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A B S T R A C T

Americans spend most of their time inside residences where they are exposed to a number of pollutants of both
indoor and outdoor origin. Residential buildings also account for ∼20% of the primary energy consumed in the
U.S. To provide a tool for future investigations of interactions between energy use and indoor air quality (IAQ) in
homes across the U.S. population, we developed a custom set of nationally representative building energy and
IAQ mass balance models that predict annual energy use for space conditioning and indoor concentrations of a
number of pollutants of both indoor and outdoor origin across the U.S. residential building stock. The residential
energy and indoor air quality (REIAQ) model framework is built in Python and integrates between EnergyPlus
and a dynamic mass balance model. REIAQ utilizes historical weather data to predict hourly energy con-
sumption, air change rates, and HVAC system runtimes, which are coupled with historical outdoor pollutant
concentration data and assumptions for indoor emission sources and other factors to predict hourly indoor
pollutant concentrations. Modeled indoor pollutants include PM2.5, UFPs, O3, NO2, and several volatile organic
compounds (VOCs) and aldehydes. The REIAQ model set successfully predicted annual space conditioning en-
ergy consumption for the U.S. residential building stock within ∼2% of historical data. Modeled indoor con-
centrations, infiltration factors for outdoor contaminants, and indoor/outdoor ratios of each pollutant all mat-
ched closely with observations from prior field studies. Population-weighted annual average indoor pollutant
concentrations were also used to estimate the chronic health burden of residential indoor exposures.

1. Introduction

Americans spend most of their time inside their homes [1] where
they are exposed to a number of airborne pollutants of both indoor and
outdoor origin [2–5]. Both gases and particles of outdoor origin can
infiltrate into homes with varying efficiencies [6–32]. Volatile organic
compounds (VOCs) are emitted indoors from building materials
[33,34], cleaning products [35,36], and personal care products [37].
Indoor sources of semi-volatile organic compounds (SVOCs) include
plasticizers and flame retardants in building materials, as well as pes-
ticides from both indoor and outdoor use [38]. Particles are generated
indoors by smoking [9], cooking [39], burning incense and candles
[40,41], operating office equipment and other appliances [42], and by
resuspension from settled dust [43,44]. Moreover, reactions between
oxidants such as ozone and reactive organic compounds in indoor air
and adsorbed on surfaces form secondary gas- and particle-phase by-
products [45–55].

Recent research has shown that concentrations of many pollutant
concentrations inside residences often exceed chronic or acute health

standards and are linked to adverse health outcomes ranging from
sensory irritation to cancer. Logue et al. (2011) identified nine priority
hazards in U.S. residences based on the magnitude of measured con-
centration data, the number of residences affected, and the prevalence
of these pollutants at or above relevant health standards, including:
acetaldehyde, acrolein, benzene, 1,3-butadiene, 1,4-dichlorobenzene,
formaldehyde, naphthalene, nitrogen dioxide (NO2), and PM2.5 (i.e.,
the mass concentration of particles smaller than 2.5 μm in diameter)
[56]. NO2 and PM2.5 are both regulated outdoors by the US EPA's Na-
tional Ambient Air Quality Standards (NAAQS) and have both indoor
and outdoor sources inside many homes. Two of these priority hazards,
acetaldehyde and formaldehyde, are primarily emitted by indoor
sources such as pressed-wood products and consumer products
[57–59]. The cumulative chronic health impacts from inhalation of this
wide array of indoor pollutants, excluding radon and secondhand
smoke, have been estimated to result in between 400 and 1100 dis-
ability-adjusted life-years (DALYs) lost per 100,000 persons per year,
representing an estimated 5–14% of the annual non-communicable,
non-psychiatric disease burden in the U.S. [60]. Further, estimates of
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cumulative lifetime cancer risks from exposure to a combination of
several hazardous indoor air pollutants in homes typically range from 1
to 10 excess cases per 10,000 people [61–63].

Residential buildings also account for approximately 20% of the
primary energy consumed in the U.S. annually [64]. Over 60% of ex-
isting residential buildings and approximately 90% of newly con-
structed residences in the U.S. use central forced-air distribution sys-
tems for air-conditioning purposes [65], and almost 50% of primary
energy used in U.S. residences is for space heating and cooling [66].
Further, many source and removal mechanisms of indoor pollutants are
closely tied to energy consumption, and changes made to improve in-
door air quality can impact energy consumption. For example, high
outdoor air infiltration rates lead to higher energy consumption and can
also be a major source of pollutants in homes, but can also serve to
dilute concentrations of indoor-generated pollutants [67]. As air in-
filtration rates continue to decrease with more widespread energy-ef-
ficient building construction practices [68–70], new tools are needed to
understand how concentrations of outdoor-infiltrated and indoor-gen-
erated pollutants might change as the building stock changes over time.
As another example, central heating, ventilation, and air-conditioning
(HVAC) filters are often relied upon to remove indoor pollutants, but
their effectiveness depends on both filter efficiency and system opera-
tional characteristics [71–73]. Additionally, the energy consequences of
improved filtration and mechanical ventilation are also intricately
linked to system design and operational characteristics [74–78].

Because field measurements of energy use and indoor air quality in
large numbers of homes can be prohibitively expensive and time con-
suming, accurate and robust simulation tools for predicting energy use
and indoor pollutant concentrations that aggregate across large num-
bers of individual buildings are needed to investigate interactions be-
tween energy use and indoor air quality (IAQ) across the population. To
aid in this effort, we have developed a nationally representative re-
sidential energy and IAQ (REIAQ) model set that can be used to predict
energy use for space conditioning and indoor concentrations of a
number of pollutants of both indoor and outdoor origin across the U.S.
residential building stock. The goal is to provide a workflow that in-
tegrates freely available simulation software packages to perform po-
pulation-wide impact analyses that can ultimately inform building de-
signers, standards organizations, and policy makers of the complex
interactions between energy and indoor air quality in U.S. residences.

2. Methods

The residential energy and IAQ (REIAQ) model framework com-
bines hourly energy simulations using BEopt Version 2.2.0 and
EnergyPlus Version 8.1.0 with a custom hourly mass balance model for
dynamic indoor pollutant simulations. The model process is an indirect
co-simulation process in which energy, airflow, and contaminant mass
balance equations are not solved as an integrated set of equations but
rather are solved sequentially as described below. The model frame-
work is built in Python 2.7 to automate the majority of the simulation
process. The model process involves the following sequential steps: (1)
manually constructing a minimal number of typical home geometries
required in BEopt, (2) modifying those base home geometries to include
region-specific details on envelope construction, HVAC characteristics,
and other characteristics for use in energy simulations, (3) running
hourly energy simulations in EnergyPlus, (4) passing hourly energy
simulation outputs such as modeled hourly air change rates (ACRs) and
central HVAC system runtimes to a transient indoor air mass balance
model to simulate hourly concentrations of several priority pollutants
of both indoor and outdoor origin, and (5) aggregating hourly model
results over the course of the model year and applying population-
weighting factors to generate nationally representative average con-
centrations of each pollutant and an aggregate estimate of the total
annual heating and cooling energy consumption in U.S. residences.
Resulting population-average indoor pollutant concentrations are also
used to generate estimates of the population-wide chronic health im-
pacts associated with residential indoor exposures following a recently
developed methodology that uses a disability-adjusted life-years
(DALYs) approach. Each of these steps is described in more detail in the
following sections.

