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ABSTRACT: The extent to which climate change and other
factors will influence building energy use and population exposures
to indoor pollutants is not well understood. Here, we develop and
apply nationally representative residential energy and indoor
pollutant model sets to estimate energy use, indoor pollutant
concentrations, and associated chronic health outcomes across the
U.S. residential building stock in the mid-21st century. The models
incorporate expected changes in meteorological and ambient air
quality conditions associated with IPCC RCP 8.5 and assumptions
for changes in housing characteristics and population movements
while keeping other less predictable factors constant. Site and
source energy consumption for residential space-conditioning are
predicted to decrease by ∼37−43 and ∼20−31%, respectively, in
the 2050s compared to those in a 2010s reference scenario. Population-average indoor concentrations of pollutants of ambient origin
are expected to decrease, except for O3. Holding indoor emission factors constant, indoor concentrations of pollutants with
intermittent indoor sources are expected to decrease by <5% (PM2.5) to >30% (NO2); indoor concentrations of pollutants with
persistent indoor sources (e.g., volatile organic compounds (VOCs)) are predicted to increase by ∼15−45%. We estimate negligible
changes in disability-adjusted life-years (DALYs) lost associated with residential indoor pollutant exposures, well within uncertainty,
although the attribution among pollutants is predicted to vary.

■ INTRODUCTION
Americans spend most of their time inside their homes1 where
they are exposed to a variety of air pollutants of both indoor
and outdoor origin.2−8 Indoor pollutant exposure is associated
with both acute and chronic health outcomes.9−11 Residential
buildings also account for more than 20% of the U.S. primary
energy consumption and a similar proportion of greenhouse
gas emissions.12 Residential building energy use and human
exposures to indoor air pollutants will be affected by future
climate change, population movements, and changes in the
characteristics of the U.S. housing stock, but the likely
magnitudes of influences from these factors are not well
understood.
Changes in future meteorological conditions are expected to

influence building energy use directly by altering heating,
cooling, and ventilation loads and by changing the conditions
at which heating and cooling equipment operate.13−17 The
magnitude of impacts in individual buildings is expected to
vary by building type, building system characteristics, and the
extent of climate changes in a building’s geographic
location.18,19 The magnitude of impacts on energy use across
the building stock is also expected to be influenced by changes
in the underlying characteristics of the future building stock,
population movements, and the magnitude and geographic
distribution of changes in meteorological conditions.20

Climate change is also expected to impact the concen-
trations of indoor air pollutants inside buildings, which will
have implications for human exposures and public health.21−24

First, climate change is expected to directly influence outdoor
air quality,25,26 primarily by increasing temperatures and net
radiative flux and decreasing wind speeds and planetary
boundary layer heights.27 These changes are expected to
increase outdoor ozone concentrations in some locations,28−30

which can affect indoor exposures to ozone that infiltrates
indoors and ozone reaction byproducts from reactions with
unsaturated organic compounds emitted indoors.5 Conversely,
the impacts of climate change on ambient particulate matter
concentrations are expected to be more variable and less
predictable.31,32 Future changes in ambient particulate matter
are subject to changes in both primary and precursor emissions
driven by changes in energy and environmental policies
implemented in response to climate change. If targeted
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emission reductions in response to climate change concerns
are successful, long-term average and peak concentrations of
many outdoor pollutants are expected to decrease in many
locations,33 which is also likely to manifest as a reduction in
indoor concentrations of pollutants of ambient origin because
outdoor pollutants can infiltrate into buildings with varying
efficiencies.34−37

Climate change is also expected to lead to changes in
meteorological conditions that will impact building perform-
ance, operation, and human behaviors that affect both energy
use and indoor pollutant concentrations, including altering air
infiltration rates,38 air-conditioner operation (which can affect
pollutant filtration by central forced-air space-conditioning
systems),39−41 and window-opening behaviors.42−45 Addition-
ally, climate change concerns are expected to drive policy
responses that influence the ways in which we design and
construct buildings,46−49 including implementing energy-
efficient building practices in new construction and widespread
application of energy efficiency retrofits in existing build-
ings.50,51 These practices are generally expected to decrease air
infiltration rates, which will tend to increase the contribution of
indoor-generated pollutants and decrease the contribution of
outdoor-generated pollutants.52,53 However, the net effects of
these complex interplays are unclear and have not yet been
estimated at scale.
Here, we develop a set of combined building energy and

