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SI Methods 
 

1. Development of a nationally representative set of combined building energy and indoor air quality 

(IAQ) models for U.S. residences in the 2010s 

We first developed a set of combined building energy and IAQ models to represent the majority of the U.S. 

residential building stock in the 2010s. The 2010s model set is an updated version of the REIAQ model set 

that we previously developed to be representative of ~80% of the U.S. housing stock as of approximately 

the late 1990s or early 2000s 1. The original REIAQ model framework was based on the same home 

characteristics used in Persily et al. (2006), which developed a collection of multi-zone IAQ models (albeit 

without energy models) to represent ~80% of the U.S housing stock based on the 1997 U.S. Energy 

Information Administrationôs (EIAôs) Residential Energy Consumption Survey (RECS) 2. In this work, we 

generated an updated model set for the 2010s using housing characteristics from the 2015 US EIAôs RECS 

database. Data for the 2015 RECS (the latest that is available) were collected between August 2015 and 

April 2016 and public-use microdata was published online in summer 2018 3. RECS is a collection of 

detailed statistical information on household energy characteristics for single-family homes, units in 

multifamily buildings, and mobile homes. The 2015 RECS collected data from more than 5,600 households 

that were selected to be statistically representative of the 118.2 million housing units occupied as primary 

residences in the 50 states and the District of Columbia 4. 

 

1.1 Sample selection 

We used the same RECS sampling approach as Persily et al. (2006) to develop a collection of housing units 

to represent ~80% of the U.S. housing stock in the 2010s (with 2015 serving as the representative housing 

stock year). Sample selection was conducted for each of the four building types in RECS individually, 

including detached single-family homes, attached single-family homes, manufactured homes, and 

apartments. Several defining variables are used in RECS to characterize each building type, each with a 

number of sub-variables (Table S1). For example, Foundation type is a variable with three sub-variables 

consisting of ófinished basement,ô óunfinished basement,ô and óno basement.ô A factorial design was used 

to define all possible combinations of variables and then select the most prevalent units that represent at 

least 80% of the housing stock of each building type. In the factorial design, variables are labeled as 

ñfactors,ò each with discrete possible sub-variables, labeled as ñlevels,ò to define all possible combinations 

of these levels across all factors. The variables and sub-variables used are the same as those used in Persily 

et al. (2006) 2, with a few exceptions.  

 

The resulting number of possible combinations for each building type as defined in Table S1 is as follows: 

540 attached and detached single-family homes (i.e., combination of 6 factors with 2, 3, 5, 2, 3, and 3 

levels); 40 apartments (i.e., combination of 4 factors with 2, 2, 5, and 2 levels); and 20 manufactured homes 

(i.e., combination of 3 factors with 2, 5, and 2 levels). The goal of our sampling approach was to reduce the 

number of unique homes such that we could manually construct a minimal amount of home models that 

still represent at least 80% of the U.S. housing stock. To do so, each of the 5,600+ homes in the 2015 RECS 

database was given a categorical numeric score for each factor (i.e., variable) based on their characteristics 

of each sub-variable (i.e., level) as defined in Table S1 (e.g., ñ1ò for no forced air and ñ2ò for forced air; 

ñ1ò for year built <1950 and ñ5ò for year built 2010-2015). The combinations of these scores were then 

used to generate a characteristic ID for each home in the RECS database based on the ranges of levels 

defined in Table S1 (e.g., ñ224132ò describes a 2-story single-family home with attached garage, no 

basement, built between 1990-2009, forced air heating/cooling, and a floor area of 149-223 m2). Each 

unique characteristic ID represents a unique home; duplicate characteristic IDs represent homes that, while 

they are actually different in the RECS database, have sufficient overlap in fundamental characteristics that 

they can be used to reasonably represent the same baseline home in the simplified model set. Each home in 

the RECS database also has a weight assigned to it that defines how many homes it represents nationwide. 

These weighting values for each RECS housing unit were then matched by characteristic ID to define a 
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single housing unit that represents multiple homes in the database with identical combinations of levels 

resulting from the factorial analysis, and then weighting values were summed across homes with identical 

characteristic IDs. For each building type, the resulting characteristic IDs were then sorted in descending 

order based on their summed total weight.  
 

Table S1. Selected home characteristics for factorial design for each building type 
Variables 

(Factors) 

Sub-variables 

(Levels) 

Variables 

(Factors) 

Sub-variables 

(Levels) 

Single Family 

(attached and detached) 
Apartments 

Forced air 
No 

# of units 
2-4 

Yes Ó5 

Floor Area (m2) 

<149 
Forced air 

No 

149-223 Yes 

>223 Floor Area 

(m2) 

<93 

Year built  

<1950 Ó93 

1950-1969 

Year built 

<1950 

1970-1989 1950-1969 

1990-2009 1970-1989 

2010-2015 1990-2009 

Garage 
Yes 2010-2015 

No Manufactured homes 

Foundation 

Finished 

Basement 
Forced air 

No 

Unfinished 

Basement 
Yes 

No Basement Floor Area 

(m2) 

<149 

# of stories 

1 Ó149 

2 

Year built 

<1950 

Ó3 1950-1969 

 

1970-1989 

1990-2009 

2010-2015 

 

 

Figure S1 shows the percentage of unique combinations of characteristic IDs for each of the four building 

types that were included to obtain a representative sample size, which, similar to Persily et al. (2006) 2, we 

defined as at least 80% of the U.S. housing stock. Table S2 shows the total number of housing unit 

combinations that were selected that represent ~80% of the U.S. housing stock within each of the four 

building types as of 2015, as well as the fraction of homes that each sample represents. For Apartments and 