2.1. Building the nationally representative set of home models

The model set is built upon the housing characteristics and model
geometries detailed in Persily et al. (2010) [79] and Persily et al. (2006)
[80], which described the development of a set of models of 209
dwellings that represent approximately 80% of all U.S. residences as of
approximately the year 2000. We used the same allocation of the
dwellings as the NIST model set, with homes located across 19 of the
most populous cities in the U.S. that cover all ASHRAE climate zones
and all 9 U.S. census divisions (Table 1).

The set of 209 dwellings are grouped into four categories: detached,

Table 1
Summary of heating degree days (HDD), cooling degree days (CDD), and the number of dwellings and population represented by 19 cities across all ASHRAE climate
zones and U.S. census divisions in the year 2000.

Cities Census division ASHRAE climate zone HDD
°C day

CDD
°C day

# of Dwellings U.S.
Population in 2000

Atlanta, GA South Atlantic 3A 1089 1169 3,686,721 14,857,749
Birmingham, AL East South Central 3A 1077 1226 1,269,123 5,106,843
Boston, MA New England 5A 2668 475 2,503,728 11,082,324
Buffalo, NY Middle Atlantic 5A 3046 495 2,186,556 8,807,153
Chicago, IL East North Central 5A 2752 776 10,689,222 39,330,037
Cincinnati, OH East North Central 4A 2308 715 1,583,134 5,825,000
Corpus Christi, TX West South Central 2A 254 2400 1,690,652 6,288,970
Dallas/Fort Worth, TX West South Central 3A 914 1854 6,762,609 25,155,880
Denver, CO Mountain 5B 2847 709 2,452,110 9,613,144
Los Angeles, CA Pacific (South Pacific) 3B 722 323 7,788,014 32,013,228
Miami, FL South Atlantic 1A 66 2321 3,905,099 15,737,825
Minneapolis, MN West North Central 6A 3405 647 2,125,685 7,945,186
Nashville, TN East South Central 4A 1555 1103 2,961,287 11,915,967
New York, NY Middle Atlantic 4A 2259 652 7,662,797 30,864,708
Phoenix, AZ Mountain 2B 372 2889 2,183,259 8,559,151
Seattle, WA Pacific 4C 2551 91 3,165,592 13,012,409
St. Louis, MO West North Central 4A 1940 1263 3,021,253 11,292,553
Washington, DC South Atlantic 4A 2133 792 5,253,899 21,173,586
Worcester, MA New England 4A 3137 360 641,659 2,840,193
Total 71,532,391 281,421,906
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attached, manufactured homes, and apartments. The primary char-
acteristics used to distinguish the baseline collection of residences in-
clude floor area, year built, number of floors, foundation type, whether
or not they have a forced air distribution system, and the presence or
lack of an attached garage (SI Appendix A). These models are con-
sidered current as of approximately 2000 and no changes have been
made at this point to include newer homes built since then, although
updates to the model set are planned for future work. While the NIST
models were originally built for multi-zone indoor airflow modeling in
CONTAM [81], we transcribed the base model set to BEopt models for
energy simulation with EnergyPlus and also used their base char-
acteristics to construct single-zone well-mixed reactor models for in-
door pollutant simulations. We chose to build our own single-zone
model for several reasons, including (i) model development began prior
to the recent development of software to couple CONTAM and En-
ergyPlus [82] and (ii) we did not necessarily require multi-zone mod-
eling capabilities for this type of aggregate population-level analysis
[83,84].

To convert the 209 dwellings into BEopt models, we first identified
the minimum number of identical home geometries that were used in
the NIST model set. A total of 114 minimal base model home geome-
tries were first constructed manually in BEopt, which generated 114
XML input files that each provide a complete description of a single
building with an element for every input found in the BEopt interface
[85]. To increase this number to be consistent with the same 209
dwelling models used in the NIST data set, we made adjustments to the
114 BEopt XML files of base model home geometries, which included
selecting various foundation types (e.g., concrete slab, crawl space, or
basement as dictated by the most typical construction characteristics in
climate zone), selecting attached or detached garages, and selecting
detached or attached home construction. We manually assigned these
characteristics following the NIST model set directly.

Next, multiple versions of the 209 BEopt XML files for the base
model home geometries were created using an automated scripting
process to incorporate other important home characteristics that were
assumed to vary by climate zone and year of construction, with each of
the 19 cities having a different proportion of homes assigned by vin-
tage, types of heating and cooling system, building envelope insulation
levels, and thermostat settings. Two residential building databases,
including the U.S. Census Bureau's American Housing Survey (1999)
[86] and the U.S. Department of Energy's Residential Energy Con-
sumption Survey (1997) [87], were used to inform the assignment of
typical home characteristics to each multiple of the base model home
geometries. The assignment of these more detailed home characteristics
resulted in a total of 3971 home models in the form of BEopt XML files
(i.e., 209 homes×19 cities= 3971 home models). These more de-
tailed home characteristics are described in the following subsections.

2.1.1. Envelope airtightness
Building envelope airtightness is well known to vary by the year of

the construction of homes [69,70,88]. The original NIST model set as-
signed a level of airtightness to each home model using specific values
of Normalized Leakage (NL) areas that varied according to both floor
area and vintage. However, by default, BEopt uses only the air changes
per hour at an indoor-outdoor pressure difference of 50 Pa (i.e., ACH50)
to define the envelope airtightness of a home model. Therefore, we
converted the NL values assigned in the NIST model set to ACH50 values
using typical pressure and flow relationships from fan pressurization
tests, as shown in Equations (1)–(4) [67,69,89] and in Table 2.
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3

and =ρ 1.2 kg
m3 for typical conditions to estimate ACH50 directly from NL

using Equation (4).

2.1.2. Types of heating and cooling systems
Each of the 3971 home models was then assigned the most common

type of heating and cooling equipment for each home vintage in each
climate zone and U.S. census division based on information provided in
RECS and in the NIST data set (SI Appendix A). Other less common
types of heating and cooling equipment were not modeled to keep the
number of simulations to a manageable amount. In total, four types of
heating equipment and two types of cooling equipment were modeled.
Homes with central forced-air distribution systems were modeled either
with a gas or electric furnace for heating and a central air conditioner
for cooling or with air-source heat pumps that provided both heating
and cooling in one integrated system. Homes without central forced-air
distribution systems were modeled with either a gas or oil boiler or with
electric baseboard heating and with only room air conditioners for
cooling. For homes that had central forced-air distribution systems lo-
cated in unconditioned spaces, the systems were assumed to have 10%
duct leakage to the exterior. All other home models were assumed to
have 0% duct leakage to the exterior.

We also made several assumptions for the nominal efficiency of each
heating and cooling system type in each home based on vintage using a
combination of default values from BEopt and a previously published
report on building system performance characteristics for existing
homes [90]. The distribution of each type of heating and cooling system
and their assumed efficiencies and fuel sources, varying by vintage, is
shown in Table 3.

2.1.3. Thermal performance of the building enclosure
Building envelope thermal performance also varied based on the

year of construction and the location of each of the 3971 home models.
While these characteristics were not included in the original NIST
model set, we made assumptions for the most common envelope
thermal performance characteristics. Exterior wall materials, wall, roof,
and floor insulation levels, and window areas, U-values, and solar heat
gain coefficients (SHGC) were assigned for each vintage and climate
zone following various surveys of U.S. residences built before 1990
[91–93] and following the International Energy Conservation Code for
homes built after 1990 [94]. The latter assumption may introduce some
uncertainty in newer home vintages because actual construction and
performance can vary from code minimum requirements. A full list of
home characteristics for each construction year and city is provided in

Table 2
Exterior enclosure leakage values for the model homes based on vintage and
floor area.