indoor air quality (IAQ) models that are representative of both
the current (i.e., 2010s) and future (i.e., 2050s) U.S. residential
building stock. We apply the model sets using both current
(i.e., 2012) and future (i.e., mid-2050s) climate and air quality
scenarios to estimate the net impacts of predicted changes in
meteorological conditions, ambient air quality, housing stock
characteristics, and population movements on building energy
use, indoor pollutant concentrations, and chronic health
outcomes associated with indoor pollutant exposures in U.S.
homes. The future building stock model incorporates a
combination of predicted changes in predictable parameters,
including future meteorological conditions, ambient air quality,
the U.S. housing stock, and population movements, to provide
best estimates of the site and source energy use for space-
conditioning and population-average exposures to indoor
pollutants in U.S. homes in the middle of the 21st century.
The future building stock model holds some less predictable
parameters constant such as time-averaged indoor pollutant
emission rates and the predominant fuel type used in each
location over time. We also incorporate model scenarios that
isolate the potential impacts of changing meteorological and
ambient air quality conditions alone, separate from expected
changes in the U.S. housing stock and population movements.

■ MATERIALS AND METHODS
We use our previously developed residential energy and indoor
air quality (REIAQ) model framework54 as a basis for
constructing a new set of combined building energy and
IAQ models for both the current housing stock (as of the
∼2010s) and the future housing stock (as of the ∼2050s). The
future stock model set accounts for expected changes in future
meteorological conditions, ambient air quality, the U.S.
housing stock, and population movements. The REIAQ
model framework combines hourly energy simulations using
BEopt version 2.2.0 and EnergyPlus version 8.1.0 with a
custom single-zone hourly mass balance model for dynamic
indoor pollutant simulations. The model framework is built in

Python 2.7 to automate the simulation process. It uses an
indirect cosimulation approach in which energy, airflow, and
contaminant mass balance equations are not solved as an
integrated set of equations but rather are solved sequentially.
The automated workflow involves the following sequential

steps: (1) manually building a minimal number of typical
home geometries in BEopt (some of which was completed in
ref 54), (2) modifying those base home geometries to include
region-specific details on envelope construction, heating,
ventilating, and air-conditioning (HVAC) system character-
istics, and other relevant characteristics for use in energy
simulations, (3) running hourly energy simulations in
EnergyPlus, (4) passing hourly energy simulation outputs,
including modeled hourly air change rates (ACRs) resulting
from infiltration and ventilation (window-opening) and central
HVAC system runtimes to a transient indoor air mass balance
model to simulate hourly concentrations of several priority
pollutants of both indoor and outdoor origin, and (5)
aggregating hourly model results over the course of the
model year and applying population-weighting factors to
generate estimates of population-weighted average indoor
concentrations of each pollutant, as well as an aggregate
estimate of the total annual heating and cooling energy
consumption in U.S. residences (on both a site and source
energy basis). Resulting population-average indoor pollutant
concentrations are also used to generate estimates of the
population-wide chronic health impacts associated with
residential indoor exposures following a disability-adjusted
life-years (DALYs) approach, as described in ref 9.
We built and applied this model framework for the current

housing stock (2010s) and the future housing stock (2050s),
as described briefly below and in detail in the Supporting
Information (SI).

Baseline Year Model Set (2010s). For the 2010s model
set, a total of 217 unique model home geometries that
represent approximately 80% of homes in the United States
were first built in BEopt using the U.S. Energy Information
Administration (EIA) 2015 Residential Energy Consumption
Survey (RECS) database (the latest that was available) and
following a procedure similar to that described in Persily et
al.55 (Section S1, SI). The collection of 217 model homes was
then used to assign baseline home model geometries across 19
of the most populous U.S. cities that also cover all ASHRAE
climate zones and all 9 U.S. census divisions. These same 19
cities were used in both Fazli and Stephens54 and Persily et
al.56 At this stage, 2012 was selected as the representative year
for the 2010s model set, primarily because we had previously
obtained hourly ambient air quality data57 and actual year
meteorological data58 for each of these 19 locations in 2012.
Thus, while the model set was developed to represent the
housing stock as of 2015 using 2015 RECS data, the remaining
inputs, including weather, air quality, and population factors,
are chosen to represent the year 2012. We expect only minor
discrepancies in using these two different marker years to
represent the housing stock as of the ∼2010s because only a
small fraction of the overall housing stock was constructed
between 2012 and 2015. The assignment of these baseline
home models among the 19 representative cities results in a
total of 4123 home models in the form of BEopt XML files
(i.e., 217 homes × 19 cities = 4123 home models).