Manufactured homes, 23 and 6 individual homes were needed to represent the 80% of the housing stock 

type, respectively. However, none of the selected homes were built after 2010. Therefore, for each of these 

building types, one additional home is added to be able to account for apartments and manufactured homes 

built after 2010. The result is a set of 217 unique housing units defined using the most prevalent 

combinations of characteristics in Table 1, which combined represent approximately 81.3% of the U.S. 

housing stock in 2015. Approximately 50% of these defined units are detached homes, 36% are attached 

homes, 11% are apartments, and 3% are mobile homes.  
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Figure S1. Sample size vs. percentage of housing units in the 2015 RECS database analysis 

 

Table S2. Number of selected housing units and percentages of housing units represented in the 

2015 RECS database analysis 

House type 
Sample 

size 
% Represented 

Detached (DH) 107 80.7% 

Attached (AH) 79 82.0% 

Apartments (APT) 24 81.0% 

Mobile Homes (MH) 7 83.2% 

Total 217 81.0% 

 

1.2 Developing baseline floor plans 

After identifying the basic home characteristics to represent >80% of the housing stock in 2015, we 

identified key variables needed to develop baseline floor plans in BEopt for energy and airflow modeling, 

including the home type, number of floors, basement type, garage existence, heated floor area, number of 

bedrooms, number of bathrooms, and forced air system existence. In BEopt, all detached homes and 

manufactured homes were modeled as free-standing structures without any adjacent units; attached homes 

and apartment units are modeled assuming an existence of adjacent units in the form of two sidewalls. All 

manufactured homes and apartments are modeled as one-story homes. Detached and attached single-family 

homes are modeled as one-, two-, or three-story homes depending on their characterization in the 2015 

RECS data. Any homes with more than three stories are modeled as three-story homes for simplicity. 

Manufactured homes and apartment units were modeled with no attached garage; however, some attached 

and detached homes have attached garages in RECS database. Attached garages were modeled for these 

two home types as having a floor area of 49.1 m2 for homes <223 m2 and 53.5 m2 for homes > 223 m2 

(following procedures in Persily et al. 2006) 2. Because all attached homes are modeled as homes with two 

side walls connected to adjacent homes already, their attached garages are modeled as connected to the 

lowest story above to the basement, if it exists. All attached garages are modeled as adjacent unconditioned 

spaces. To calculate the heated floor area of each of the 217 baseline homes within the different home types, 

we used the same floor area categories derived in Persily et al. (2006) (Table S3). The floor areas assigned 

to each category are calculated as the dwelling weighted average of all RECS homes for each home type 

and floor area category such that each home model is generally representative of the average size home in 

each category. 



 
 

S5 

 

Table S3. Estimated floor areas for different home types and various floor area categories 

Home Type 
Floor area category, 

m2 (ft 2) 

Floor area in model, 

m2 (ft 2) 

Detached 

<149 (1599) 110.4 (1188.4) 

149- 223 (1600-2399) 181.9 (1958) 

>223 (2400) 320.8 (3453.2) 

Attached 

<149 (1599) 106.7 (1148.8) 

149 ï 223 (1600-2399) 180.5 (1942.6) 

>223 (2400) 275.2 (2962.5) 

Apartments 
<93 (1000) 68.3 (735.4) 

>93 (1000) 117.7 (1267.2) 

Manufactured 
<149 (1599) 98.6 (1061.7) 

>149 (1600) 197.6 (2126.9) 

 

 

Single-family homes in the U.S. are commonly built with one of three foundation types: basement, slab, or 

crawlspace. The 2015 RECS dataset only provides data on whether the housing unit is built over a basement 

or not, and also if a basement (if it exists) is a finished (i.e., conditioned) or unfinished (i.e., unconditioned) 

space. Therefore, we also used the previous 2009 RECS dataset 5, which provided more specific data on 

different foundation types, to assign an appropriate type of foundation for each representative home model 

in BEopt based on geographic location. We also used data from the Census Bureau, Characteristics of New 

Housing 6, to make assumptions for single family homes without basement foundations. The type of 

foundation for each home model was selected based on the most prevalent foundation type in either the 

U.S. census division (for 2006 RECS data) or the U.S. census region (for the Census Bureau data), along 

with the year of construction assigned to each baseline home. Table S4 summarizes the foundation data 

derived from these two sources. All manufactured homes are modeled with crawlspaces and all apartment 

buildings are modeled with concrete slabs. All attics and garages are also considered unconditioned spaces.  
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Table S4. Foundation type for homes without basements for different construction years and 

locations based on Census Bureau and REC 2009 data 

U.S. 

Census 

Division 

U.S. 

