18 (38)     | N/A                    |

<sup>\*</sup> Average flow rate of two or more bathroom exhaust fans

Table S11 summarizes the residential mechanical ventilation system types and models installed in each home, as well as upfront costs to purchase equipment, installation costs (including installation, accessories, painting, drywall work, etc.), ECM install costs, and total costs (including any required health and safety repairs and blower door tests) charged by the local contractors.

<sup>&</sup>lt;sup>a</sup> Kitchen exhaust fan flow rates were measured only for those kitchen fans that ventilated to the outside.

Table S11. Summary of residential mechanical ventilation retrofits and upfront/installation costs (USD)

| Home | Ventilation      | Model                      | Furnace | Upfront | Installation | Misc. | ECM     | Total   |
|------|------------------|----------------------------|---------|---------|--------------|-------|---------|---------|
| ID   | System Type      |                            | Motor   | Cost    | Costa        | Costb | Cost    | Costc   |
| H1   | Exhaust-only (1) | Panasonic FV-<br>0810VSSL1 | N/A     | \$170   | \$1,725      | \$100 | N/A     | \$1,995 |
| H2   | Balanced (a)     | Broan ERV 110S             | PSC     | \$900   | \$1,545      | \$100 | N/A     | \$2,545 |
| НЗ   | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$805        | \$100 | \$1,275 | \$2,512 |
| H4   | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$100 | \$1,275 | \$2,427 |
| H5   | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$1,100      | \$0   | \$1,275 | \$2,707 |
| Н6   | Exhaust-only (1) | Broan ZB110                | N/A     | \$160   | \$825        | \$0   | N/A     | \$985   |
| H7   | Balanced (b)     | RenewAire EV130            | PSC     | \$850   | \$2,150      | \$100 | N/A     | \$3,100 |
| Н8   | Exhaust-only (1) | Broan ZB110                | N/A     | \$160   | \$825        | \$0   | N/A     | \$985   |
| Н9   | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$815        | \$100 | \$1,275 | \$2,522 |
| H10  | Balanced (a)     | Broan ERV 110T             | ECM (1) | \$900   | \$1,545      | \$0   | \$1,275 | \$3,720 |
| H11  | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$225 | \$1,275 | \$2,552 |
| H12  | CFIS             | Aprilaire 8140NC           | ECM (1) | \$332   | \$720        | \$125 | \$1,275 | \$2,452 |
| H13  | Balanced (a)     | Broan ERV 110S             | ECM (1) | \$900   | \$1,545      | \$100 | \$1,275 | \$3,820 |
| H14  | Exhaust-only (1) | Panasonic FV-<br>0810VSSL1 | N/A     | \$170   | \$825        | \$100 | N/A     | \$1,095 |
| H15  | Balanced (a)     | Broan ERV 110T             | PSC     | \$900   | \$1,545      | \$100 | N/A     | \$2,545 |
| H16  | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$100 | \$1,275 | \$2,427 |
| H17  | Balanced (b)     | RenewAire EV130            | PSC     | \$850   | \$1,875      | \$0   | N/A     | \$2,725 |
| H18  | Exhaust-only (1) | Panasonic FV-<br>0511VKSL1 | N/A     | \$270   | \$1,100      | \$100 | N/A     | \$1,470 |
| H19  | Exhaust-only (1) | Panasonic FV-<br>0511VQL1  | N/A     | \$230   | \$825        | \$100 | N/A     | \$1,155 |
| H20  | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$100 | \$1,275 | \$2,427 |
| H21  | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$0   | \$1,275 | \$2,327 |
| H22  | Balanced (b)     | RenewAire EV130            | PSC     | \$850   | \$1,875      | \$100 | N/A     | \$2,825 |
| H23  | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$0   | \$1,275 | \$2,327 |
| H24  | Exhaust-only (1) | Broan ZB110                | N/A     | \$160   | \$825        | \$100 | N/A     | \$1,085 |
| H25  | CFIS             | Aprilaire 8140             | PSC     | \$332   | \$720        | \$0   | N/A     | \$1,052 |
| H26  | Balanced (a)     | Broan ERV 110T             | ECM (1) | \$900   | \$1,545      | \$0   | \$1,275 | \$3,720 |
| H27  | Exhaust-only (1) | Broan ZB110                | N/A     | \$160   | \$825        | \$0   | N/A     | \$985   |
| H28  | CFIS             | Aprilaire 8140             | ECM (1) | \$332   | \$720        | \$165 | \$1,275 | \$2,492 |
| H29  | Exhaust-only (2) | Panasonic FV-<br>0810VSSL1 | N/A     | \$330   | \$1,650      | \$100 | N/A     | \$2,080 |
| H30  | Exhaust-only (2) | Panasonic FV-<br>0511VKSL1 | N/A     | \$430   | \$1,650      | \$100 | N/A     | \$2,180 |
| H31  | Balanced (a)     | Broan ERV 110S             | PSC     | \$900   | \$1,545      | \$100 | N/A     | \$2,545 |
| H32  | Balanced (b)     | Broan ERV 110S             | PSC     | \$850   | \$2,775      | \$100 | N/A     | \$3,725 |
| H33  | CFIS             | Aprilaire 8140             | PSC     | \$332   | \$720        | \$100 | N/A     | \$1,152 |
| H34  | Balanced (b)     | Broan ERV 110S             | PSC     | \$850   | \$1,875      | \$0   | N/A     | \$2,725 |
| H35  | CFIS             | Aprilaire 8140             | PSC     | \$332   | \$720        | \$0   | N/A     | \$1,052 |
| H36  | Exhaust-only (2) | Broan ZB110                | N/A     | \$320   | \$1,650      | \$100 | \$1,275 | \$3,345 |
| H37  | Balanced (a)     | Broan ERV 110T             | ECM (1) | \$900   | \$1,630      | \$0   | \$1,275 | \$3,805 |
| H38  | Exhaust-only (2) | Broan ZB110                | N/A     | \$320   | \$1,650      | \$100 | N/A     | \$2,070 |
| H39  | CFIS             | Aprilaire 8140             | ECM (2) | \$332   | \$1,240      | \$100 | \$2,550 | \$4,222 |
| H40  | Exhaust-only (2) | Broan ZB110                | N/A     | \$320   | \$1,650      | \$0   | N/A     | \$1,970 |

'Exhaust-only (1)': one exhaust fan installed in one bathroom; 'Exhaust-only (2)': two exhaust fans installed in two bathrooms; 'Balanced (a)': Balanced exhaust and supply system with ERV using existing AHU ducts; 'Balanced (b)': Balanced exhaust and supply system with ERV using independent stand-alone ducts; 'ECM (1)': one PSC motor replaced with one ECM; 'ECM (2)': two PSC motors replaced with two ECMs.