Future Model Set (2050s). By the 2050s, millions of new
residential buildings will be added to the current housing stock
and a smaller number of existing homes will undergo retrofits
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or will be demolished. The number and location of newly
constructed homes between the 2010s and 2050s were
estimated using population projections for 2050s59 and making
assumptions for demolition rates for existing residences
(described in detail in the SI). Additionally, existing homes
that are not demolished but are renovated were assumed to
undergo changes in their building envelopes and/or heating
and cooling systems that can affect energy use and IAQ. We
defined two new categories of building vintages to represent
homes built between the 2010s and 2050s: those built between
2015 and 2030 (assuming that homes built in approximately
2020 represent the entire time period) and those built between
2030 and 2050 (assuming that homes built in approximately
2040 represent the entire time period). We used projections of
statewide adoption of predicted future International Energy
Conservation Codes (IECCs) in each climate zone for these
two representative years (i.e., 2020 and 2040) to define future
housing stock characteristics such as insulation levels for
exterior walls, roofs, and floors, window U-values and solar
heat gain coefficients (SHGCs), and envelope air leakage.
Once the home model set was updated to account for
demolitions and renovations of existing homes and the
construction of new homes between 2010s and 2050s,
individual home models were then assigned to each of the
19 locations using projections of population movements over
the same time period (Section S2, SI). For simplicity, we
assumed that the predominant fuel type cited in the 2015
RECS in each location remained the predominant fuel type in
the future home models as well. This resulted in a total of 8246
home models, including the original 4123 models across 19
cities assuming no demolition and new construction and
another set of 4123 models accounting for demolition and new
construction. The future model set represents our best
estimate using the available knowledge of housing stock
characteristics in the 2050s under approximately business-as-
usual conditions.
Running the Models. After defining the building stock

model sets, we used the automated REIAQ workflow to run
energy and IAQ simulations for the current and future housing
stock model set using input data for 2012 and the mid-2050s,
respectively (Section S3, SI).
Meteorological Conditions. For the baseline model year,

we used actual meteorological year (AMY) data for each of the
modeled 19 cities for the year 2012, which was the most recent
year for which hourly outdoor pollutant data were also
available at the time of the development of the original REIAQ
model set. For the future climate scenario, we used hourly
outputs from one of the only studies of which we are aware
that predicted and provided hourly weather and air quality
conditions for the continental U.S. in the 2050s, using a 3 year
simulation period of 2057−2059 to represent the 2050s.60 This
prior study used the Weather Research and Forecasting
(WRF) model61 with a 12 km × 12 km resolution following
assumptions of the Representative Concentration Pathways
(RCPs) 8.5 from the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5) to simulate
future weather conditions.62 RCP 8.5 used to be recognized as
a “high” emission scenario, assuming an increase in greenhouse
gas emissions; however, recently, RCP 8.5 has become known
more as the most realistic “business-as-usual” scenario since
emissions continue to increase globally.63 Hourly surface layer
outputs from WRF (which includes the first ∼36 m above
ground) were extracted from the 12 km × 12 km grid that

contained the latitude and longitude of the city center for each
of our 19 model cities. The average increase in ambient dry
bulb temperatures across our 19 model cities is ∼2.5 °C
between 2012s and 2050s (Figure S6).

Ambient Pollutant Concentrations. We used the same
hourly outdoor pollutant data for the year 2012 that was used
in our previous study.37,54 Briefly, hourly outdoor pollutant
data for PM2.5, NO2, and O3 in each location were culled from
the U.S. EPA Air Quality System (AQS) online repository for
each of the 19 representative model locations for the year
2012.57 Although this approach arbitrarily anchors the 2010s
scenario to a single year (2012) for both meteorological and
ambient air quality inputs, it does allow us to ensure that each
hour of the simulation year was synchronized and thus as
realistic as possible in the hourly simulations. Moreover, a
review of the U.S. EPA’s summary of ambient air quality trends
reveals that 2012 was not a particularly anomalous year for air
quality in the United States, with annual average concen-
trations of criteria pollutants PM2.5, O3, and NO2 falling well
within typical year-to-year trends over the late 2000s and early
2010s.64 Ambient concentrations of several volatile organic
compounds (VOCs) and aldehydes were assumed to be
constant throughout the year, as hourly data are not widely
available for these compounds.
For the future model years, we again used predictions of