Census 

Region 

RECS 

2009 

RECS 

2009 

Census 

Bureau 

RECS 

2009 

Census 

Bureau 

RECS 

2009 

Census 

Bureau 

>1950 1950-1969 1970-1989 1990-2009 2010-2015 

South 

Atlantic  
South Crawlspace Slab Slab Slab Slab Slab Slab 

West 

South 

Central 

South Crawlspace Slab Slab Slab Slab Slab Slab 

Mountain West Crawlspace Slab Slab Slab Slab Slab Slab 

East South 

Central 
South Crawlspace 

Crawl 

space 
Slab Slab Slab Slab Slab 

West 

South 

Central 

South Crawlspace Slab Slab Slab Slab Slab Slab 

South 

Atlantic  
South Crawlspace Slab Slab Slab Slab Slab Slab 

Pacific West Crawlspace Slab Slab Slab Slab Slab Slab 

Middle 

Atlantic  
Northeast Crawlspace Slab Slab Slab Slab Slab Slab 

West 

North 

Central 

Midwest Crawlspace Slab 
Crawl 

space 
Slab Slab Slab Slab 

South 

Atlantic  
South Crawlspace Slab Slab Slab Slab Slab Slab 

New 

England 
Northeast Crawlspace Slab Slab Slab Slab Slab Slab 

East South 

Central 
South Crawlspace 

Crawl 

space 
Slab Slab Slab Slab Slab 

East North 

Central 
Midwest Crawlspace Slab 

Crawl 

space 

Crawl 

space 
Slab Slab Slab 

Pacific West Crawlspace Slab Slab Slab Slab Slab Slab 

East North 

Central 
Midwest Crawlspace Slab 

Crawl 

space 

Crawl 

space 
Slab Slab Slab 

Middle 

Atlantic  
Northeast Crawlspace Slab Slab Slab Slab Slab Slab 

New 

England 
Northeast Crawlspace Slab Slab Slab Slab Slab Slab 

Mountain West Crawlspace 
Crawl 

space 
Slab Slab Slab 

Crawl 

space 
Slab 

West 

North 

Central 

Midwest Crawlspace Slab 
Crawl 

space 
Slab Slab Slab Slab 

 

 

Another variable that was needed to develop the 217 baseline floor plans in BEopt is the number of 

bedrooms and bathrooms in each housing unit. The 2015 RECS dataset provides information about the 

number of bedrooms, other rooms, bathrooms, and half bathrooms. For each of the 217 home models, the 

percentage of the housing units with each number of the mentioned room types was calculated. A weighted 

average of the number of each room type reported for each of the 217 baseline homes was then calculated 

and rounded to the nearest whole number to use in each representative home model floor plan in BEopt. 

Similar to the method was used in Fazli and Stephens (2018) 1, we first manually built 217 base model 
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geometries in BEopt and run the models to generate 217 XML input files. BEopt XML files provide a 

complete description of a single building with an element for every input found in the BEopt interface 7. 

Later, using an automated scripting process these 217 base model home geometries were edited to 

incorporate other important home characteristics that were assumed to vary by climate zone and year of 

construction, with each of the 19 cities having a different proportion of homes assigned by vintage, types 

of heating and cooling system, building envelope insulation levels, and thermostat settings.  

 

The primary characteristics of each residence from the baseline collection (i.e., floor area, year built, 

number of floors, foundation type, whether or not they have a forced air distribution system, and the 

presence or lack of an attached garage) with assigned weighting value are shown in the Appendix of this SI 

(Tables A-1 through A-4). 
 

1.3 Location of dwellings 

Next, the collection of 217 model homes was used to assign baseline home model geometries across 19 of 

the most populous U.S. cities that also cover all ASHRAE climate zones and all 9 U.S. census divisions. 

These same 19 cities were used in both Fazli and Stephens (2018) 1 and Persily et al. (2010) 8. At this point, 

2012 was selected as the representative year for the 2010s model set primarily because we had previously 

obtained hourly ambient air quality data 9 and actual year meteorological data 10 for each of these 19 

locations in 2012. Thus, while the model set was developed to represent the housing stock as of 2015 using 

2015 RECS data, the remaining inputs, including weather, air quality, and population movement factors, 

are chosen to represent the year 2012. We expect only minor discrepancies in using these two different 

marker years to represent the housing stock as of the ~2010s because only a small fraction of the overall 

housing stock was constructed between 2012 and 2015. According to the 2012 U.S. Census, the total U.S. 

population was 313,993,272, distributed among the 9 U.S. Census Division as shown in Table S5.  
 

Table S5. U.S. population distribution among nine Census Divisions in 2012 11 

Census Divisions 
Population in 

2012 

New England 14,584,723 

Middle Atlantic  41,275,538 

East North Central 46,568,813 

West North Central 20,749,482 

South Atlantic 61,215,000 

East South Central 18,631,214 

Mountain 22,595,566 

Pacific 50,927,422 

Total 313,993,272 

 

We used the same estimates of the relative proportion of dwellings in each of the 9 Census Divisions, as 

well as the allocation of dwellings among the 2 or 3 selected metropolitan areas that represent each U.S. 

census division, as Persily et al. (2010) 8. The total number of dwellings that were modeled in this study 

using the 2015 RECS dataset was 118,205,582 homes. These homes are distributed between the 19 

representative cities using the dwelling-weighted values for each representative 217 baseline homes from 

the 2015 RECS dataset and also the division covered percentages the same used for population distribution. 

Table S6 shows the distribution of both population and dwellings among the 19 representative cities. The 

proportion of each time of individual home model across each of the 9 U.S. Census Divisions are shown in 

the Appendix of this SI (Tables A-6 through A-9). The assignment of these baseline home models among 

the 19 representative cities results in a total of 4,123 home models in the form of BEopt XML files (i.e., 

217 homes × 19 cities = 4123 home models).  
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Table S6. Population and dwelling number for 19 cities 

Cities 

U.S. 