<sup>&</sup>lt;sup>a</sup> Installation costs include drywall, painting, penetration construction costs.

<sup>&</sup>lt;sup>b</sup> Miscellaneous costs include blower door tests and health & safety costs.

<sup>&</sup>lt;sup>c</sup> Total costs sum all costs. For the cost of ventilation system installation alone, subtract ECM cost from total cost.

Table S12 summarizes airflow rate measurements through the central AHUs using TrueFlow Plates (in homes that had central HVAC). For homes that received CFIS systems or balanced systems with an ERV, flow rate measurements are reported separately for both pre- and post-intervention periods.

Table S12. Summary of airflow rate measurements through the AHU

| Home | Pre-interv              | vention               | Post-interv          | vention               | A • 01 D •                  |  |
|------|-------------------------|-----------------------|----------------------|-----------------------|-----------------------------|--|
| ID   | Supply pressure<br>(Pa) | Airflow rate<br>(CFM) | Supply pressure (Pa) | Airflow rate<br>(CFM) | Airflow Rate<br>Change Rate |  |
| H1   | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H2   | 29                      | 872                   | 23                   | 621                   | -29%                        |  |
| Н3   | 51                      | 1102                  | 47                   | 1122                  | 2%                          |  |
| H4   | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H5   | 59                      | 931                   | 59                   | 931                   | 0%                          |  |
| Н6   | 148                     | 307                   | N/A                  | N/A                   | N/A                         |  |
| H7   | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H8   | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H9   | 29                      | 608                   | 9                    | 497                   | -18%                        |  |
| H10  | 40                      | 830                   | 43                   | 735                   | -11%                        |  |
| H11  | 33                      | 1195                  | 40                   | 1353                  | 13%                         |  |
| H12  | 48                      | 1092                  | 48                   | 1092                  | 0%                          |  |
| H13  | 17                      | 888                   | 22                   | 1040                  | 17%                         |  |
| H14  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H15  | 38                      | 551                   | 32                   | 468                   | -15%                        |  |
| H16  | 61                      | 948                   | 31                   | 761                   | -20%                        |  |
| H17  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H18  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H19  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H20  | 20                      | 646                   | 20                   | 646                   | 0%                          |  |
| H21  | N/A                     | N/A                   | 19                   | 962                   | N/A                         |  |
| H22  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H23  | 89                      | 750                   | 116                  | 762                   | 2%                          |  |
| H24  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H25  | 6                       | 754                   | 50                   | 526                   | -30%                        |  |
| H26  | 34                      | 1187                  | 37                   | 1101                  | -7%                         |  |
| H27  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H28  | 29                      | 583                   | 51                   | 688                   | 18%                         |  |
| H29  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H30  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H31  | 46                      | 664                   | 40                   | 687                   | 3%                          |  |
| H32  | 42                      | 816                   | 42                   | 816                   | 0%                          |  |
| H33  | 23                      | 821                   | 23                   | 821                   | 0%                          |  |
| H34  | 19                      | 693                   | 43                   | 805                   | 16%                         |  |
| H35  | 7                       | 476                   | 7                    | 476                   | 0%                          |  |
| H36  | 13                      | 1096                  | 13                   | 1096                  | 0%                          |  |
| H37  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H38  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |
| H39  | 24                      | 808                   | 37                   | 890                   | 10%                         |  |
| H40  | N/A                     | N/A                   | N/A                  | N/A                   | N/A                         |  |

Table S13 summarizes required and measured outdoor airflow rates, average runtimes, annual delivered flow volumes, and measured ventilation system power draw of each study home.

Table S13. ASHRAE 62.2 ventilation requirements, measured outdoor airflow rate, calculated required average runtime, estimated annual delivered flow volume, and measured power draw of mechanical ventilation systems