Year built Floor Area < 148.6 m2 Floor Area > 148.6 m2

NL (−) ACH50 (1/hr) NL (−) ACH50 (1/hr)

Before 1940 1.29 27 0.58 12
1940–1969 1.03 21 0.49 10
1970–1989 0.65 13 0.36 7
1990 and newer 0.31 7 0.24 5
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the SI (Appendix B). Generally, older vintage homes were assumed to
have minimal building envelope insulation and newer vintage homes
were assumed to have greater levels of envelope insulation.

2.1.4. Thermostat set points
Heating and cooling thermostat set points were assumed to vary by

climate zone using data from the 2009 U.S. DOE RECS [95]. Table 4
shows the average thermostat temperature set points for both heating
and cooling seasons in different U.S. climate zones provided in RECS.
There were no values provided in the Marine climate zones, so we as-
sumed that homes in these regions had the same thermostat set points
as Cold regions because they had similar numbers of cooling degree
days.

2.2. Energy simulation procedures

EnergyPlus was used to simulate hourly heating and cooling energy
consumption, HVAC system runtimes, and air change rates (ACRs)
through infiltration, natural ventilation, and mechanical ventilation
separately for each model scenario. Once the 3971 BEopt XML input
files were generated and edited for specific characteristics based on
vintage and climate zone, EnergyPlus input files (IDF files) were gen-
erated for each unique home model. Heating and cooling equipment
was first auto-sized for each home with a central heating and/or cooling
system using EnergyPlus, but because the auto-sizing procedure results
in non-standardized equipment capacities that would yield inaccurate
system runtimes, we used common commercially available incremental
air-conditioner, furnace, and heat pump capacities to increase the auto-
sized capacities of each piece of equipment to a more realistic size [76].
Increments of 1.76 kW and 3.5 kW were used for cooling and heating
equipment capacities, respectively.

For each home model with a central forced air heating and/or
cooling system, we made the following assumptions. The air handling
unit was assumed to operate with a constant airflow rate of 193m3/h
per kW of cooling capacity in both heating and cooling seasons [74,96].
El Orch et al. (2014) estimated that more than 55% of U.S. residences
use MERV 6 or lower HVAC filters [24]; thus, we assumed that all
central air handling units had MERV 6 particle filters installed. This

assumption underrepresents the use of both lower and higher efficiency
filters, but because there are no known data sets of filter use by region
and/or home vintage, this serves as a reasonable assumption for a ty-
pical home in each location.

To account for the impact of filter and system pressure drop on fan
pressure rise and fan efficiency, we modified the default assumptions
for fan pressure rise from BEopt because field measurements con-
sistently demonstrate that fan pressure is higher than what most stan-
dards and simulation programs assume [76,97,98]. In one of the larger
field investigations of fan pressure in residences of which we are aware,
Proctor (2012) reported an average total external static pressure of
∼220 Pa in residential air-conditioning systems in 80 homes in Cali-
fornia [99]. Since most residential air handling units in the U.S. as of
2000 used permanent split capacitor (PSC) fan motors [100], all mod-
eled air handling units were assumed to have PSC motors. The fan ef-
ficiency for all homes with a fan pressure rise of 220 Pa was estimated
to be 26% based on virtual models of generally representative PSC
blowers [101].

We assumed that there were no dedicated whole-house mechanical
ventilation systems in any of the home models. This is a conservative
estimate that is surprisingly accurate at scale for some regions but less
accurate for others, but we consider this a reasonably realistic as-
sumption for the majority of the building stock as of approximately the
year 2000. For spot ventilation systems, a nationwide survey of
households in 1985 reported that only half of U.S. residents surveyed
used vented range hoods and about 40% of residents with vented range
hoods used their fan while preparing dinner meals [102]. In a more
recent survey of California households, Klug et al. (2012) reported a
similar percentage (42.4%) of range hood usage during dinner pre-
paration [103]. To reasonably approximate the range hood use and
usage survey data, homes built before 1970 were assumed to not have a
kitchen range hood and homes built after 1970 were assumed to have a
vented kitchen range hood with an airflow rate of 170 m

hr

3
. To approx-

imate range hood use by those households that have range hoods (i.e.,
∼40%), the kitchen range hood was assumed to operate three days per
week for 1 h during dinner preparation (i.e., 6:00 p.m.–7:00 p.m.). We
are not aware of nationwide surveys of bathroom exhaust fan existence
or usage, so we used the default assumptions for bathroom exhaust fans

Table 3
Type and efficiency of heating and cooling equipment assumed for each home vintage.

HVAC systems HVAC fuel Year built

< 1940 1940–1969 1970–1989 >1990

Heating equipment Furnace Gas 78% AFUE 80% AFUE 90% AFUE 92.5% AFUE
Electricity 100% AFUE 100% AFUE 100% AFUE 100% AFUE

Heat pump Electricity COP 1.8
(6 HSPF)

COP 1.8
(6 HSPF)

COP 1.9
(6.6 HSPF)

COP 2.1
(7.1 HSPF)

Boiler Gas 55% AFUE 60% AFUE 72% AFUE 80% AFUE
Oil 55% AFUE 60% AFUE 72% AFUE 80% AFUE

Baseboard Electricity 100% efficiency 100% efficiency 100% efficiency 100% efficiency
Cooling equipment Central air conditioner Electricity COP 1.9

(SEER 6.5)
COP 2.1
(SEER 7.3)

COP 2.7
(SEER 10)

COP 3.3
(SEER 13)

Heat pump Electricity COP 1.9
(SEER 6.5)

COP 1.9
(SEER 6.5)

COP 2.3
(SEER 8)

COP 2.7
(SEER 10)

Room conditioner Electricity COP 1.9
(EER 6.5)

COP 1.9
(EER 6.5)

COP 2.2
(EER 7.5)

COP 2.5
(EER 8.5)

Table 4
Assumptions for heating and cooling thermostat set points by climate zone based on data from RECS [95].

Climate zone Cities Heating set point (°C) Cooling set point (°C)

Hot-dry/mixed-dry Los Angeles, Phoenix 19.6 24.5
Hot-humid Atlanta, Corpus Christi, Dallas, Miami 20.5 24.3
Mixed-humid Birmingham, Cincinnati, Nashville, New York, St. Louis, Washington 19.7 22.0
Very cold/cold Boston, Buffalo, Chicago, Denver, Minneapolis, Seattle, Worcester 18.6 23.0
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in BEopt of 1 h per day (i.e., 7:00 a.m.–8:00 a.m.) 7 days per week with
an airflow rate of 85 m

hr

3
for the two newer home vintages. The two

oldest vintages were assumed not to have exhaust fans. The assump-
tions for kitchen and bathroom exhaust airflow rates both reflect
common nominal values based on ventilation standards (e.g., ASHRAE
Standard 62.2), but measured airflow rates in real residences are often
lower than nominal values. However, we are not aware of robust
published data sets documenting actual versus nominal performance of
exhaust fans and thus have assumed these nominal values for simpli-
city.