Population 

2012 

# of Dwellings 

Atlanta, GA 17,568,705  6,693,420  

Birmingham, AL  5,589,364  2,272,808  

Boston, MA 11,609,440  3,758,845  

Buffalo, NY 9,163,169  3,232,384  

Chicago, IL 40,561,436  16,459,013  

Cincinnati, OH 6,007,377  2,437,672  

Corpus Christi, TX  7,489,103  3,062,002  

Dallas/Fort Worth, TX  29,956,411  12,248,008  

Denver, CO 11,953,054  4,851,485  

Los Angeles, CA 36,209,397  11,311,605  

Miami, FL  18,609,360  7,089,894  

Minneapolis, MN 8,569,536  3,608,754  

Nashville, TN 13,041,850  5,303,219  

New York, NY 32,112,369  11,327,905  

Phoenix, AZ 10,642,512  4,319,564  

Seattle, WA 14,718,025  4,597,825  

St. Louis, MO 12,179,946  5,129,149  

Washington, DC 25,036,935  9,538,706  

Worcester, MA 2,975,283  963,322  

Total 313,993,272  118,205,582  

 

1.4. Detailed building characteristics in the 2010s model set  

Next, detailed home characteristics were assigned to each of the resulting 4,123 home models based 

primarily on location, vintage, and floor area. 

 

1.4.1 Building envelope airtightness 

Assumptions for the airtightness of the building envelope as a function of year of construction, building 

floor area, and geographic location were derived from the Lawrence Berkeley National Laboratoryôs 

Residential Diagnostics Database (ResDB) 12, which contains air leakage data from over 147,000 U.S. 

homes, including single-family detached and attached homes, multi-family homes, and manufactured 

homes. Figure S2 shows the average Normalized Leakage (NL) values from ResDB for homes with 

different floor areas, year of construction, and geographic location. The NL data demonstrate that, as 

expected, newer (and larger) homes tend to have tighter exterior building envelopes compared to older (and 

smaller) homes, which ultimately influences air infiltration through the envelope. Figure S2 also 

demonstrates that envelope airtightness also varies with climate zone. Next, because BEopt estimates air 

infiltration through the building envelope using air changes per hour at an indoor-outdoor pressure 

difference of 50 Pa (i.e., ACH50) to define the envelope airtightness, NL values from Figure S2 were 

converted to ACH50 using typical pressure and flow relationships from fan pressurization tests that was 

previously used in Fazli and Stephens (2018) 1, as shown in Equations S1-4 13 and Table S7.  
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Where ὗ = airflow rate , ELA = effective leakage area (ά , ὖ = reference pressure ὖὥ, ” = air 

density , Ўὖ = indoorïoutdoor pressure difference (ὖὥ), ὲ = pressure exponent (-), ὃ = floor area 

(ά , Ὄ = height (ά), ὗ  = airflow rate at a pressure difference of 50 Pa ά ȾὬ, and ὠ = volume of the 

building (ά ). We assumed ὲ  and ” ρȢς  for typical conditions to estimate ACH50 directly from 

NL using Equation S4. 

 

 

 
Figure S2. Normalized Leakage (NL) as a function of year built and floor area for different 

ASHRAE climate zones from ResDB 12 
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Table S7. Estimates of exterior building enclosure airtightness (ACH50) based on vintage, floor 

area, and climate zone 

Year built  

ASHRAE Climate Zones 

1A 2A 2B 3A 3B 4A 4C 5A 5B 6A 

ACH50 (1/h) - Floor Area > 147 m2 

<1950 19 19 12 16 12 17 16 14 13 13 

1950-1970 16 16 10 13 10 14 13 11 10 10 

1970-1990 13 13 8 11 8 11 11 9 8 8 

1990-2010 9 9 5 7 5 7 7 6 5 5 

2010-2020 6 6 4 5 4 5 5 4 3 3 

 ACH50 (1/h) - Floor Area < 147 m2 

<1950 24 24 14 20 14 21 20 17 15 15 

1950-1970 20 20 12 16 12 18 17 14 13 13 

1970-1990 17 17 10 13 10 15 13 11 10 10 

1990-2010 11 11 6 9 6 9 9 7 7 7 

2010-2020 7 7 4 6 4 6 6 5 5 5 

 

1.4.2 Building envelope and duct system thermal performance 

The building envelope and duct system thermal performance of each housing unit was assigned based on 

both vintage and location (shown in the Appendix of this SI; Table A-5). Building envelope thermal 

performance characteristics, including insulation levels for walls, roofs, and floors and U-values and solar 

heat gain coefficients (SHGC) for windows, as well as insulation levels for duct systems located outside of 

conditioned space, for homes built before 1990 were assigned using prior surveys of typical U.S. building 

construction data for years of construction between 1940 and 1990 14,15 (same as in 1).  

 

For the newer home models representing those built between 1990 and 2009, building envelope and duct 

system thermal performance characteristics were assigned using requirements from the 2000 International 

Energy Conservation Code (IECC) 16, assuming that new homes built to the 2000 IECC reasonably 

represent the average of homes built between 1990 and 2009. For the newest home models representing 

those built after 2010 (i.e., 2010-2015), assumptions for building envelope and duct system thermal 

performance characteristics in each location were assigned based on data of state-level adoption of building 

codes from the Building Codes Assistance Program 17. We used minimum requirements for building 

envelope thermal performance for each location based on the adopted energy codes for year 2012 for each 

state, as shown in Figure S3 (taken directly from the BCAP database). 
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Figure S3. Statewide adoption of residential energy codes in effect in year 2012. Image source: 17 

 

1.4.3 Heating and cooling systems 

Each of the 217 baseline home models was first categorized as having one of two primary types of heating 

and/or cooling systems ï either with or without central forced-air distribution systems ï based on the most 

common type listed in the 2015 RECS dataset. Subsets of these two types of heating and/or cooling systems 

were further defined for each of the 4,123 home models using the 2015 RECS dataset as well. In RECS, 

central heating systems are listed as either gas, electric, or oil furnace, or air-source heat pump systems. 