| Home<br>ID | Ventilation<br>System Type | Ventilation<br>Requirements <sup>a</sup> , | Measured Flow Rate <sup>b</sup> , | Required<br>Average | Estimated<br>Annual                                                     | Active Power (W)    |
|------------|----------------------------|--------------------------------------------|-----------------------------------|---------------------|-------------------------------------------------------------------------|---------------------|
|            |                            | L/s (CFM)                                  | L/s (CFM)                         | Runtime (-)         | Delivered Flow,<br>10 <sup>6</sup> L (10 <sup>6</sup> ft <sup>3</sup> ) | Active Power (W)    |
| H1         | Exhaust-only (1)           | 22 (47)                                    | 23 (48)                           | 1                   | 714 (25)                                                                | NA                  |
| H2         | Balanced (a)               | 50 (107)                                   | 51 (108)                          | 1                   | 1607 (57)                                                               | Measurement failure |
| Н3         | CFIS                       | 54 (114)                                   | 71 (150)                          | 0.46                | 1018 (36)                                                               | 65                  |
| H4         | CFIS                       | 21 (45)                                    | 92 (195)                          | 0.18                | 522 (18)                                                                | Measurement failure |
| H5         | CFIS                       | 59 (125)                                   | N/A                               | 0.50                | NA                                                                      | 70                  |
| Н6         | Exhaust-only (1)           | 43 (92)                                    | 45 (95)                           | 1                   | 1414 (50)                                                               | NA                  |
| H7         | Balanced (b)               | 89 (188)                                   | 57 (120)                          | 1                   | 1786 (63)                                                               | Measurement failure |
| H8         | Exhaust-only (1)           | 42 (88)                                    | 42 (88)                           | 1                   | 1310 (46)                                                               | NA                  |
| H9         | CFIS                       | 20 (43)                                    | 78 (165)                          | 0.17                | 422 (15)                                                                | 70                  |
| H10        | Balanced (a)               | 33 (69)                                    | 35 (75)                           | 1                   | 1116 (39)                                                               | 102                 |
| H11        | CFIS                       | 50 (107)                                   | 55 (117)                          | 0.43                | 745 (26)                                                                | 70                  |
| H12        | CFIS                       | 26 (55)                                    | 61 (130)                          | 0.22                | 426 (15)                                                                | 66                  |
| H13        | Balanced (a)               | 43 (91)                                    | 52 (110)                          | 1                   | 1637 (58)                                                               | 49                  |
| H14        | Exhaust-only (1)           | 42 (88)                                    | 42 (90)                           | 1                   | 1340 (47)                                                               | NA                  |
| H15        | Balanced (a)               | 36 (76)                                    | 41 (88)                           | 1                   | 1310 (46)                                                               | 108                 |
| H16        | CFIS                       | 34 (71)                                    | 107 (227)                         | 0.28                | 960 (34)                                                                | 67                  |
| H17        | Balanced (b)               | 65 (138)                                   | 41 (87)                           | 1                   | 1295 (46)                                                               | 116                 |
| H18        | Exhaust-only (1)           | 64 (135)                                   | 54 (115)                          | 1                   | 1712 (60)                                                               | NA                  |
| H19        | Exhaust-only (1)           | 45 (95)                                    | 52 (111)                          | 1                   | 1652 (58)                                                               | NA                  |
| H20        | CFIS                       | 51 (109)                                   | 89 (188)                          | 0.44                | 1220 (43)                                                               | 66                  |
| H21        | CFIS                       | 50 (105)                                   | 61 (130)                          | 0.42                | 813 (29)                                                                | 70                  |
| H22        | Balanced (b)               | 54 (115)                                   | 53 (112)                          | 1                   | 1667 (59)                                                               | Measurement failure |
| H23        | CFIS                       | 56 (118)                                   | 84 (178)                          | 0.47                | 1250 (44)                                                               | 64                  |
| H24        | Exhaust-only (1)           | 52 (110)                                   | 54 (114)                          | 1                   | 1697 (60)                                                               | NA                  |
| H25        | CFIS                       | 52 (111)                                   | 80 (170)                          | 0.44                | 1123 (40)                                                               | 65                  |
| H26        | Balanced (a)               | 59 (126)                                   | 72 (153)                          | 1                   | 2277 (80)                                                               | 100                 |
| H27        | Exhaust-only (1)           | 32 (68)                                    | 33 (70)                           | 1                   | 1042 (37)                                                               | NA                  |
| H28        | CFIS                       | 46 (98)                                    | 94 (200)                          | 0.39                | 1167 (41)                                                               | 70                  |
| H29        | Exhaust-only (2)           | 64 (135)                                   | 64 (135)                          | 1                   | 2009 (71)                                                               | NA                  |
| H30        | Exhaust-only (2)           | 62 (131)                                   | 63 (134)                          | 1                   | 1994 (70)                                                               | NA                  |
| H31        | Balanced (a)               | 35 (74)                                    | 35 (75)                           | 1                   | 1116 (39)                                                               | 51                  |
| H32        | Balanced (b)               | 36 (76)                                    | 41 (86)                           | 1                   | 1280 (45)                                                               | 53                  |
| H33        | CFIS                       | 50 (105)                                   | 75 (158)                          | 0.42                | 988 (35)                                                                | Measurement failure |
| H34        | Balanced (b)               | 41 (87)                                    | N/A                               | 1                   | N/A                                                                     | 48                  |
| H35        | CFIS                       | 41 (87)                                    | 76 (162)                          | 0.35                | 839 (30)                                                                | 60                  |
| H36        | Exhaust-only (2)           | 65 (137)                                   | 65 (137)                          | 1                   | 2039 (72)                                                               | NA                  |
| H37        | Balanced (a)               | 38 (80)                                    | 42 (88)                           | 1                   | 1310 (46)                                                               | 46                  |
| H38        | Exhaust-only (2)           | 53 (112)                                   | 55 (117)                          | 1                   | 1741 (61)                                                               | NA                  |
| H39        | CFIS                       | 49 (104)                                   | 75 (158)                          | 0.42                | 978 (35)                                                                | 67                  |
| H40        | Exhaust-only (2)           | 52 (110)                                   | 52 (111)                          | 1                   | 1652 (58)                                                               | NA                  |

'Exhaust-only (1)': one exhaust fan installed in one bathroom; 'Exhaust-only (2)': two exhaust fans installed in two bathrooms; 'Balanced (a)': Balanced exhaust and supply system with ERV using existing AHU ducts; 'Balanced (b)': Balanced exhaust and supply system with ERV using independent stand-alone ducts; 'ECM (1)': one PSC motor replaced with one ECM; 'ECM (2)': two PSC motors replaced with two ECMs.

<sup>&</sup>lt;sup>a</sup> Minimum required ventilation rates calculated based on ASHRAE Standard 62.2-2016.

<sup>&</sup>lt;sup>b</sup> Air flow rate measurements after the installation of ventilation systems.

Figure S10 shows an example of each type of ventilation system retrofit installed in the study homes.

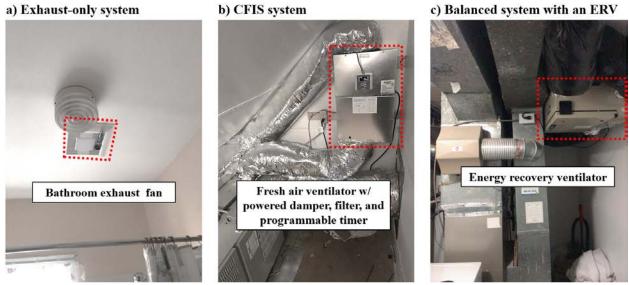



Figure S10. Examples of an exhaust-only system, an intermittent CFIS system, and a balanced system with an ERV

Figure S11 shows an example of time series power draw data for (a) an intermittent CFIS system and (b) a balanced system with an ERV, both measured using plug load data loggers.