future hourly pollutant concentrations from a previous study
by coauthors that predicted future hourly weather and air
quality conditions for the continental United States in the
2050s (represented by a simulation period of 2057−2059)
using the Community Multi-Scale Air Quality (CMAQ)
modeling system version 5.0.60 CMAQ is a three-dimensional
comprehensive atmospheric chemistry and transport model
developed by the EPA and the community.65,66 Sun et al. used
the same 12 km × 12 km spatial resolution as their WRF
models for their CMAQ simulations to predict both hourly
future meteorological conditions and pollutant concentrations,
including PM2.5, NO2, O3, and several VOCs and aldehydes
(i.e., formaldehyde, acetaldehyde, and benzene), again
assuming RCP 8.5.60 Hourly surface layer outputs from
CMAQ were obtained in the same manner as WRF outputs.
For both scenarios, we estimated ambient ultrafine particle
(UFP) concentrations assuming correlations between UFP and
NOx concentrations from the literature.67 The annual average
and distributions of hourly outdoor concentrations of the
modeled pollutants in 2012 and the 2050s are shown in
Figures S7 and S8, respectively.

Energy and IAQ Simulations. Energy and IAQ model
application follow the same approach as in our previous
study,54 with nearly identical model inputs other than changes
in the building stock models and future weather and climate
data. Briefly, the 217 model home geometries that represent
>80% of homes in the U.S. in the 2010s were first built in
BEopt to generate 4123 unique XML files representing over
4123 homes across 19 cities, which were then used to generate
EnergyPlus input files. EnergyPlus simulations were run for
each of these home and location combinations. Python scripts
were then used to gather hourly outputs from the EnergyPlus
and generate hourly estimates of heating and cooling energy
uses, infiltration/ventilation rates, HVAC runtimes, and other
parameters. Relevant parameters from these simulations were
then fed to a custom mass balance model to calculate time-
varying concentrations of several pollutants of both indoor and
outdoor origin that have been previously identified as being of
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most concern to chronic health impacts across the U.S.
residential building stock. Indoor pollutant concentrations at
each time step were then estimated using eq S5.
Assumptions for all pollutant source and loss mechanisms

are described in the SI (Section S3.3). We used the same
assumptions for indoor source strengths (both intermittent
and time-averaged), pollutant penetration factors, deposition
loss rate constants, and filtration efficiencies in both the
current and future building stock models. We did not make any
assumptions for changes in indoor pollutant source strengths
in future years, primarily due to a lack of quantitative data on
projections for changes in indoor emission rates over time.68

Moreover, holding indoor source strengths constant allows for
isolating the impacts of changing meteorological conditions,
building stock characteristics, and outdoor pollutant concen-
trations in a future climate scenario. All homes were assumed
to be nonsmoking across both climate scenarios. Predictions of
time-varying pollutant concentrations were then summarized
on an annual basis for each home, and then population-
weighting factors were applied to each of the 4123 unique
home models to weigh for approximately how many homes
they represent across the country. Finally, the chronic health
impacts of residential inhalation exposure to the modeled
pollutants were estimated using a disability-adjusted life-years
(DALYs) approach9 applied to the population-weighted
annual average indoor pollutant concentrations (Section
S3.4, SI).

■ RESULTS AND DISCUSSION
Resulting estimates of the total residential heating and cooling
energy uses (on a site energy basis) for the baseline model year
(2012) are shown in Figure S9 along with a comparison to
data from the 2009 and 2015 Residential Energy Consumption
Survey (RECS). Model results for the total space-conditioning
energy use in 2012 were ∼9% lower and ∼14% lower than the
2015 and 2009 RECS data for the U.S. housing stock,
respectively, after scaling to the size of the housing stock in
comparison years. The estimated site energy use for heating in
2012 was ∼12% lower and ∼19% lower than population-scaled
2015 and 2009 RECS data, respectively, while the estimated
site energy use for cooling in 2012 was ∼6% higher and ∼17%
higher than 2015 and 2009 RECS data, respectively.