Homes without central heating systems were listed as being equipped with either a gas or oil boiler, or with 

electric baseboard heat. For cooling systems, central forced-air air-conditioning was assumed for homes 

with central forced-air heating systems, except for heat pump systems, which provide both heating and 

cooling in an integrated system, and for homes with room air conditioners (i.e., no central air-conditioner). 

We assumed that all central forced-air distribution systems were located in unconditioned spaces with 10% 

duct leakage to the exterior for simplicity (same as in 1). No whole-house mechanical ventilation systems 

are modeled in this study, although they have been increasing in popularity in recent years. 

 

From there, the nominal efficiency of heating and cooling equipment in each home was assumed based on 

the year of construction. Two main sources were used to estimate the heating and cooling equipment 

efficiencies for different years of construction. The first is Home energy Saver (HES), which is developed 

by Lawrence Berkeley National Laboratory (LBNL) and provides comprehensive documentation to use for 

calculating energy use in residential buildings. HES provides a shipment-weighted nominal efficiency for 

different types of heating and cooling systems for years between 1970 and 2010 18. The second is an EIA 

report that characterizes major residential and commercial heating, cooling, and water heating equipment 

installed between 2009 and 2015 19. It is worth noting that we used the ñAdvanced Caseò of EIA projections 

for HVAC technologies, which may be inconsistent with assumptions for the projected levels of warming 

in RCP 8.5, as it assumes some increased market incentives and federal R&D compared to the standard 

reference scenario. However, the difference between the advanced case and reference case in the EIA 

projections for HVAC equipment are rather small, resulting in only a few percentage points higher 

efficiencies for most equipment. Given the difficulties in accurately projecting any kind of 

appliance/equipment efficiencies and uptake, we doubt that these differences present an unreasonable set 

of assumptions. We also used estimates of equipment life expectancy for each system type to predict the 

efficiency of heating and cooling systems for 2012 in older home vintages that were likely to have 

equipment replaced by modern equipment (at the time of replacement) between the year of construction 

and the model year (2012) (Table S8). We used the same assumptions for heating and cooling thermostat 
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set points based on climate zone as those used in Fazli and Stephens (2018) 1 (using data from the 2009 

U.S. DOE RECS 5, as shown in Table S9. 

 

Table S8. Assumed nominal efficiency of heating and cooling equipment for different vintages of 

construction in the 2010s model set 

Equipment types Unit  Life expectancy <1950 
1950-

1969 

1970-

1989 

1990-

2009 

2010-

2015 

Heating 

systems 

Furnace ï gas 
AFUE 

(%) 
16-27 78 78 78 83 85 

Furnace ï oil 
AFUE 

(%) 
20-33 76 76 76 80 81 

Furnace ï 

electric 

AFUE 

(%) 
15-30 98 98 98 98 98 

Boiler ï gas 
AFUE 

(%) 
20-30 75 75 75 80 84 

Boiler ï oil 
AFUE 

(%) 
18-28 75 75 75 83 83 

Heat pump HSPF 9-22 7.4 7.4 7.4 7.4 8.1 

Unit heater ï 

electric 
- (%) 15-30 100 100 100 100 100 

Cooling 

systems 

Heat pump SEER 9-22 12 12 12 12 14 

Central air 

conditioner 
SEER 11-25 12 12 12 12 14 

Room air 

conditioner 
EER 6-13 10 10 10 10 11 

 

Overall, the representative home model set consists of ~49% detached homes, ~36% attached homes, ~11% 

apartments, and ~3% manufactured homes. Residences were distributed approximately evenly between the 

first four categories of construction vintage (i.e., 22%, 21%, 26%, and 25% for homes built before 1950, 

1950-1969, 1970-1980, and 1990-2009, respectively), and only 6% of the homes were constructed in the 

fifth category (2010-2015). Just over half (51%) of the single-family homes have a basement and 49% of 

have slab or crawlspace foundations. Among single-family homes with basements, 66% of them have a 

finished (conditioned) basement and the rest have unfinished basements. Further, central forced air is the 

dominant type of heating and cooling system, with 75% coverage. Most of the representative model homes 

(68%) use gas as the main heating fuel, while 31% of the housing units use electric as the main heating 

fuel. Only ~1% of the homes use oil for heating. Conversely, 66% of homes use electricity as the main 

source for stoves while the rest using natural gas. 
 

Table S9. Assumptions for heating and cooling thermostat set points by climate zone based on data 

from 2009 RECS 

Climate zone Cities 
Heating set point 

(°C) 

Cooling set point 

(°C) 

Hot-dry/mixed-dry  Los Angeles, Phoenix 19.6 24.5 

Hot-humid 
Atlanta, Corpus Christi, Dallas, 

Miami 
20.5 24.3 

Mixed-humid 

Birmingham, Cincinnati, 

Nashville, New York, St. Louis, 

Washington 

19.7 22.0 

Very cold/cold 

Boston, Buffalo, Chicago, 

Denver, Minneapolis, Seattle, 

Worcester 

18.6 23.0 
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2. Updating the nationally representative set of combined building energy and indoor air quality 

(IAQ) models for U.S. residences in the 2050s 

Next, we updated the set of combined building energy and indoor air quality (IAQ) models from the 2010s 

to represent the majority of the U.S. residential building stock in the 2050s, as described below.  