The natural ventilation (i.e., window opening) schedule was as-
sumed to vary based on the presence of central forced-air heating and
cooling systems in the home models following default assumptions in
BEopt. Homes with central forced-air distribution systems were as-
sumed to allow natural ventilation 3 days per week (Mondays,
Wednesdays, and Fridays) to reflect windows being opened occasion-
ally. Homes without central forced-air heating and cooling systems
were assumed to allow natural ventilation 7 days a week. Default as-
sumptions for daily window opening in BEopt are based on the 2014
Building America House Simulation Protocols [104]. Windows were
assumed to be opened only when the outdoor air humidity ratio was
less than 0.0115 kgw/kgda and the outdoor air relative humidity was
less than 70%. Windows were assumed to be closed when the indoor air
temperature dropped 0.5 °C below the heating or cooling set point or if
the cooling load of outdoor airflow could not maintain the cooling set
point. BEopt generates a program in EnergyPlus that combines as-
sumptions for window opening schedules and window opening areas
with meteorological conditions to estimate ventilation airflows through
openings following the Sherman and Grimsrud model [67,105]. It is
worth noting that this model was developed to predict infiltration air-
flows and has not, to our knowledge, been validated for predicting
natural ventilation flows.

Because the intent of these simulations is to merge energy and IAQ
mass balance modeling and the IAQ modeling involves culling hourly
outdoor pollutant data for each city, we chose to conduct all modeling
for a single actual meteorological year (AMY) rather than using typical
meteorological year (TMY) weather files. While there are some dis-
advantages of using only single year weather files (e.g., they are not
representative of other years), the advantages of syncing weather and
outdoor pollutant data files as inputs were crucial for this modeling
effort [73]. Therefore, we used AMY data from the year 2012, which
was the most recent year for which hourly outdoor pollutant data were
also available (as described in the next section), for inputs to the energy
simulations. These historical weather files are purchased from White
Box Technologies for all 19 cities [106]. Simulation time steps were set
to 6 per hour in EnergyPlus for all energy simulations.

2.3. Application of the model set for predicting indoor pollutant
concentrations

After performing energy simulations for each of the 3971 model
home scenarios, dynamic indoor mass balance models were used to
estimate hourly concentrations of a number of pollutants of both indoor
and outdoor origin that have been previously identified as being of
most concern to chronic health impacts across the U.S. residential
building stock. Outdoor-generated pollutants included regulated pol-
lutants that have well known associations with adverse health effects
(PM2.5, O3, NO2, and UFPs), three of which are also identified as
priority pollutants in Logue et al. (2012) [60]. Indoor-generated pol-
lutants included eight priority chronic health hazards identified in
Logue et al. (2011) [5], including acetaldehyde, acrolein, benzene, 1,3-
butadiene, 1,4-dichlorobenzene, and formaldehyde, as well as indoor
sources of three of the outdoor pollutants: NO2, PM2.5, and UFPs. The
mass balance models utilized several EnergyPlus outputs as inputs and
we made several assumptions for typical indoor emission rates and

other factors to reasonably reflect typical homes in the U.S.

2.3.1. Single-zone mass balance model
A discrete time-varying mass balance model for a single well-mixed

zone was used to estimate the hourly concentrations of both indoor and
outdoor generated pollutants in each home model. Hourly inputs were
interpolated to 1-min intervals to improve model stability, and then 1-
min mass balance model outputs were averaged on an hourly basis. The
indoor concentration at the initial time step (i.e., midnight on January
1) was assumed to be the same as the steady state concentration for that
initial time period. Indoor pollutant concentrations at each time step
t( )n were then estimated using Equation (5).
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where Cin = the indoor concentration of any airborne pollutant ( −m# 3

or −μg m 3 for particles; ppb by volume or −μg m 3 for gases), P =the
penetration factor of the building envelope for a particular pollutant
(dimensionless, ranging from 0 to 1), λinf =the air change rate due to
infiltration alone ( −h 1), Cout =the outdoor pollutant concentration
( −m# 3 or −μg m 3 for particles; ppb by volume or −μg m 3 for gases), E
=the whole-house indoor emission rate of a pollutant ( −μg h 1 or −h# 1),
V= the volume of the home (m3), Qexhaust =the airflow rate of any
mechanical exhaust ventilation system ( −m h3 1), β=the first-order in-
door loss rate of the pollutant by deposition to surfaces and/or surface
reactions ( −h 1), ηfilt = the pollutant removal efficiency of a filter in-
stalled the HVAC system if applicable (dimensionless, ranging from 0 to
1), Qfilt =the airflow rate through the central HVAC filter if applicable
( −m h3 1), ffilt =the fractional runtime of the HVAC system if applicable
(dimensionless, ranging from 0 to 1), k = the bimolecular reaction rate
constant between two gas-phase compounds ( − −m μg h3 1 1 or − −ppb h1 1),
Cterp = the concentration of a reactant ( −μg m 3 or ppb), tn is the current
time step (h), and −tn 1 is the previous time step (h). Values for each
model input were culled from the literature as described below.

2.3.2. Outdoor pollutant data
Hourly outdoor pollutant data for PM2.5, NO2, and O3 in each lo-

cation were culled from the U.S. EPA Air Quality System (AQS) online
repository for each of the 19 representative model locations for the year
2012 [107]. Data were visually inspected for missing values and, when
there were gaps in the hourly data, hourly data from the next closest
monitoring station were prioritized. If small gaps still remained and the
number of missing data resulted in less than 95% of the total expected
number of hourly data points, then linear interpolation was used to
estimate any missing observations.

Outdoor UFP concentrations are not consistently measured in the
U.S.; therefore, we made rough estimates of hourly outdoor UFP con-
centration data based on associations with NOx concentrations using
correlations reported by Azimi et al. [73]. It should be noted that ab-
solute outdoor UFP concentration values are considered very approx-
imate with high uncertainty using this method, although relative in-
door-outdoor UFP concentrations ratios are more reliable. UFP
concentrations (both indoors and outdoors) are not considered on a
size-resolved basis at this point in time for model simplicity. Annual
mean concentrations of ambient PM2.5, O3, NO2, and UFPs (based on an
assumed association with NOx) for the 19 cities used herein are shown
in Fig. 2. A detailed summary of the ambient air quality monitoring
stations used for outdoor PM2.5, O3, NO2, and NOx is shown in the SI
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(Appendix C). Annual averages of hourly pollutant concentrations used
in the model set are shown in Fig. 1.

Ambient concentrations of volatile organic compounds (VOCs) and
aldehydes were assumed to be constant throughout the year, as hourly
data are not widely available for these compounds. The geometric mean
ambient concentrations from 48-h air samples collected in about 300
homes in the Relationships of Indoor, Outdoor, and Personal Air
(RIOPA) study were used as these constant ambient concentrations
[108], including 3.9, 2.3, 0.21, 0.1, 0.53, and 0.39 ppb for for-
maldehyde, acetaldehyde, acrolein, 1,3-butadiene, benzene, and 1,4-
dichlorobenzene, respectively.