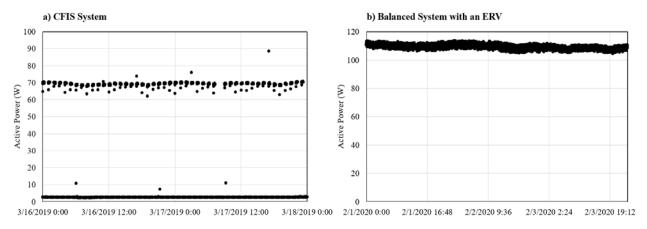



Figure S11. Examples of power draw of an intermittent CFIS system and a continuous balanced system with an ERV

# 5. Supplemental Results: Indoor/Outdoor Pollutant Concentrations

Summary statistics for indoor and outdoor air pollutant concentrations and temperature and relative humidity measured in all homes at each season of the entire study period are summarized in Table S14. The average indoor and outdoor pollutant concentrations during pre- and post-intervention period for all study home are also summarized in Table S15.

Table 14. Statistical summary of measured pollutant concentrations and environmental conditions during each season, averaged across all study homes

|                        |        | Pre-Int | ervention | Period |        |        | Post-Int | terventior | n Period |        |
|------------------------|--------|---------|-----------|--------|--------|--------|----------|------------|----------|--------|
|                        | SU '17 | FA '17  | WI '18    | SP '18 | SU '18 | WI '19 | SP '19   | SU '19     | FA '19   | WI '20 |
| Indoors                |        |         |           |        |        |        |          |            |          |        |
| HCHO (ppb)             | 58.6   | 29.1    | 21.7      | 21.2   | 26.0   | 26.5   | 8.4      | 9.1        | 9.8      | 13.1   |
| CO (ppm)               | 5.01   | 4.98    | 5.08      | 4.57   | 2.39   | 4.76   | 4.31     | 5.79       | 2.92     | 3.70   |
| CO <sub>2</sub> (ppm)  | 838.6  | 788.5   | 786.7     | 742.8  | 727.1  | 699.5  | 686.9    | 581.8      | 719.4    | 638.5  |
| NO <sub>2</sub> (ppb)  | 48.8   | 56.9    | 65.0      | 74.6   | 59.8   | 68.4   | 59.0     | 60.4       | 60.0     | 58.7   |
| O <sub>3</sub> (ppb)   | 2.5    | 9.5     | 11.5      | 11.8   | 11.8   | 11.5   | 11.9     | 7.9        | 9.1      | 9.5    |
| $PM_1 (\mu g/m^3)$     | 19.8   | 14.9    | 14.9      | 10.0   | 10.8   | 10.0   | 10.5     | 8.3        | 8.8      | 11.3   |
| $PM_{2.5} (\mu g/m^3)$ | 21.5   | 16.3    | 17.0      | 11.3   | 11.6   | 12.3   | 11.8     | 9.2        | 9.9      | 12.7   |
| $PM_{10} (\mu g/m^3)$  | 23.6   | 18.4    | 20.8      | 14.2   | 13.1   | 15.4   | 13.3     | 11.1       | 11.9     | 14.4   |
| Temp (°C)              | 27.0   | 23.0    | 22.9      | 24.9   | 27.9   | 22.5   | 26.0     | 27.3       | 24.4     | 24.4   |
| RH (%)                 | 45.3   | 36.9    | 30.8      | 42.4   | 49.5   | 29.6   | 42.0     | 49.2       | 33.0     | 27.9   |
| Outdoors               |        |         |           |        |        |        |          |            |          |        |
| CO (ppm)               | 0.64   | 4.00    | 1.07      | 0.79   | 0.14   | 0.04   | 1.88     | 2.67       | 2.72     | 2.62   |
| CO <sub>2</sub> (ppm)  | 431.4  | 440.1   | 425.8     | 417.2  | 397.6  | 425.7  | 411.7    | 388.6      | 415.7    | 409.5  |
| NO <sub>2</sub> (ppb)  | 49.3   | 66.7    | 96.6      | 94.1   | 75.8   | 82.9   | 83.8     | 76.0       | 82.0     | 86.9   |
| O <sub>3</sub> (ppb)   | 12.5   | 11.2    | 17.9      | 21.0   | 12.8   | 20.3   | 21.7     | 14.5       | 12.2     | 20.9   |
| $PM_1 (\mu g/m^3)$     | 14.3   | 15.2    | 12.8      | 14.7   | 23.1   | 12.7   | 11.0     | 11.9       | 16.4     | 12.9   |
| $PM_{2.5} (\mu g/m^3)$ | 15.1   | 16.2    | 13.4      | 15.6   | 24.0   | 13.1   | 11.6     | 12.4       | 17.2     | 13.7   |
| $PM_{10} (\mu g/m^3)$  | 19.0   | 19.7    | 15.0      | 18.5   | 27.2   | 13.9   | 13.8     | 14.9       | 19.3     | 15.2   |
| Temp (°C)              | 27.3   | 11.5    | 13.1      | 22.3   | 30.5   | 17.2   | 22.5     | 28.1       | 10.6     | 7.2    |
| RH (%)                 | 46.0   | 45.0    | 32.5      | 47.3   | 51.9   | 27.0   | 50.2     | 52.4       | 49.5     | 48.8   |

Table S15. Average indoor/outdoor pollutant concentrations during pre-intervention period