In Table S19, we compare the number of heating degree
days (HDDs) and cooling degree days (CDDs) on record for
the U.S. for 2009, 2012, and 2015. The year 2012 had ∼16 and
∼9% fewer HDDs and ∼20 and ∼2% more CDDs compared
to 2009 and 2015, respectively. If we assume a linear
relationship between site energy use for heating/cooling and
HDDs/CDDs,69 adjusting for these differences would result in
only an ∼3−4% difference in site energy consumption for
heating and cooling between the 2012 model results and the
2009 and 2015 EIA data, suggesting that the baseline model set
estimates site energy use for the U.S. housing stock with
reasonable accuracy. Given this year-to-year variability in the
residential space-conditioning energy use based on weather
alone, we thus define the 2010s reference scenario to include
results from the model set applied for 2012 as well as 2009 and
2015 RECS data, where possible, for future energy use
comparisons.
Indoor air model results for several pollutants in the baseline

year (2012) are shown in Figure S10, where they are also
compared to data from the existing literature on residential
pollutant concentrations measured in large field studies
(primarily from the United States and Canada). The 2012
model results were well within the typical magnitudes and
ranges of indoor concentrations, indoor/outdoor concentra-
tion ratios, and infiltration factors as those reported in past
residential field studies. Additional baseline year model results,
including annual average infiltration rates, natural ventilation
rates, and HVAC runtime fractions, are shown in the SI (Table
S20). Estimates of DALYs lost per 100 000 persons in the
baseline year are shown in Figure S11.
Figure 1 shows the estimates of site (Figure 1a) and source

(Figure 1b) energy use for heating and cooling across the U.S.
residential building stock for the middle of the 21st century
(2050s) compared to those of the 2010s reference scenario,
which includes model results for 2012 and 2009 and 2015
RECS data, taking into consideration predicted changes in the
building stock, population movements, meteorological con-
ditions, and ambient pollutant concentrations. The model set
predicts site energy use; source-to-site conversion factors of
3.00 and 2.72 are used for electricity generation in the 2012s
and the 2050s, respectively, based on predictions made by the

Figure 1. Predicted annual residential heating and cooling energy uses in the U.S. for the 2010s reference scenario (which includes 2012 model
results and 2009/2015 RECS data) and the 2050s model set on a (a) site energy basis and (b) source energy basis.
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U.S. DOE using a fossil fuel equivalency approach.70 Model
results split by the fuel type are shown in Figure S12.
Due to the combined influences of changes in climate

conditions, the U.S. housing stock, and population movements,
we predict that the total site and source energy consumption
for space-conditioning in U.S. residences will decrease by
∼37−43% (from ∼(4.2−4.7) × 109 to ∼2.7 × 109 GJ) and
∼20−31% (from ∼(6.6−7.6) × 109 to ∼5.3 × 109 GJ) by mid-
century (2050s) compared to those by the 2010s scenario (i.e.,
2012 modeling results and 2009/2015 RECS data),
respectively, driven by large decreases in heating energy use
that are larger than simultaneous increases in cooling energy
use in warmer climates, in addition to a greater number of
people moving to warmer climate zones (Table S10).59 We
estimate that the site and source energy use for cooling will
increase by ∼52−85% (from ∼(6.7−8.1) × 108 to ∼1.2 × 109

GJ) and ∼38−68% (from ∼(2.0−2.4) × 109 to ∼3.4 × 109 GJ)
and that the site and source energy use for heating will
decrease by ∼58−64% (from ∼(3.5−4.1) × 109 to ∼1.5 × 109

GJ) and ∼55−64% (from ∼(4.2−5.3) × 109 to ∼1.9 × 109 GJ)
compared to 2012 modeling results and 2009/2015 RECS
data, respectively.