2.3.3. Indoor pollutant emission rates
For all indoor emission sources we used ‘typical’ emission rates and

schedules, but to limit computation times we did not consider dis-
tributions of these parameters. Our intent was to provide reasonable
estimates for typical homes across the U.S., and we believe that these
assumptions reasonably reflect common emission sources even though
source strengths and activity patterns will vary day-by-day and home-
by-home [109]. Geometric mean whole-house emission rates for VOCs
and aldehydes were taken from recent estimates based on the Re-
lationships of Indoor, Outdoor, and Personal Air (RIOPA) database
made in Waring (2014) [51]. Constant volume-normalized emission
rates (i.e., E V/ ) for formaldehyde, acetaldehyde, acrolein, 1,3-buta-
diene, benzene and 1,4-dichlorobenzene were assumed to be 9.6, 4.0,
0.21, 0.15, 0.35, and 0.14 ppb

hr
, respectively. Although chamber studies

have shown that VOC and aldehyde emission rates from individual
building materials can vary drastically with temperature and relative
humidity [110,111], we are not aware of any studies linking these
parameters to whole-house emission rates, which are required for our
model inputs. Therefore, correlations between gas-phase emission rates
and indoor environmental conditions are not included in the model in
its current form.

Transient PM2.5, NO2, and UFP emission rates were assumed to
follow scripted human activity patterns with typical source-strengths
for the most common sources found in the literature. PM2.5, UFP, and
NO2 emissions were assumed to be generated only from cooking, which
was assumed to occur 1 h per day, every day, in the evening (6:00
p.m.–7:00 p.m.). We assumed that the PM2.5 emission rate from cooking
sources was 38.4 mg

hr , which was the median value from two of the most
comprehensive studies of which we are aware that measured PM2.5

emission rates from various cooking activities including frying, grilling,
toasting, and microwaving various types of foods, with various types of
cooking oils, and using both gas and electric stoves with both minimum
and maximum power [112,113]. Furthermore, for gas stoves, which
account for ∼25% of the 209 baseline homes, UFP and NO2 emission
rates were assumed to be 1.13× 1014

hr
# [4] and 123 mg

hr
[114,115],

respectively, for each cooking event. The assumed NO2 emission rate is

the median value from two experimental studies that measured the NO2

emission rate for various gas ranges, flame types, firing rates [115] and
also variations in emission rates by age of gas stove [110]. For electric
stoves, which account for ∼75% of the 209 baseline homes, the UFP
emission rate was assumed to be 7.5× 1013

hr
# for each cooking event

[4] (electric stoves were assumed to have no NO2 emissions). For
cooking events in homes modeled with vented kitchen range hoods, we
assumed a pollutant capture efficiency of 40%, which was approxi-
mately the mean value reported in a recent study of range hoods used in
U.S. residences [116]. A capture efficiency of 40% means that the
emission rate for pollutants generated by cooking was simply reduced
by 40% in the models when a range hood was operating.

2.3.4. Other pollutant source and loss mechanisms
Other pollutant source and loss mechanisms used in the mass bal-

ance in Equation (5) include building envelope penetration factors,
indoor deposition loss rate coefficients, HVAC filter removal efficiencies
(if applicable), and reaction rate constants for oxidation reactions be-
tween ozone and reactive organic gases (ROGs). Typical values for each
of these parameters were culled from the literature. Again for simplicity
and to minimize computation time, these inputs were kept constant in
all home scenarios.

Envelope penetration factors (i.e., the fraction of contaminant in
ambient air that passes through the building shell) during periods of
infiltration only (i.e., with doors and windows closed) were assumed as
follows. PM2.5 penetration factors for all homes were assumed to be
0.82, which was calculated by mapping size-resolved particle penetra-
tion factor data from two previous studies of penetration factors in
homes relying on infiltration alone [11,29] to size-resolved distribu-
tions of outdoor PM2.5 concentrations for each size bin in a study by
Logue et al. 2015 [83] (see SI Appendix D for more details). Envelope
penetration factors for total UFPs (i.e., non-size-resolved) were assumed
to be 0.47 based on the average reported in a recent study of 19 homes
in Austin, Texas [19]. Ozone penetration factors were assumed to be
0.79 based on recent measurements in 8 homes in Austin, Texas [20].
Finally, NO2 penetration factors were assumed to be 1.0 based on as-
sumptions used in another recent modeling study [117]. Envelope pe-
netration factors for each pollutant during periods of natural ventilation
(i.e., with windows open) were assumed to be 1.0 for simplicity, al-
though there is some evidence in the literature that this depends on
how many windows open and how wide they are open [118]. There is
also some evidence in the literature that envelope penetration factors
for some pollutants may vary with home vintage [11,19,20], but there
is not a large enough data set to make a robust association at this time.
All VOCs and aldehydes with outdoor sources were assumed to have
penetration factors of 1 at all times.

The indoor deposition rate for PM2.5 was calculated in a similar
manner as penetration factors (SI Appendix D). PM2.5 deposition rates

Fig. 1. Annual averages and standard deviations of hourly outdoor concentrations of PM2.5, O3, NO2, and estimates of UFPs in the 19 cities used in the model set.
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were estimated to be 0.30 h−1 based on size-resolved deposition rate
data reported in Logue et al. (2015) [83], which used a combination of
data from Thatcher et al. (2003) and Long et al. (2001), in conjunction
with data for typical indoor particle size distributions as reported in Abt
et al. (2000) [119]. UFP deposition rates were assumed to be 0.70 h−1

based on a study of 45 non-smoking homes in Canada [120]. Deposition
loss rate coefficients for O3 were assumed to be the mean value of 2.8
h−1 from a study of homes in Southern California [121] and NO2 de-
position loss rate coefficients were assumed to be the mean value of
0.34 h−1 from a study of homes in Northern California [122]. All VOCs
and aldehydes were assumed to have negligible indoor deposition loss
rates and filtration efficiencies at all times, and sorption dynamics were
also ignored for simplicity. Each of these values was assumed to be
valid for times when windows remained closed, while each deposition
loss rate coefficient was adjusted by a simple multiplier during times
when windows were assumed to be open. We used a multiplier of 1.23
for these time periods, which was estimated in El Orch et al. based on a
review of the relatively scarce literature on the impact of natural ven-
tilation on indoor pollutant deposition rates [24].

As mentioned in Section 2.2, all homes with central HVAC systems
were assumed to have a MERV 6 particle filter installed. We assumed a
constant PM2.5 and total UFP removal efficiency for MERV 6 filters of
8% and 8%, respectively, which we estimated by matching size-re-
solved removal efficiency data for MERV 6 filters reported in Hecker
and Hofacre (2008) [123] to typical indoor particle size distributions
reported by Abt et al. (2000) [119] (SI Appendix D). We assumed that
HVAC filters had negligible removal efficiency for O3, NO2, and all
VOCs and aldehydes.

Last, to account for basic gas-phase oxidation chemistry as an ad-
ditional ozone removal mechanism and secondary organic aerosol
(SOA) byproduct formation mechanism, we assumed typical values for
reaction rate constants and indoor reactant concentrations for reactions
between O3 and the dominant reactive organic gases (ROGs: e.g., ter-
penes) that react with O3 in homes: d-limonene and α-pinene. The
concentration of these two reactants were modeled using the following
mass balance equation:
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Outdoor concentrations and indoor emission rates of ROGs were
assumed to be constant values taken from Waring 2014 [51]:
Cterp out, =0.23 and 0.057 ppb and E

V
terp =1.5 and 0.23 −ppb h 1 for d-

limonene and α-pinene, respectively. For the SOA formation model, the
following mass balance equation was used:
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where CSOA =the indoor secondary organic aerosol mass concentration
( −μg m 3), Yterp =SOA mass formation yield for the ozonolysis of indoor
terpenoids, kterp =the reaction rate constant between ozone and ter-
penoids ( − −ppb h1 1), which were assumed to be 1.9×10−2 ppb−1 h−1

and 7.9×10−3 ppb−1 h−1 for d-limonene and α-pinene, respectively
[51], Cterp = the concentration of a reactant (ppb), and Γterp =con-
version factor to change between ppb and −μg m 3, and βSOA =the first-
order indoor loss rate of the pollutant by deposition to surfaces and/or
surface reactions ( −h 1). All SOA was assumed to be in the PM2.5 size
range.