|      | Pre-Intervention Period |       |                 |                 |                |        |                      |                  |       |                 |                 |                |        |                      |                  |
|------|-------------------------|-------|-----------------|-----------------|----------------|--------|----------------------|------------------|-------|-----------------|-----------------|----------------|--------|----------------------|------------------|
| Home |                         |       |                 | Ind             | loor           |        |                      |                  |       |                 |                 | Outdoo         | r      |                      |                  |
| ID   | НСНО                    | CO    | CO <sub>2</sub> | NO <sub>2</sub> | O <sub>3</sub> | $PM_1$ | PM <sub>2.5</sub>    | PM <sub>10</sub> | CO    | CO <sub>2</sub> | NO <sub>2</sub> | O <sub>3</sub> | $PM_1$ | PM <sub>2.5</sub>    | PM <sub>10</sub> |
|      | (ppb)                   | (ppm) | (ppm)           | (ppb)           |                |        | (μg/m <sup>3</sup> ) | $(\mu g/m^3)$    | (ppm) | (ppm)           | (ppb)           | (ppb)          |        | (μg/m <sup>3</sup> ) | (μg/m³)          |
| H1   | 7.0                     | 1.71  | 695             | 58.3            | 10.9           | 5.1    | 5.6                  | 6.4              | N/A   | 423             | 86.5            | 13.6           | 13.4   | 14.0                 | 16.4             |
| H2   | 64.0                    | 4.36  | 968             | 62.8            | 11.5           | 7.0    | 8.3                  | 10.8             | 2.32  | 412             | 67.1            | 16.7           | 13.9   | 14.8                 | 17.9             |
| Н3   | 49.5                    | 0.07  | 536             | 56.3            | 10.4           | 7.0    | 7.5                  | 9.1              | N/A   | 438             | 92.1            | 13.4           | 20.1   | 21.3                 | 24.1             |
| H4   | 26.3                    | 1.65  | 642             | 66.2            | 11.1           | 20.8   | 21.9                 | 24.8             | 0.80  | 421             | 79.9            | 17.9           | 26.9   | 28.3                 | 31.1             |
| H5   | 10.8                    | 0.09  | 533             | 57.7            | 8.6            | 3.6    | 3.9                  | 4.9              | 0.09  | 428             | 92.0            | 16.1           | 14.8   | 15.6                 | 17.8             |
| Н6   | 88.8                    | 4.02  | 1073            | 61.9            | 12.5           | 4.9    | 5.6                  | 8.1              | N/A   | 425             | 90.2            | 17.0           | 9.0    | 9.7                  | 12.4             |
| H7   | 17.5                    | 7.58  | 642             | 60.5            | 12.4           | 53.3   | 60.3                 | 71.5             | 0.19  | 420             | 76.0            | 13.0           | 17.0   | 17.9                 | 21.9             |
| H8   | 41.8                    | 6.88  | 698             | 63.3            | 9.1            | 8.2    | 9.0                  | 10.6             | 2.63  | 431             | 71.6            | 15.0           | 11.1   | 11.9                 | 15.3             |
| Н9   | 15.3                    | 0.44  | 927             | 61.6            | 10.5           | 10.3   | 11.2                 | 13.0             | N/A   | 424             | 68.5            | 15.6           | 18.0   | 19.1                 | 23.0             |
| H10  | 51.7                    | 4.61  | 1082            | 51.5            | 9.1            | 7.5    | 8.5                  | 10.1             | N/A   | 433             | 89.8            | 14.1           | 12.6   | 13.5                 | 16.8             |
| H11  | 5.0                     | 6.68  | 646             | 50.4            | 12.7           | 6.0    | 6.4                  | 7.4              | 1.01  | 436             | 76.2            | 18.7           | 14.2   | 15.0                 | 17.5             |
| H12  | 12.0                    | 6.37  | 713             | 58.3            | 9.2            | 46.4   | 51.8                 | 56.4             | 1.32  | 437             | 76.9            | 16.5           | 14.8   | 15.8                 | 18.7             |
| H13  | 23.5                    | 8.19  | 494             | 62.8            | 10.1           | 12.7   | 13.2                 | 14.1             | 1.09  | 427             | 86.3            | 14.1           | 17.4   | 18.3                 | 20.9             |
| H14  | 5.0                     | 4.28  | 957             | 54.8            | 7.8            | 19.8   | 22.4                 | 30.9             | 1.33  | 434             | 80.1            | 16.5           | 15.9   | 16.9                 | 19.7             |
| H15  | 58.5                    | 4.75  | 975             | 62.0            | 9.3            | 7.4    | 8.8                  | 11.5             | 2.84  | 430             | 71.5            | 13.6           | 19.6   | 20.6                 | 23.1             |
| H16  | 19.0                    | 6.15  | 767             | 58.6            | 11.0           | 8.1    | 8.7                  | 11.6             | 3.05  | 430             | 89.3            | 15.9           | 15.4   | 16.6                 | 19.8             |
| H17  | 55.3                    | 0.75  | 1537            | 56.5            | 9.3            | 4.9    | 5.8                  | 10.0             | N/A   | 422             | 85.7            | 16.1           | 14.1   | 14.8                 | 17.2             |
| H18  | 14.5                    | 5.24  | 759             | 71.9            | 12.3           | 7.2    | 7.8                  | 10.0             | 0.92  | 427             | 82.2            | 17.7           | 19.3   | 20.0                 | 22.0             |