 

2.1 Population demography changes 

Several methods have been developed for making future population projections, including trend 

extrapolation, cohort-component, structural models, microsimulation, and spatial diffusion 20ï22. National 

projections are usually done with the cohort-component model in which the initial population is projected 

into the future by adding new births, subtracting deaths, adding people moving into the country 

(immigrants), and subtracting people moving out (emigrants) 23. We rely on state-level population 

projection data for the year 2050 provided by ProximityOne, which develops geodemographic-economic 

data and projections 24 using the cohort-component method along with U.S. Census Bureau data 25 to 

estimate future populations for U.S. states, metropolitan areas, and counties. The total projected U.S. 

population in 2050 is 394,771,644 (Table S10). The population distribution among the 9 U.S. Census 

Division indicates that the Pacific division will have the highest population growth and the East North 

Central division is predicted to have the least amount of population growth by 2050. 

 

Table S10. U.S. population projection among Census Divisions in 2050 
Census Divisions Population in 

2050 

Percentage increase 

compared to 2015 

New England 15,723,793 7% 

Middle Atlantic  43,038,658 4% 

East North Central 48,214,021 3% 

West North Central 24,423,686 16% 

South Atlantic 83,799,698 32% 

East South Central 21,103,339 12% 

West South Central 56,530,224 45% 

Mountain 34,062,572 45% 

Pacific 67,875,653 29% 

Total 394,771,644  

 

2.2 Changes in the residential building stock size between 2010s and 2050s 

By the 2050s, millions of new residential buildings will be added to the current housing stock and a smaller 

number of existing homes will go through retrofits or will be demolished. The number and location of 

newly constructed homes between the 2010s and 2050s were estimated using population projections for 

2050s and making assumptions for demolition rates for existing residences. Additionally, existing homes 

that are not demolished but are renovated will undergo changes to their building envelopes and/or 

heating/cooling systems that can affect energy use and IAQ.  

 

We rely on statistics from the Joint Center for Housing Studies (JCHS) at Harvard University to estimate 

demolition and renovation rates. The JCHS tabulated the number of remodeling projects reported by 

homeowners for the years between 1995 and 2015, categorized by the type of improvement project 26. We 

considered their data on the number of insulation improvements made to residential buildings as being a 

reasonable indicator of those types of energy-related retrofits that are likely to alter heating and cooling 

needs and air infiltration (e.g., replacing kitchen countertops does not influence these factors). Using their 

data, we assumed that from 2015 to the 2050s, 1.3% of all U.S. residences per year receive retrofits 

consistent with ñinsulation improvements.ò Using the same data source, we also distribute assumptions of 

these retrofitted residences across those homes built prior to 2010 (i.e., we assume new homes built after 
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2010 do not receive substantive retrofits by the 2050s) (Table S11). For existing homes that receive retrofits, 

we assumed that the air infiltration rate is decreased by 25%, as an approximate midpoint between 20% and 

35% reported in 27 and between 13% and 40% reported in 28,29 for standard energy retrofits (deep energy 

retrofits are not considered), and that ceiling insulation will be upgraded to IECC 2020s era requirements 

for thermal performance (which varies regionally). We also assumed that the retrofitted homes will replace 

their HVAC system with more efficient systems, as discussed in Section 2.3 of this SI. 
 

Table S11. Assumed distribution of building retrofits between 2010s and 2050s among four vintages 

of existing homes 

Year Built  Homeowners 

Reporting Projects 

(000s) in 2015 

Percentage of 

reporting projects 

Percentage of reporting 

projects distributed 

between four year built 

Before 

1950 

3,751 ~17% 17% 

1950-1970 4,826 ~22% 23% 

1970-1990 6,343 ~29% 30% 

1990-2010 6,514 ~30% 30% 

2010-2019 503 ~2% - 

Total 21,937 ~100% 100% 

 

For housing unit demolition rates, we rely on a report by the U.S. EIA, which stated that a reasonable 

assumption for the survival rate (i.e., the percentage of households that are present in the current projection 

year that were also present in the preceding year) is equal to 99.7% for single-family homes, 99.5% for 

multi-family homes (i.e., apartments), and 96.6% for mobile homes 30. For simplicity, we assumed 99.7% 

survival rate for all residential buildings in our model set, regardless of building type. Table S12 

demonstrates the number of residential buildings before and after applying the demolition and retrofit rates 

to the existing buildings and considering the new residences built after 2015. 
 

Table S12. Number of dwellings in 2050 considering demolition, retrofit and new constructions 

# of existing 

dwellings 

Based on 

RECS 2015 

After 

Demolition 

in 2050s 

# of homes w/ 

retrofit in 2050s 

# of homes w/o 

retrofit in 2050s 

Before 1950 21,134,084 9,335,092 7,383,729 1,951,364 

1950-1969 24,750,277 - 9,989,750 14,760,527 

1970-1989 34,278,233 - 13,030,109 21,248,124 

1990-2009 35,793,026 - 13,030,109 22,762,917 

# of future 

dwellings 

Until 2015 

(RECS 2015) 

New 

additions 

after 2015 

Demolished 

homes 

replacements 

Total # of homes 

2010-2029 2,249,961 12,233,686 5,208,986 19,692,633 

2030-2050 - 17,225,280 6,590,006 23,815,285 
 

Similar to the approach for the 2015 housing stock model, 2 or 3 metropolitan areas are selected to represent 

each U.S. Census Division. The total number of dwellings that were modeled for 2050s was 147,664,557 

homes. This number of homes was calculated using the dwelling-weighted values from IECC 2015 and 

subtracting demolished homes from the number of the oldest vintage homes and adding newly constructed 

homes between 2015 and 2050 to meet the needs of both additional population growth in the future and 

replacement of demolished homes. Later, these homes are distributed between the 19 representative cities 

using the division covered percentages used for population distribution in 2015. Table S13 shows the 

distribution of both population and dwellings among the 19 representative cities in 2050s.  
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Table S13. Population and dwelling projection for 19 cities in 2050 