The filter removal efficiency (ηfilt) and the deposition rate for
SOA β( SOA) were assumed to be the same as indoor PM2.5 as mentioned
previously in this section. Indoor SOA mass formation yields for the
ozonolysis of indoor terpenoids (Yterp) was calculated using two-product
model curves plotted as a function of the indoor organic aerosol con-
centration (Equation (8)) [124].

∑ ⎜ ⎟= ⎛
⎝

∝
+

⎞
⎠

Y M K
M K1org

i

i i
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where Morg is organic aerosol mass concentration ( −μg m 3) and ∝i (−)
and Ki ( −μg m 3) are fitting parameters for the two product model,
where ∝ = 0.0821 , K1 =1, ∝ = 0.862 , and K2 =0.0055 for d-limonene
and ∝ = 0.141 , K1 =0.26, ∝ = 0.142 , and K2 =0.036 for α-pinene. We
assumed that the fraction of indoor PM2.5 of outdoor origin PM2.5 that is
organic was 30% [125] and we assumed that 80% of indoor origin
PM2.5 was organic [126].

2.4. Automation of simulations

Multiple Python scripts were used to automate the simulation pro-
cess, which is summarized in Fig. 2 and described as follows. The en-
ergy modeling phase involved automated BEopt and EnergyPlus model
runs. BEopt provides an open architecture batch simulation framework
for the creation of input files, running of simulations, and parsing of
output files via Python. BEopt XML files were used to exchange in-
formation between the BEopt interface and the modeling framework.
The XML file provides a complete description of a single building, with
an element for every input found in the BEopt interface. First, 114
BEopt geometry XML files were manually created, which were then
manually expanded to create 209 XML files comprising the baseline
model home geometries from the NIST model set. These 209 baseline
XML files were then modified using Python to replace specific

Fig. 2. Model workflow in Python.
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construction details with those that vary appropriately by vintage and
climate zone to create a total of 3971 XML files (i.e., 3971 individual
home models). A package called xml.etree [127] was used to access
each baseline element in the XML files, which were then replaced with
appropriate inputs for each home and location combination using Py-
thon's built-in iterations and the openpyxl package [128] to access to
the required data from previously prepared Microsoft Excel files that
contained building-specific inputs (i.e., from SI Appendix B).

Next, in order to generate EnergyPlus simulation input files (.IDF)
for each home model, the simulation engine's Python script was called
with the appropriate XML file provided as an argument. Each IDF file
was then edited using eppy.modeleditor [129] to realistically size
heating and cooling equipment for each vintage and location as de-
scribed in section 2.2. Finally, EnergyPlus simulations were auto-
matically run for each home in each location using RunEPlus.bat, a
batch procedure file provided with EnergyPlus. The entire energy si-
mulation workflow process, from running the first python script to si-
mulating 3971 EnergyPlus files, took just under two days on a
3.4 GHzPC with 16 GB RAM.

Next, another Python script was used to gather hourly outputs from
the EnergyPlus output files, including hourly heating and cooling en-
ergy consumption, modeled air change rates (ACRs) through infiltration
and natural ventilation separately, and central HVAC system runtimes.
Next, some of these outputs (i.e., ACRs and HVAC system runtimes)
were used as inputs for the dynamic indoor mass balance models in
Equations (5)–(7). Pandas [130] and Numpy [131] Python packages
were used to solve the discretized dynamic mass balance equations si-
multaneously using a forward-marching explicit scheme. Finally, en-
ergy and IAQ model results for each of the 3971 unique homes were
aggregated into Excel spreadsheet files using openpyxl and were mul-
tiplied by population-weighting factors to obtain reasonably realistic
nationally representative results for annual HVAC energy use and in-
door pollutant concentrations. The IAQ modeling procedure took ap-
proximately 5 days on a 3.4 GHz PC with 16 GB RAM; thus, the total
simulation time from start to finish was ∼7 days. Hourly outputs from
the 3971 homes in the REIAQ model set are made available freely on-
line at http://built-envi.com/reiaq/.

2.5. Predicting chronic health impacts

Once population weighted annual average indoor concentrations of
the modeled pollutants were calculated, the results were used to esti-
mate the chronic health impacts of residential inhalation exposure to
these pollutants using a disability-adjusted life-years (DALYs) approach
following the method developed by Logue et al. (2012) [60]. The goal
was to recreate nationally representative DALYs associated with

chronic exposure to the same pollutants of concern in Logue et al. based
on our model results. Methods are described in full in the SI (Appendix
E).

3. Results and discussion

3.1. Annual space conditioning energy consumption

Fig. F.1 (Appendix F in the SI) shows estimates of the dwelling-
weighted annual space conditioning site energy consumption (in-
cluding heating, cooling, fan, and hydronic pump energy) aggregated
across all home models in each of the 19 cities. The dwelling-weighting
multipliers account for the number of homes assumed to be located in
each model location. The data are split by vintage (i.e., before 1940,
1940–1969, 1970–1989, and 1990 or after) and by type of HVAC
system (i.e., central forced air heating and/or cooling and no central
air). As expected, total residential space conditioning energy con-
sumption was estimated to be highest in those cities with both the
highest heating degree days and the largest numbers of dwellings (e.g.,
highest in Chicago, IL, New York, NY, and Washington, DC).

The dwelling-weighted site energy consumption results were also
used to estimate the total annual space conditioning energy consump-
tion for the U.S. residential building stock by scaling individual model
results by the dwelling-weighting factors for homes in each location.
Model results are compared to estimates of end energy usage from the
2009 U.S. EIA Residential Energy Consumption Survey (RECS) [132] in
Fig. 3, split by heating and cooling fuel (i.e., heating by electricity, gas,
and fuel oil, and cooling by electricity). The total annual space con-
ditioning energy consumption for the entire U.S. residential building
stock was estimated in the model set to be ∼7.78× 1011 kWh, which
was only ∼2% lower than the estimate of ∼8.30× 1011 kWh made in
the 2009 RECS. The largest component of total space conditioning en-
ergy use was heating by natural gas, which the model set over-predicted
by ∼6% relative to the RECS data (5.78× 1011 kWh compared to
5.43×1011 kWh). The next largest component of total space con-
ditioning energy use was cooling by electricity, which the model set
over-predicted by just ∼4% relative to EIA RECS data (i.e., 1.22×1011

kWh compared to 1.17×1011 kWh).
Model results for the two smaller contributors to overall space

conditioning energy use (i.e., heating by electricity and heating by fuel
oil) were substantially lower than EIA RECS data: ∼39% lower for
electric heating and ∼65% lower for fuel oil heating. The reason for
these discrepancies is that, as mentioned in Section 2.1.2, the type of
heating fuel and system assumed for each modeled home was chosen
based only on the most commonly used fuel type in each region (based
on information in the RECS survey) in order to limit the number of

Fig. 3. Total annual residential space conditioning site energy consumption in the U.S. Model results are compared to EIA 2009 RECS data.
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model homes to a manageable number for simulation purposes. Thus,
very few homes were modeled with electric or fuel oil based heating,
and homes heated with gas were somewhat over sampled. However,
this combination of over sampling and under sampling, which led to
slight over predictions in gas heating energy and large under-predic-
tions in fuel oil and electric heating energy (the latter of which oc-
curring in a much smaller number of homes than the former), nearly
balance out with reasonably accurate electric cooling energy estimates
to yield estimates of total annual space conditioning energy use that are
very close to the EIA RECS data. Therefore, these results suggest that
the REIAQ modeling approach can indeed be used to simulate total
annual space conditioning energy consumption across the entire U.S.
residential building stock with reasonably accuracy.