| H19  | 14.5                    | 2.17  | 1056            | 59.0            | 11.4           | 78.2   | 87.8                 | 92.6             | 0.33  | 419             | 75.3            | 17.7           | 15.5   | 16.4                 | 19.1             |
| H20  | 90.0                    | 3.86  | 720             | 72.3            | 9.4            | 8.5    | 9.2                  | 10.8             | 1.15  | 439             | 82.8            | 13.7           | 20.2   | 21.0                 | 23.6             |
| H21  | 15.5                    | 1.77  | 747             | 69.5            | 9.9            | 18.7   | 19.9                 | 21.8             | N/A   | 419             | 76.5            | 14.2           | 14.3   | 15.1                 | 18.5             |
| H22  | 24.3                    | 5.39  | 573             | 54.3            | 11.3           | 6.2    | 6.8                  | 9.5              | 0.11  | 415             | 79.9            | 14.9           | 9.6    | 10.1                 | 12.2             |
| H23  | 29.5                    | 5.09  | 505             | 59.7            | 11.1           | 5.2    | 5.8                  | 7.0              | 4.38  | 410             | 70.4            | 17.8           | 11.4   | 12.3                 | 16.2             |
| H24  | 16.0                    | 2.85  | 541             | 53.9            | 10.6           | 4.9    | 5.3                  | 6.5              | N/A   | 422             | 78.1            | 15.4           | 14.7   | 15.5                 | 17.9             |
| H25  | 31.3                    | 3.81  | 834             | 57.1            | 8.2            | 6.8    | 7.5                  | 9.8              | 0.35  | 428             | 76.0            | 14.0           | 15.3   | 16.2                 | 20.0             |
| H26  | 41.3                    | 3.85  | 597             | 70.4            | 10.0           | 12.4   | 13.7                 | 15.1             | 0.27  | 415             | 64.8            | 17.4           | 17.0   | 18.2                 | 21.6             |
| H27  | 15.0                    | 5.57  | 655             | 57.8            | 12.9           | 12.4   | 13.8                 | 15.6             | 0.47  | 424             | 81.8            | 18.7           | 14.7   | 15.5                 | 18.7             |
| H28  | 50.3                    | N/A   | 530             | 61.7            | 8.9            | 14.8   | 15.5                 | 17.9             | 0.07  | 425             | 72.6            | 14.3           | 19.6   | 20.8                 | 23.0             |
| H29  | 43.0                    | 5.71  | 1046            | 73.2            | 12.0           | 19.0   | 21.1                 | 24.2             | 0.92  | 430             | 66.9            | 16.3           | 16.2   | 17.0                 | 19.7             |
| H30  | 41.3                    | 0.07  | 721             | 70.1            | 10.7           | 6.7    | 7.4                  | 10.7             | N/A   | 421             | 100.0           | 20.1           | 10.3   | 10.8                 | 13.9             |
| H31  | 5.0                     | 6.06  | 813             | 56.6            | 12.0           | 9.7    | 11.3                 | 13.1             | 1.69  | 416             | 68.8            | 13.8           | 15.4   | 16.3                 | 19.7             |
| H32  | 14.0                    | 0.09  | 688             | 58.0            | 11.3           | 8.4    | 8.9                  | 10.6             | N/A   | 434             | 75.4            | 13.9           | 19.2   | 20.2                 | 21.9             |
| H33  | 90.3                    | 5.16  | 710             | 52.0            | 10.2           | 4.5    | 4.8                  | 5.3              | 0.38  | 433             | 79.5            | 16.0           | 17.4   | 18.4                 | 21.4             |
| H34  | 37.5                    | 5.58  | 635             | 64.5            | 8.5            | 16.7   | 19.2                 | 22.9             | 2.69  | 411             | 76.9            | 14.9           | 13.4   | 14.0                 | 17.1             |
| H35  | 23.5                    | 1.80  | 623             | 63.3            | 12.8           | 8.8    | 9.3                  | 10.4             | 0.50  | 436             | 81.9            | 11.3           | 14.6   | 15.5                 | 19.0             |
| H36  | 21.5                    | 8.43  | 622             | 66.5            | 10.4           | 5.4    | 5.9                  | 7.6              | 4.66  | 430             | 73.5            | 17.2           | 12.3   | 13.1                 | 16.1             |
| H37  | 15.5                    | 1.55  | 823             | 53.9            | 7.7            | 6.0    | 6.6                  | 7.7              | 0.23  | 428             | 59.4            | 13.6           | 17.9   | 18.7                 | 22.0             |
| H38  | 41.8                    | 5.46  | 1412            | 105.5           | 8.3            | 12.9   | 14.9                 | 18.1             | 0.89  | 418             | 68.8            | 18.0           | 13.1   | 13.9                 | 17.4             |
| H39  | 11.3                    | 8.15  | 964             | 56.6            | 11.5           | 5.8    | 7.1                  | 15.7             | 2.71  | 418             | 73.8            | 15.9           | 8.0    | 8.7                  | 11.6             |
| H40  | 8.5                     | 7.62  | 708             | 69.3            | 12.8           | 7.5    | 8.3                  | 9.7              | 1.72  | 419             | 77.3            | 14.9           | 10.1   | 10.6                 | 13.0             |