Cities 
U.S. Population 

2050 
# of Dwellings 

Atlanta, GA 28,742,358 9,370,863 

Birmingham, AL  2,961,828 4,079,342 

Boston, MA 5,846,234 5,785,446 

Buffalo, NY 10,830,212 2,802,700 

Chicago, IL 43,145,645 16,317,367 

Cincinnati, OH 6,390,113 8,846,834 

Corpus Christi, TX  9,915,130 15,377,257 

Dallas/Fort Worth, TX  39,660,520 12,552,199 

Denver, CO 19,064,891 5,998,087 

Los Angeles, CA 50,530,587 12,607,509 

Miami, FL  30,444,867 1,092,134 

Minneapolis, MN 9,251,777 6,539,632 

Nashville, TN 6,910,932 2,771,385 

New York, NY 37,954,528 6,250,390 

Phoenix, AZ 16,974,600 18,712,217 

Seattle, WA 20,539,155 3,581,733 

St. Louis, MO 13,149,621 4,261,465 

Washington, DC 40,960,364 6,497,879 

Worcester, MA 1,498,281 4,220,119 

Total 394,771,644 147,664,557 

 

Furthermore, based on the RECS 2015 dataset, the floor area of newer single-family homes in the U.S. is, 

on average, greater than older homes. We estimated the average floor area of single-family homes in 2020 

(to represent homes built between 2010-2030) and 2040 (to represent homes built between 2030-2050) by 

linear projection of historical trends in average floor areas (Figure S4). 

 
Figure S4. Floor area of single family homes in 2020 and 2040 estimated using historical RECS 

2015 data 
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2.3 Changes in the residential building stock characteristics between 2010s and 2050s 

Next, we defined two new categories of building vintages to represent homes built between the 2010s and 

2050s: those built between 2015-2030 (which we represent as homes built in approximately 2020) and those 

built between 2030-2050 (which we represent as homes built in approximately 2020). We used projections 

of statewide adoption of future International Energy Conservation Codes (IECC) in each climate zone for 

these two representative years (i.e., 2020 and 2040) to define future housing stock characteristics such as 

insulation levels for exterior walls, roofs, and floors, window U-values and solar heat gain coefficients 

(SHGC), and envelope air leakage. A list of home characteristics for each construction year (i.e. >1950, 

1950-1970, 1970-1990, 1990-2010, 2010-2030, 2030-2040) and city is provided in the Appendix of this SI 

(Table A-5). Figure S5 shows the projection of IECC minimum requirements for residential buildings, 

including ceiling, wood-frame wall, and floor R-values, envelope airtightness (ACH50), and U-values and 

SHGC for fenestration. To complete these projections, we compared the energy code adoption trends from 

2009-2018 in the 19 states represented by our model set and forecasted code adoption by each state in future 

years using an approach similar to that described in 31. IECC adoption in different states was categorized as 

ñvery slow,ò ñmoderate,ò and ñtimelyò based on historical data.  
 

 

 

 
Figure S5. Projection of IECC minimum requirements for residential buildings 
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Table S14 summarizes which year of future IECC each of the 19 modeled locations is projected to adopt 

by 2020 and 2040. 
 

Table S14. Projected residential IECC adoption by 2020 and 2040 

Location 

Adoptio

n  

lag 

(years) 

Adoptio

n  

rate 

class 

Projected 

IECC, 

2020 

Projected 

IECC, 

2040 

Atlanta, GA  7 year 
Very 

slow 
2012 2033 

Birmingham, AL  4 year 
Moderat

e 
2015 2036 

Boston, MA 1 year Timely 2018 2039 

Buffalo, NY 4 year 
Moderat

e 
2015 2036 

Chicago, IL 1 year Timely 2018 2039 

Cincinnati, OH  7 year 
Very 

slow 
2012 2033 

Corpus Christi, 

TX  
4 year 

Moderat

e 
2015 2036 

Dallas/Fort Worth, 

TX  
4 year 

Moderat

e 
2015 2036 

Denver, CO - - 2009 2009 

Los Angeles, CA 1 year Timely 2018 2039 

Miami, FL  4 years 
Moderat

e 
2015 2036 

Minneapolis, MN 4 years 
Moderat

e 
2015 2036 

Nashville, TN 7 years 
Very 

slow 
2012 2033 

New York, NY 4 year 
Moderat

e 
2015 2036 

Phoenix, AZ 7 years 
Very 

slow 
2012 2033 

Seattle, WA 1 year Timely 2018 2039 

St. Louis, MO 7 years 
Very 

slow 
2012 2033 

Washington, DC 4 year 
Moderat

e 
2015 2036 

Worcester, MA 1 year Timely 2018 2039 
 

Similarly, we used a recent EIA report on residential and commercial building technology forecasts 19 to 

project HVAC system characteristics (i.e., fuel type and nominal efficiency) for the two new categories of 

homes built between the 2010s and 2050s, again using 2020 and 2040 to represent homes built between 

2015-2030 and 2030-2050, respectively (Table S15).  
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Table S15. Assumed type and efficiency of heating and cooling equipment for different vintages of 

future construction (2010s to 2050s) 

Equipment Type Equipment Fuel 2010-2030 2030-2050 

Heating System 

Furnace 
Gas 92*/85**  95*/85**  

Oil 83 85 

Boiler 
Gas 90 94 

Oil 84 87 

Heat pump - 

HSPF 
Electricity 8.6 9 

Cooling System 

Heat pump - 

SEER 
Electricity 15.3 16.5 

AC Electricity 14*/14.4** 15.5*/16** 

RC Electricity 12.3 13 

*  Equipment efficiency for cities located in northern U.S. climate zones 

** Equipment efficiency for cities located in the rest of the country 

Moreover, the approach we took in assuming the predominant fuel type for future homes was to duplicate 

the same predominant fuel type present in the most recent home vintages (HC5: i.e., 2010-2015 for the 

baseline model set and 2010-2030 for the future model set). This was based on RECS 2015 and assumes 

that the most prevalent fuel type in ~2015 continues to be the case into the future, which does not 

consider aggressive fuel changes (such as electrification) but rather represents a conservative business-as-

usual approach. 
 