The magnitude of these projected changes is fairly consistent
with EIA projections for 2050 in their 2020 Annual Energy
Outlook (AEO) for cooling end uses (within 11%), but we
predict a much greater reduction in heating energy end uses
(∼68% lower).71 Review of the assumptions in the AEO
reference scenario revealed large differences in the assumed
number of heating degree days (HDDs) and cooling degree
days (CDDs) by 2050 compared to our assumptions (i.e., we
assumed ∼49% more HDD and ∼95% more CDD; see Table
S21), which is consistent with our use of a greater warming
scenario for the 2050s than the 2020 AEO. Additionally, EIA
combines historical and near-term forecasts of HDDs and
CDDs with population projections to project population-
weighted HDDs and CDDs using a 30 year linear trend,72

whereas our use of climate model outputs following RCP 8.5
emission scenarios is more consistent with estimates of HDD
and CDD from other similar approaches based on climate
models.15

To account for the increased size of the housing stock
expected by the middle of the 21st century, we normalized
future energy estimates by the projected number of homes.
The average home’s site energy consumption for cooling is

Figure 2. Distributions of model results of the annual averages of hourly (a) indoor concentrations of all modeled pollutants (on a log scale), (b)
infiltration factors (Finf) for PM2.5, UFP, NO2, and O3, and (c) I/O ratios for PM2.5, UFP, and NO2 (split by homes with gas and electric stoves) for
the 4123 model homes in 2012 compared to the 8246 model homes in the 2050s. Bars represent the median; boxes represent the 25th and 75th
percentiles; and whiskers represent the minimum and maximum ranges.
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predicted to increase by ∼22−43% from 5.9 to 6.9 GJ per
home in the 2012 model and 2009/2012 RECS data to 8.4 GJ
per home in the 2050s. Conversely, the average home’s site
energy consumption for heating is predicted to decrease by
∼66−72% from 29.2 to 35.9 GJ per home in the 2012 model
and 2009/2012 RECS data to 9.9 GJ per home in the 2050s.
The net change in total heating and cooling energy use is
predicted to decrease by 49−56% per home in the 2050s
compared to that in the 2010s reference scenario.
To isolate the impacts of only changing meteorological

conditions on building energy use (i.e., climate change acting
in the absence of underlying changes in the housing stock and
population movements), we applied only the baseline (2010s)
housing stock model with both the 2012s and 2050s weather
data separately (Figure S13). Holding the 2010s housing stock
constant and ignoring expected changes in population
movements and housing characteristics, we estimate that the
total site energy consumption of the U.S. housing stock would
decrease by ∼20% in 2050s compared to that in 2012 model
results, driven by an ∼36% decrease in heating energy use and
an ∼45% increase in cooling energy use. Therefore, we
estimate that changing climate conditions alone likely account
for ∼54% of the predicted changes in the total site energy
consumption of the U.S. housing stock in the 2050s scenario
compared to those in 2012 model results (Figure 1) and that
the underlying changes in the housing stock and population
movements likely account for the remaining ∼46%. Addition-
ally, we estimate that changing climate conditions alone likely
contribute ∼82 and ∼62% to the total amount of expected
changes in site energy consumption for cooling and heating,
respectively, again with changes in the housing stock and
population movements likely accounting for the remaining
portions.
Resulting estimates of distributions of indoor pollutant

concentrations, infiltration factors, and indoor/outdoor ratios
for the modeled pollutants between the current (2010s) and
future (2050s) housing stock are compared in Figure 2. Note
that these are distributions across each home in the model sets,
not yet accounting for population-weighting. Resulting
estimates of outdoor air infiltration rates, ventilation rates,
and HVAC system runtimes for the current and future housing
stock model sets are shown in the SI (Tables S20 and S22).
The average air change rate and HVAC runtime predicted for
the U.S. housing stock are 0.43 per hour and 16% in the 2010s
and 0.34 per hour and 20% in 2050s, respectively. In other

words, we estimate an ∼21% relative reduction in outdoor air
ventilation rates resulting from a combination of envelope
leaks and window-opening across the housing stock due to
combined changes in climate conditions, housing stock
characteristics, and population movements. We also estimate
an ∼25% relative increase in the HVAC system runtime with
an increasing use of air-conditioning under generally warmer
climate conditions across the housing stock. The combined
effects of changes in the housing stock and ambient conditions
yield generally lower modeled indoor pollutant concentrations
in the future housing stock model set compared to those in the
current housing stock model set, except for O3 and several
VOCs and aldehydes. Ambient pollutant infiltration factors
(Finf) are predicted to be similar between the housing stock
models, but indoor/outdoor concentration ratios are predicted
to be higher for PM2.5, UFPs, and NO2 in homes with gas
stoves (but not in those with electric stoves).
Figure 3 shows the population-weighted annual average