 $\begin{tabular}{lll} Table & S15. & Average & indoor/outdoor & pollutant & concentrations & during & post-intervention & period & (continued) & (continued$ 

|      |       |       |                 |        |                | P             | Post-Inte         | ervention        | 1 Perio | d      |                 |                |               |                   |               |
|------|-------|-------|-----------------|--------|----------------|---------------|-------------------|------------------|---------|--------|-----------------|----------------|---------------|-------------------|---------------|
| Home |       |       |                 | Ind    | loor           |               |                   |                  |         |        |                 | Outdoo         | r             |                   |               |
| ID   | НСНО  | CO    | CO <sub>2</sub> | $NO_2$ | O <sub>3</sub> | $PM_1$        | PM <sub>2.5</sub> | PM <sub>10</sub> | CO      | $CO_2$ | NO <sub>2</sub> | O <sub>3</sub> | $PM_1$        | PM <sub>2.5</sub> | $PM_{10}$     |
|      | (ppb) | (ppm) | (ppm)           | (ppb)  | (ppb)          | $(\mu g/m^3)$ | $(\mu g/m^3)$     | $(\mu g/m^3)$    | (ppm)   | (ppm)  | (ppb)           | (ppb)          | $(\mu g/m^3)$ | $(\mu g/m^3)$     | $(\mu g/m^3)$ |
| H1   | 12.0  | 3.20  | 591             | 59.2   | 14.3           | 1.4           | 1.5               | 1.7              | 6.35    | 411    | 82.7            | 18.1           | 12.9          | 13.4              | 14.6          |
| H2   | 32.0  | 1.74  | 812             | 63.0   | 6.6            | 7.9           | 8.8               | 10.9             | 0.06    | 419    | 91.5            | 25.8           | 7.5           | 7.9               | 8.6           |
| Н3   | 8.3   | 4.74  | 527             | 63.3   | 6.9            | 6.7           | 8.0               | 9.1              | 0.08    | 390    | 85.4            | 23.5           | 14.3          | 14.7              | 17.2          |
| H4   | 5.0   | 4.52  | 654             | 57.1   | 7.9            | 31.9          | 37.4              | 41.2             | N/A     | 408    | 76.9            | 19.0           | 8.6           | 9.2               | 10.1          |
| H5   | 7.0   | 1.63  | 634             | 57.2   | 7.9            | 2.3           | 2.6               | 3.2              | 5.61    | 421    | 87.9            | 14.5           | 13.6          | 14.1              | 14.8          |
| Н6   | 27.5  | 4.56  | 1140            | 60.7   | 8.0            | 11.4          | 14.9              | 21.7             | 0.09    | 396    | 77.7            | 21.9           | 18.3          | 19.1              | 20.1          |
| H7   | 5.0   | 3.83  | 481             | 63.6   | 9.7            | 3.7           | 4.2               | 5.3              | 5.49    | 403    | 83.1            | 17.8           | 12.8          | 13.1              | 14.0          |
| H8   | 5.0   | 2.39  | 575             | 59.0   | 7.0            | 5.2           | 5.7               | 6.5              | 3.17    | 416    | 88.4            | 19.7           | 17.4          | 18.2              | 20.1          |
| Н9   | 11.3  | 0.17  | 700             | 51.4   | 8.2            | 1.4           | 1.5               | 1.7              | 0.38    | 418    | 80.5            | 13.0           | 27.9          | 28.5              | 29.6          |
| H10  | 18.8  | N/A   | 724             | 54.8   | 9.0            | 3.5           | 3.8               | 4.7              | 3.80    | 414    | 81.7            | 16.4           | 13.8          | 14.4              | 15.0          |
| H11  | 11.0  | 4.78  | 616             | 70.7   | 11.6           | 5.4           | 6.3               | 7.4              | 6.05    | 415    | 82.2            | 14.9           | 17.0          | 17.3              | 17.9          |
| H12  | 13.0  | 8.41  | 600             | 62.3   | 8.5            | 16.3          | 24.1              | 25.4             | 2.92    | 427    | 77.0            | 13.7           | 16.7          | 17.3              | 17.9          |
| H13  | 15.3  | 4.26  | 533             | 53.2   | 10.2           | 4.8           | 5.8               | 6.8              | 0.07    | 392    | 85.0            | 16.5           | 21.6          | 22.3              | 23.3          |
| H14  | 11.0  | 2.11  | 690             | 57.5   | 7.8            | 33.3          | 38.1              | 40.4             | 0.01    | 402    | 83.2            | 25.5           | 10.9          | 11.6              | 12.2          |
| H15  | 19.0  | N/A   | 698             | 53.5   | 9.3            | 2.2           | 2.8               | 3.2              | 0.02    | 400    | 83.4            | 21.5           | 14.0          | 14.6              | 16.5          |
| H16  | 23.8  | 1.09  | 817             | 55.9   | 12.8           | 3.2           | 3.8               | 3.9              | 5.26    | 415    | 82.4            | 12.2           | 24.3          | 25.3              | 26.8          |
| H17  | 14.3  | 4.27  | 888             | 59.5   | 7.2            | 2.8           | 3.4               | 4.6              | 0.20    | 417    | 82.8            | 13.9           | 14.3          | 14.9              | 15.8          |
| H18  | 7.0   | 2.76  | 746             | 63.7   | 12.4           | 2.6           | 2.9               | 3.6              | 0.27    | 408    | 93.1            | 23.7           | 9.3           | 9.6               | 11.2          |
| H19  | 7.7   | 6.90  | 706             | 57.7   | 8.3            | 2.2           | 2.9               | 4.2              | 0.11    | 403    | 87.7            | 24.0           | 16.7          | 17.1              | 18.5          |
| H20  | 13.5  | 5.89  | 629             | 68.8   | 14.1           | 2.8           | 3.2               | 4.1              | 3.99    | 417    | 78.1            | 21.8           | 12.2          | 12.7              | 13.6          |
| H21  | 7.3   | 8.06  | 554             | 56.8   | 9.6            | 3.4           | 3.7               | 3.9              | 0.39    | 394    | 80.7            | 21.4           | 15.8          | 16.4              | 17.8          |
| H22  | 5.0   | 0.47  | 560             | 57.8   | 11.3           | 0.9           | 1.0               | 1.6              | 2.67    | 426    | 87.2            | 16.4           | 13.2          | 13.8              | 15.0          |
| H23  | 5.0   | 4.16  | 463             | 54.4   | 11.6           | 2.2           | 2.4               | 2.6              | 3.17    | 422    | 83.9            | 18.0           | 19.3          | 19.8              | 20.9          |
| H24  | 13.7  | 1.60  | 485             | 57.8   | 11.1           | 3.7           | 4.0               | 4.7              | 3.16    | 419    | 71.3            | 9.2            | 15.0          | 15.5              | 16.3          |
| H25  | 10.5  | 2.67  | 870             | 55.5   | 10.6           | 2.1           | 2.5               | 3.5              | 0.38    | 406    | 83.1            | 17.5           | 12.6          | 13.0              | 14.0          |
| H26  | 13.7  | 5.71  | 517             | 56.4   | 12.6           | 16.8          | 18.0              | 18.4             | 5.50    | 416    | 80.7            | 12.7           | 16.6          | 17.1              | 18.5          |
| H27  | 5.0   | 1.01  | 528             | 63.2   | 6.6            | 5.0           | 5.8               | 6.5              | 0.17    | 392    | 87.8            | 10.9           | 21.3          | 21.5              | 23.0          |
| H28  | 8.0   | 0.16  | 506             | 59.6   | 2.0            | 4.0           | 4.2               | 5.5              | N/A     | 422    | 85.1            | 16.4           | 24.8          | 26.0              | 26.7          |
| H29  | 12.0  | 7.71  | 803             | 69.0   | 12.9           | 18.3          | 23.9              | 32.2             | 6.04    | 404    | 79.1            | 26.7           | 18.0          | 18.6              | 19.1          |
| H30  | 12.3  | 2.71  | 685             | 63.4   | 12.6           | 5.2           | 5.8               | 7.2              | N/A     | 407    | 82.7            | 18.6           | 13.6          | 14.1              | 15.2          |
| H31  | 6.8   | 9.14  | 597             | 55.9   | 10.8           | 2.6           | 3.1               | 3.6              | 5.67    | 407    | 77.8            | 19.5           | 18.6          | 19.3              | 20.5          |
| H32  | 15.3  | 2.92  | 506             | 61.3   | 11.8           | 5.3           | 6.0               | 5.9              | 1.86    | 427    | 77.3            | 10.9           | 19.7          | 20.2              | 21.0          |
| H33  | 11.3  | 4.38  | 694             | 54.8   | 11.0           | 7.0           | 8.8               | 11.3             | 6.50    | 405    | 82.6            | 17.9           | 9.7           | 10.6              | 12.0          |
| H34  | 14.0  | N/A   | 538             | 60.9   | 12.4           | 8.3           | 10.4              | 11.7             | 0.02    | 408    | 93.5            | 18.3           | 16.3          | 16.8              | 18.4          |
| H35  | 5.0   | 0.05  | 618             | 66.6   | 15.0           | 1.2           | 1.4               | 1.9              | 0.19    | 418    | 78.4            | 14.8           | 17.7          | 18.5              | 19.7          |
| H36  | 11.3  | 7.80  | 511             | 62.0   | 8.5            | 3.0           | 3.4               | 4.1              | 0.07    | 411    | 79.8            | 14.8           | 12.0          | 12.8              | 14.1          |
| H37  | 9.0   | 3.87  | 742             | 56.2   | 8.7            | 3.6           | 4.3               | 4.8              | 0.06    | 424    | 77.4            | 12.5           | 17.4          | 18.1              | 19.2          |
| H38  | 23.8  | 5.32  | 679             | 82.8   | 13.3           | 3.9           | 4.8               | 7.0              | 2.76    | 402    | 78.8            | 17.0           | 22.0          | 22.6              | 23.4          |
| H39  | 5.0   | 5.22  | 1082            | 59.2   | 12.9           | 5.2           | 5.9               | 7.4              | 3.84    | 410    | 83.8            | 16.5           | 21.2          | 21.7              | 22.9          |
| H40  | 5.0   | 0.28  | 663             | 64.4   | 12.8           | 4.4           | 4.7               | 5.5              | 6.31    | 401    | 80.7            | 17.3           | 5.9           | 6.2               | 6.7           |