3. Energy and indoor air quality (IAQ) modeling of the current and future housing stock 

After defining the building stock model sets, we used the automated REIAQ workflow to run energy and 

IAQ simulations for the current and future housing stock model set using input data for 2012 and the mid-

2050s, respectively.  

 

3.1 Hourly meteorological data in 2010s and 2050s 

We used actual meteorological year (AMY) data for each of the modeled 19 cities for the year 2012, which 

was the most recent year for which hourly outdoor pollutant data were also available at the time of the 

development of the original REIAQ model set. Historical weather files are purchased from White Box 

Technologies for all 19 cities 10. For the future climate scenario, we used hourly outputs from a previous 

study that predicted future hourly weather conditions in the 2050s using the Weather Research and 

Forecasting (WRF) Model 32 with a 12 km by 12 km resolution following assumptions of the Representative 

Concentration Pathways (RCP) 8.5 from the Intergovernmental Panel on Climate Change (IPCC) Fifth 

Assessment Report (AR5) 33. RCP 8.5 used to be recognized as a ñhighò emissions scenario, assuming an 

increase in greenhouse gas emissions; however, recently RCP 8.5 has become known more the ñbusiness-

as-usualò scenario since emissions continue to increase globally 34. Figure S6 shows predicted changes in 

the annual distribution of hourly dry bulb temperature from 2012 (AMY) to 2050s (WRF RCP 8.5 

predictions in 33). For reference, the average increase in ambient dry bulb temperatures across our 19 model 

cities is ~2.5 °C between 2012 and 2050s. 
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Figure S6. Distributions of hourly dry bulb temperatures in 2012 (using AMY) and 2050s (using 

WRF with IPCC RCP 8.5 33) 
 

3.2 Hourly outdoor pollutant concentration data in 2010s and 2050s 

Similarly, we used the same hourly outdoor pollutant data for the year 2012 that was used in our previous 

study 1. Briefly, hourly outdoor pollutant data for PM2.5, NO2, and O3 in each location were culled from the 

U.S. EPA Air Quality System (AQS) online repository for each of the 19 representative model locations 

for the year 2012 9. Data were visually inspected for missing values and, when there were gaps in the hourly 

data, hourly data from the next closest monitoring station were selected if available. If small gaps still 

remained and the number of missing data resulted in less than 95% of the total expected number of hourly 

data points, then linear interpolation was used to estimate any missing observations. Approximations of 

hourly outdoor ultrafine particle (UFP) concentrations were made based on associations with NOx 

concentrations using correlations reported by Azimi et al. 35. Ambient concentrations of volatile organic 

compounds (VOCs) and aldehydes were assumed to be constant throughout the year, as hourly data are not 

widely available for these compounds. The geometric mean ambient concentrations from 48-h air samples 

collected in about 300 homes in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study 

were used as these constant ambient concentrations 36, including 3.9, 2.3, 0.21, 0.1, 0.53, and 0.39 ppb for 

formaldehyde, acetaldehyde, acrolein, 1,3-butadiene, benzene, and 1,4-dichlorobenzene, respectively. 

 

For the future model years (~2050s), we used predictions of future hourly pollutant concentrations from 

applications of the Community Multi-Scale Air Quality (CMAQ) modeling system version 5.0 from Sun et 

al. (2015) 37. CMAQ is a three-dimensional comprehensive atmospheric chemistry and transport model 

developed by the EPA and the community 38,39. Sun et al. (2015) used the same 12 km by 12 km spatial 

resolution as their WRF models for their CMAQ simulations to predict both hourly future meteorological 

conditions and pollutant concentrations, including PM2.5, NO2, O3, and several VOCs and aldehydes (i.e., 

formaldehyde, acetaldehyde, and benzene), again assuming RCP 8.5. We again estimated UFP 

concentrations assuming correlations between UFP and NOx concentrations continue to hold.  

 

Figure S7 shows the resulting annual average outdoor concentrations of these pollutants, averaged across 

all 19 model locations, in the current climate scenario of 2012 (same as in 1) and in the future climate 

scenario of ~2050s. Not surprisingly, ambient concentrations of each pollutant, except O3, is expected to 

decrease by the 2050s compared to 2012. 
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Figure S7. Annual average outdoor concentrations of several pollutants, averaged across all 19 

cities, in 2012 (from 1) and 2050s (from 37) 

 

Figure S8 shows predicted changes in the annual distribution of hourly outdoor concentration of PM2.5, 

UFP, NO2, and O3 across the 19 model cities from 2012 (EPA, AQS) to 2050s (WRF-CMAQ, RCP 8.5; 

data were extracted from model outputs from Sun et al. (2015) 37). 
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Figure S8. Distributions of hourly Outdoor concentration of PM2.5, UFP, NO2, and O3 from 2012 

(EPA, AQS9) to 2050s (WRF-CMAQ, RCP 8.537) across 19 model cities 