3.2. Air change rates and HVAC system runtimes

Annual averages (± standard deviations) of the modeled hourly
average air change rates (which include flows through infiltration and
natural ventilation separately as well as combined for the total ACR)
and HVAC runtime fractions from the 3971 model home simulations are
shown in Table 5. Results demonstrate that, as expected, older homes
had higher annual average infiltration and total ACRs than newer
homes, while natural ventilation ACRs were similar across all vintages.
The annual average infiltration and total ACRs ranged from ∼0.24 h−1

and ∼0.4 h−1 in the newest homes, respectively, to ∼0.67 h−1 and
∼0.88 h−1 in the oldest homes. For comparison, Persily et al. (2010)
used the same base model set to estimate infiltration ACRs using
CONTAM and reported median infiltration ACRs for the same four
home vintages to be 0.58 h−1, 0.54 h−1, 0.36 h−1, and 0.26 h−1 for
homes built before 1940, between 1940 and 1969, between 1970 and
1989, and 1990 or after, respectively, which are very similar to our
model results with values of 0.67 h−1, 0.54 h−1, 0.37 h−1, and 0.24
h−1 for the same intervals of year of construction, respectively. Mod-
eled annual average HVAC runtimes were similar across all vintages,
averaging approximately 15%. Although we are not aware of large
national data sets to which we can compare our runtime estimates,
most previous studies of residences in the U.S. (mostly focused in
cooling-dominated climates) have reported average fractional HVAC
runtimes of approximately 20–25% [24,133].

3.3. Modeled indoor pollutant concentrations

Fig. 4 shows distributions of the resulting annual mean indoor
concentrations of all modeled pollutants, infiltration factors for PM2.5,
UFP, NO2, and O3 of outdoor origin, and indoor-outdoor (I/O) ratios for
PM2.5, UFP, and NO2 modeled for all 3971 homes. The resulting dis-
tributions are also compared to distributions of the average values of
the same parameters reported in a large number of field studies pri-
marily in the U.S. and Canada, as described in an extensive literature
review in the SI (Appendix G, H, and I for indoor concentrations, in-
filtration factors, and I/O ratios, respectively). Although the experi-
mental data from the literature review do not necessarily form a na-
tionally representative sample, the intent of the comparison is to
demonstrate the likely reasonableness of our model results.

The modeled annual average hourly indoor PM2.5 concentrations
ranged from 4.6 to 21.6 μg/m3 with a median value of 11.2 μg/m3

across all 3971 home models. A review of 19 field studies involving
over 690 homes in the U.S. shows a range of average indoor PM2.5

concentrations of 5.8–20.3 μg/m3 with a median value of 13.9 μg/m3.
The median I/O PM2.5 concentration ratio from the modeling results
and field studies were ∼1.1 and ∼1.0, respectively. The median PM2.5

infiltration factor was ∼0.46 in the model results and ∼0.6 in the field
studies, with ranges of 0.22–0.70 and 0.43–0.74, respectively. While
these comparisons suggest the model results are reasonably close to
data from field studies, some potential sources for discrepancies include
differences in air change rates and the fact that we considered cooking
to be the only indoor source of PM2.5. While the latter assumption ig-
nores other indoor sources, the assumption of cooking occurring daily
for 1 h serves as a likely overestimation of cooking sources that rea-
sonably accounts for other indoor PM2.5 sources without assigning
other discrete emission events. This simplification does not appear to
adversely affect the reasonableness of the model outcomes.

The annual average SOA concentration resulting from the modeled
oxidative reactions with ROGs was estimated to be less than 0.1 μg/m3

in this study, contributing less than 1% to the total indoor PM2.5 con-
centration (with a maximum value of ∼3%). For comparison to the
literature, Ji and Zhao (2015) [134] estimated the average SOA fraction
of indoor PM2.5 in China to be ∼0.4% with the maximum contribution
of ∼3%, while Waring (2014) [51] estimated a geometric mean SOA
fraction of indoor PM2.5 from the RIOPA study data of ∼6%. Dis-
crepancies between this work and Waring (2014) most likely stem from
our reliance on median indoor ROG emission rates rather than using
distributions that would account for a wider range in SOA formation in
homes.

Modeled annual average indoor UFP concentrations ranged from
∼3×103 to ∼26×103 #/cm3 with a median of ∼11× 103 #/cm3,
which is similar to the median indoor UFP concentration (∼13× 103

#/cm3) from four field studies of approximately 90 homes. The median
UFP infiltration factors from the modeling and field studies were∼0.20
and ∼0.21, respectively, and the median I/O UFP ratios were ∼0.9 in
both the modeling and field studies. These close similarities are likely
due in part to the assumption for cooking activities being the only UFP
sources being more realistic than for PM2.5, as recent studies have
shown that cooking is often the dominant UFP source in both magni-
tude and frequency of emissions [4].

The NO2 concentration results were separated by the fuel type used
in household stoves (gas or electric) to compare to the literature values.
For homes with gas stoves, the modeled annual average indoor NO2

concentration ranged from 4.9 to 31.7 ppb with a median of 18 ppb,
while the median indoor NO2 concentration from six field studies of
more than 800 homes with gas stoves was 24 ppb. For the homes with
electric stoves, the modeled annual average indoor NO2 concentration
ranged from 0.9 to 18 ppb with a median of 7 ppb, which was reason-
ably similar to the median indoor NO2 concentration from six field
studies of nearly 300 homes with electric stoves (which was also 7 ppb).
Additionally, the annual average I/O NO2 concentration ratio for the
modeled homes with gas and electric stoves ranged from 0.5 to 4.1 and
0.2–0.8 with median values of 1.4 and 0.5, respectively. The median I/

Table 5
Annual averages (± standard deviations) of the estimated hourly average air change rates (ACRs) and HVAC runtime fractions.

Year of construction Mean (standard deviation)

Infiltration
h−1

Natural ventilation
h−1

Total
h−1

HVAC runtime
%

BEFORE 1940 0.67 (± 0.27) 0.22 (± 0.15) 0.88 (± 0.32) 14.2 (± 4.4)
1940–1969 0.54 (± 0.21) 0.19 (± 0.14) 0.73 (± 0.27) 15.4 (± 5.0)
1970–1989 0.37 (± 0.13) 0.20 (± 0.14) 0.58 (± 0.21) 15.6 (± 5.6)
AFTER 1990 0.24 (± 0.06) 0.16 (± 0.08) 0.40 (± 0.11) 15.8 (± 5.4)
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O ratios from five field studies of over 800 homes with gas stoves and
450 homes with electric stoves were 1.9 and 0.6, respectively.