indoor pollutant concentrations predicted in the future climate
scenario (2050s) compared to those in the baseline scenario
(2010s). Model results for population-weighted average indoor
pollutant concentrations are divided into the predicted
contributions from indoor sources and from ambient (i.e.,
outdoor) sources. Population-weighted annual average indoor
pollutant concentrations of indoor and ambient origin split by
modeled home vintages are shown in the SI (Figures S14 and
S15). Population-weighting accounts for the number of
occupants per building archetype, as described in the Section
S3.4, SI.
Ambient concentrations of most pollutants of ambient origin

are predicted to decrease in the future with the expectation of
increasing emission controls by the 2050s. A projected
decrease in ambient pollutant concentrations combines with
a projected reduction in air infiltration rates to contribute to a
decrease in indoor concentrations of those ambient-infiltrated
pollutants, on average. One notable exception is ozone, which
is expected to increase in future climate scenarios,60 thereby
increasing the amount of ozone that infiltrates and persists in
homes.
For pollutants with primarily intermittent indoor sources but

that are not greatly affected by the type of fuel used in
buildings (e.g., PM2.5 and UFPs, each primarily assumed to be
from cooking sources regardless of fuel), population-weighted
average indoor concentrations are expected to slightly decrease
in future climate scenarios (i.e., 1.5% for PM2.5 and 7.5% for

Figure 3. Population-weighted annual average indoor pollutant concentrations in 2010s and 2050s model sets.
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UFPs). This is due in part to slight differences in emission
rates resulting from an expected increase in the number of
homes with electric stoves rather than gas stoves, with smaller
impacts resulting from small changes in predicted infiltration
and ventilation (i.e., window-opening) conditions based on
both climate and building stock changes. Larger reductions in
population-weighted average indoor concentrations are pre-
dicted for NO2 (i.e., ∼31%). This is primarily due to an
expected increase in the number of homes with electric stoves
rather than gas stoves, again with smaller impacts resulting
from small changes in predicted infiltration and ventilation
conditions based on both climate and building stock changes.
For those pollutants with persistent indoor sources (e.g.,

VOCs and aldehydes), moderate to large increases in
population-weighted average indoor concentrations are pre-
dicted by mid-century. This includes a ∼15% increase in
formaldehyde concentrations and a ∼45% increase in
acetaldehyde, acrolein, benzene, and other VOC concen-
trations. These effects are primarily due to the predicted
impacts of climate change in future years on reducing
infiltration and ventilation rates via a combination of changing
meteorological driving forces and also a changing housing
stock and movements (i.e., more people moving into greater
numbers of tighter homes).
To explore the effects of these different, and sometimes

competing, factors that contribute to the predicted changes in
residential indoor pollutant concentrations in the 2050s
scenario, we ran two intermediate scenarios within the context
of the 2010s and 2050s scenarios. These include one scenario
(2050s-Alt #1) that uses the 2010s housing stock model, 2010s
population distribution, and 2010s outdoor pollutant concen-
trations, but with 2050s meteorological conditions applied to
infer the influence of future climate alone, and one scenario
(2050s-Alt #2) that uses the 2010s housing stock model and
2010s population distribution applied with 2050s outdoor
pollutant concentrations and 2050s meteorological conditions
to infer the influence of future climate and future ambient air

quality (Figure S16). The first additional comparison reveals
that changing meteorological conditions alone and holding all
other factors constant would lead to a small (∼6−14%)
decrease in the annual average indoor concentrations of
pollutants of indoor origin and a corresponding increase in
indoor concentrations of pollutants of outdoor origin. Both of
these influences are due to slightly increased air change rates
among the existing housing stock (and the net magnitude of
impacts would vary by pollutant). The second additional
comparison reveals that the net effects of changing both future
meteorological conditions and ambient air quality, again
holding the housing stock and population distribution
constant, would be a decrease of between 13 and 34% in the
annual average indoor concentrations of all pollutants except
for O3, which would increase due to expected increases in
ambient concentrations.
Figure 4 shows estimates of disability-adjusted life-years