#### 6. Supplemental Results: Statistical Power Analysis

Results of statistical power analyses of the one-way ANOVA and the Wilcoxon's signed-rank tests used herein are summarized in **Tables S16-S18**, corresponding to the results in Tables 2, 3, and 4 in the main text. For the one-way ANOVA, the power was calculated based on the error probability (significance level = 0.05), the actual sample size per group, the alternative group means, and the error (within-group) variance. For the Wilcoxon's signed-rank test, the power was calculated based on the error probability (significance level = 0.05), the actual sample size, the mean values of pre- and post-intervention periods, and the standard deviation of the differences between pre- and post-intervention period.

Table S16. Statistical power analysis of the one-way ANOVA for home characteristics

| One-way ANOVA                      | Total (N) | Exhaust-Only (n) | CFIS (n) | Balanced (n) | Statistical Power |
|------------------------------------|-----------|------------------|----------|--------------|-------------------|
| Construction year                  | 40        | 13               | 15       | 12           | 7%                |
| Total floor area                   | 40        | 13               | 15       | 12           | 5%                |
| Number of bedrooms                 | 40        | 13               | 15       | 12           | 5%                |
| Number of occupants                | 40        | 13               | 15       | 12           | 5%                |
| Airtightness (L/s @ 50 Pa)         | 39        | 13               | 15       | 11           | 5%                |
| ACH <sub>50</sub>                  | 39        | 13               | 15       | 11           | 5%                |
| Air handler airflow rates          | 27        | 3                | 15       | 9            | 5%                |
| Ventilation requirements           | 40        | 13               | 15       | 12           | 5%                |
| Measured ventilation airflow rates | 38        | 13               | 14       | 11           | 15%               |

The statistical power analysis of the one-way ANOVA conducted on home characteristics among each group showed low power (all less than 15%), which, combined with results in Table 2, suggests the pseudo-randomized assignment of ventilation system types was largely successful in distributing homes among groups.

Table S17. Statistical power analysis of the Wilcoxon's Signed-Rank tests for indoor and outdoor pollutant concentrations for all ventilation system types

| Indoor (Outdoor) Pollutants | Samp             | le Size           | Statistical Power     |
|-----------------------------|------------------|-------------------|-----------------------|
| Indoor (Outdoor) Pollutants | Pre-Intervention | Post-Intervention |                       |
| НСНО                        | 40 (NA)          | 40 (NA)           | 100%*** (NA)          |
| СО                          | 39 (37)          | 30 (37)           | 22% ( <b>91%</b> *)   |
| $CO_2$                      | 40 (40)          | 40 (40)           | 99%*** (100%***)      |
| $NO_2$                      | 40 (40)          | 40 (40)           | 55% ( <b>99%</b> ***) |
| $O_3$                       | 40 (40)          | 40 (40)           | 28% ( <b>99%</b> **)  |
| $PM_1$                      | 40 (40)          | 40 (40)           | <b>83%</b> *** (19%)  |
| $PM_{2.5}$                  | 40 (40)          | 40 (40)           | 77%**** (9%)          |
| $PM_{10}$                   | 40 (40)          | 40 (40)           | <b>85%</b> *** (44%)  |

95% confidence level for a two-tailed Wilcoxon's signed-rank test. P-values: \*p < 0.1; \*\*p < 0.05; \*\*\*p < 0.01

The statistical power analysis of the Wilcoxon signed-rank tests on indoor and outdoor constituent concentrations pre- and post-intervention (regardless of ventilation system type) showed a range of statistical power, with comparisons with p < 0.05 generally having statistical power of more than 80%.

Table S18. Statistical power analysis of the Wilcoxon's Signed-Rank tests for the I/O ratio of pollutants for all and specific ventilation system types

| Statistical Power of Wilcoxon's | Exhaust-Only | CFIS   | Balanced | Total  |
|---------------------------------|--------------|--------|----------|--------|
| Signed-Rank Test for I/O ratios | (n=13)       | (n=15) | (n=12)   | (n=40) |
| CO <sub>2</sub>                 | 70%**        | 6%     | 95%***   | 98%*** |
| NO <sub>2</sub>                 | 77%          | 31%    | 93%**    | 99%*** |
| $O_3$                           | 34%          | 28%    | 37%      | 84%    |
| PM <sub>1</sub>                 | 24%**        | 17%*   | 56%**    | 65%*** |
| $PM_{2.5}$                      | 21%*         | 11%*   | 51%**    | 58%*** |
| $PM_{10}$                       | 17%          | 11%*   | 59%**    | 56%*** |

95% confidence level for a two-tailed Wilcoxon's signed-rank test. P-values: \*p < 0.1; \*\*p < 0.05; \*\*\*p < 0.01

The statistical power for comparisons of I/O ratios of CO<sub>2</sub>, NO<sub>2</sub>, and O<sub>3</sub> pre- and post-intervention, calculated across the entire sample of 40 homes, was greater than 80%, but was lower (56-65%) for comparisons of the I/O ratios of PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> due to the larger variance in the standard deviation of the differences between pre- and post-intervention periods. Statistical power calculations for comparisons of I/O ratios within the smaller group sizes (i.e., within a single type of ventilation system) yielded lower statistical power, as expected, than the larger group, with the greatest power generally associated with the balanced systems (especially for I/O ratios of CO<sub>2</sub> and NO<sub>2</sub>), followed by exhaust-only, followed by CFIS systems.