(DALYs) lost per 100 000 residents due to long-term
inhalation of indoor air pollutants in U.S. residences for the
baseline housing stock (2010s) and the future housing stock
(2050s). The total number of DALYs lost across the
population is predicted to be similar between current and
future climate scenarios: ∼189 per 100 000 persons in the
2010s and ∼186 per 100 000 persons in the 2050s, well within
the large ranges of uncertainty for these estimates. However,
the attribution among pollutants is predicted to vary, with
lower PM2.5 exposures leading to ∼25% fewer DALYs lost but
higher exposures to VOCs of indoor origin (especially
acrolein) leading to ∼30% more DALYs lost.
While past perspectives and reviews have articulated how

climate change is likely to affect the indoor environment and
occupant health, in addition to influencing building energy
consumption, no studies of which we are aware to date have
provided quantitative estimates of the likely impacts of climate
change on all three of these metrics, indoor air quality, human
health outcomes, and building energy use, across representa-
tive housing stocks. By combining realistic predictions of future

Figure 4. Estimates of annual DALYs lost per 100 000 persons in U.S. residences in the 2010s and 2050s model sets, made using the IND and ID
approaches from Logue et al.9 The bars in (a) indicate the estimated DALYs lost attributable to pollutant exposure and health end point, and the
whiskers show uncertainty (95% CI bounds), and (b) shows a summation of the central estimates of DALYs lost by pollutant exposure and without
uncertainty for clarity.
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meteorological conditions, ambient air quality, housing stock
characteristics, and population movements, we provide a
realistic assessment of the likely combined influences of these
factors on site and source building energy use and indoor
pollutant exposures and long-term health outcomes in U.S.
residences. We also isolate the impacts of predicted changes in
meteorological and ambient air quality conditions alone using
model scenarios that hold other factors constant.
Overall, we estimate that site and source energy use for

space-conditioning in U.S. residences will decrease by ∼37−43
and ∼20−31%, respectively, by the 2050s compared to those
by the 2010s under the assumptions of IPCC RCP 8.5. While
these results may be counterintuitive, they do not eliminate the
need to switch to low-carbon renewable energy resources to
address climate change, as the magnitude of predicted
differences is not large compared to what decarbonization of
the U.S. energy mix could achieve.73 We also estimate that
population-average indoor pollutant exposures are expected to
decrease for some pollutants (especially those with substantial
outdoor sources that infiltrate indoors) but increase for others
(especially those with predominant indoor sources). However,
the net impacts on long-term health outcomes are predicted to
be negligible because the changing attribution among different
pollutants balances each other. Moreover, the predicted
increases in population-average indoor concentrations of
pollutants of primarily indoor origin demonstrate the
importance of prioritizing widespread efforts to reduce indoor
sources through indoor emission controls, improving ven-
tilation, and implementing effective air cleaning and filtration
strategies to further reduce the chronic health burden of indoor
air pollutant exposures in U.S. residences.
There are several important limitations to this work worth

noting and improving upon in future work. For one, we rely on
a narrow range of hourly meteorological and ambient air
quality inputs in both the baseline/reference year (i.e., 2012
representing ∼2010s) and the projected years (i.e., 2057−2059
representing the 2050s); we do not explore other scenarios
such as longer-term projections15 or those that consider the
influences of urban land expansion.74,75 Second, the future
housing stock model and climate and air quality models are not
intrinsically linked but rather aggregate across disparate
models; linked models could improve the overall accuracy
and abilities to explore various policy scenarios. Third, we
produce a deterministic rather than stochastic set of outcomes,
rooted in population-average assumptions for model input
parameters that do not provide insight into the uncertainties
inherent in our predictions. Fourth, we hold some input
parameters constant even if they are likely to vary in future
years. For example, whole-house-specific VOC emission rates
are almost certain to vary over time, but they are likely to vary
in a way that is unpredictable and therefore challenging to
incorporate in the future housing stock models. Finally, we rely
on well-mixed single-zone mass balance models for concen-
tration estimates rather than multizone airflow and contami-
nant transport and dynamic human behavior models.
While these assumptions and decisions allow for making

quantitative comparisons within a limited set of available
resources, future work should prioritize the following improve-
ments. For one, the housing stock, meteorological, and
ambient air quality models could be mechanistically linked.
Second, stochastic inputs could be incorporated to generate
likely ranges of outcomes and uncertainties even within a set of
climate scenario assumptions. Third, a range of plausible policy

scenarios could be incorporated that influence future housing
stock characteristics, meteorological conditions, and ambient
air quality, including aggressive climate action (e.g., widespread
electrification, adoption of more stringent energy codes, deep
energy retrofit incentives, etc.) and the introduction of IAQ
interventions such as air cleaners, high-efficiency HVAC
filtration, and/or mechanical ventilation.
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