Modeled annual average indoor O3 concentrations ranged from 1 to
8 ppb with a median of 4 ppb. Results from the literature review were
similar; the median indoor O3 concentration from six studies of over
600 homes was also 4 ppb. Modeled results for O3 infiltration factors
ranged from 0.04 to 0.32 with a median of 0.14 and were fairly similar
to the values reported in the literature with a range of 0.1–0.38 and a
median of 0.19. Finally, the median annual average modeled indoor
concentrations of aldehydes and VOCs were 27, 12, 0.7, 0.5, 1.4, and
0.5 for formaldehyde, acetaldehyde, acrolein, 1,3-butadiene, benzene,
and 1,4-dichlorobenzene, respectively. The medians and ranges of
modeled results were all similar to those reported in field studies in the
SI (Appendix G). Combined, these data clearly demonstrate that the
model set is capable of reproducing realistic indoor concentrations of a
number of pollutants of both indoor and outdoor origin.

3.4. Population weighted annual average indoor pollutant concentrations

Fig. 5 shows the population weighted annual average indoor con-
centrations of each pollutant modeled in this study calculated by
weighting the concentration results from the 3971 individual homes by
the population weighting factors for each home in each location. The
same population weighted average concentrations are also shown by
location in the SI (Appendix J). Although not shown here, population

weighted annual average indoor PM2.5 concentrations ranged from
∼10.5 μg/m3 in the oldest homes (with individual homes ranging from
5.1 to 18.1 μg/m3) to∼7.3 μg/m3 in the newest homes (with individual
homes ranging from 4.6 to 21.6 μg/m3). Modeled population weighted
annual average PM2.5 concentrations of indoor origin were higher in
newer homes as a result of lower air change rates combined with as-
sumed constant indoor source strengths, ranging from 1.7 to 9.7 μg/m3,
2.4–11 μg/m3, 2.1–13.1 μg/m3, and 2.4–15.8 μg/m3 for homes built
before 1940, 1940–1969, 1970–1989, and after 1990, respectively.
Conversely, modeled annual average PM2.5 concentrations of outdoor
origin were lower in newer homes as a result of lower air change rates.
Population weighted annual average indoor UFP concentrations of in-
door and outdoor origin followed similar patterns as the PM2.5 con-
centrations, with newer homes having a higher concentration of UFPs
of indoor origin and lower concentrations of UFPs of outdoor origin.

Population weighted annual average indoor and outdoor generated
NO2 across the modeled residences ranged from 4.9 to 31.7 ppb for
homes with gas stoves and from 1.8 to 18.0 ppb for homes with electric
stoves. Because the only source of O3 was ambient air, population
weighted annual average indoor O3 concentrations were ∼50% lower
in newer/tighter homes compared to older/leakier homes (i.e., ∼4.8
compared to ∼2.2 ppb). Finally, the highest population weighted an-
nual average aldehyde and VOC concentrations were 30.9 ppb for for-
maldehyde and 13.5 ppb for acetaldehyde.

Fig. 4. Annual hourly averages of (A) indoor concentrations of all modeled pollutants (on a log scale), (B) infiltration factors (Finf) for PM2.5, UFP, NO2, and O3, and
(C) I/O ratios for PM2.5, UFP, and NO2 (split by homes with gas and electric stoves) for the 3971 model homes compared to values reported in an extensive literature
review for each parameter. The top and bottom of the boxes represent the 25th and 75th percentiles and the end of the whiskers represent the minimum and
maximum values. N indicates the number of the studies that were used in the comparison to field measurements in the literature.
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3.5. Estimates of DALYs lost due to chronic exposure to residential indoor
air pollutants

Fig. 6 shows the estimated number of DALYs lost due to exposure to
all pollutants made using the modeled population weighted annual
average indoor concentrations from Fig. 5. Estimates of DALYs lost for
criteria pollutants (i.e., PM2.5, O3, and NO2) and aldehydes and VOCs
were made using the IND approach and ID approaches in Logue et al.
(2012) [60], respectively, as described in the SI (Appendix E). The
central estimate of the total DALY burden of chronic pollutant ex-
posures in U.S. residences was approximately 192 DALYs lost per
100,000 persons per year, which is lower than the central estimate
made in Logue et al. (2012) [60], likely due in part to our population
weighted average concentrations being lower than their representative
concentrations used. However, we consider these estimates reasonable
based on the extensive comparison between models and measurements
in Fig. 4. The largest contributor to total DALYs lost was PM2.5 (best
estimate of 111 per 100,000 persons per year), followed by acrolein,
formaldehyde, O3, NO2, and acetaldehyde with 49, 25, 4, 2, and 1
DALYs lost per 100,000 persons per year, respectively.

3.6. Summary of limitations

There are a number of limitations to this work that are worth
mentioning and addressing in future versions of the model set. For one,
the model set is already out of date in terms of its representativeness for
the U.S. building stock. The most immediate need for improvement is to
update the model set for homes built since approximately 2000, which
will be done following the upcoming release of the 2015 RECS data.
Second, there are a number of technical limitations that could be im-
proved. For example, BEopt uses the LBL infiltration model to predict
airflows through both infiltration and natural ventilation through
window openings. However, to our knowledge, the LBL infiltration
model has not been validated for natural ventilation flows. Future im-
provements could incorporate, at a minimum, the LBLX model to im-
prove the accuracy of natural ventilation modeling [135,136]. Alter-
natively, the single-zone indirect co-simulation approach could be
extended to a multi-zone true co-simulation approach to more accu-
rately predict airflows and contaminant concentrations, for example by
integrating CONTAM with EnergyPlus [82].

Other model limitations include our assumptions for constant and
‘typical’ emission rates in each modeled home. Future work should
incorporate statistical distributions of indoor emission sources

(including distributions of the timing of intermittent sources) to more
realistically represent the wide variation in indoor concentrations that
have been observed in many field studies [2,63]. Moreover, future work
could link whole-house VOC and aldehyde emission rates to factors
such as varying indoor air and/or surface temperature and relative
humidity as data become available [110,111]. Finally, for the DALY-
based chronic health outcome estimation approach, we used un-
modified concentration-response function effect estimates from the
ambient air quality literature, as did Logue at al. (2012) [60], although
it would be more appropriate to modify effect estimates to account for
the underlying exposures to pollutants of ambient origin in the various
microenvironments in which people spend most of their time [137].

4. Conclusions

A set of nationally representative combined building energy and
indoor air mass balance models for the U.S. residential building stock
was developed to predict annual space conditioning energy consump-
tion and population weighted average concentrations of several pollu-
tants of both indoor and outdoor origin. The residential energy and
indoor air quality (REIAQ) model set was able to predict total annual
space conditioning energy consumption for the U.S. residential building
stock within ∼2% of the 2009 EIA RECS data. Moreover, modeled in-
door concentrations, infiltration factors, and indoor/outdoor ratios of
several pollutants including PM2.5, UFPs, NO2, O3, and several VOCs
and aldehydes were well within the ranges observed in an extensive
review of existing residential field studies in North America. These data
were also used to estimate the chronic health burden of residential
indoor exposures to be ∼192 DALYs lost per person per year. The
utility of this model set is that it can be used to investigate the influence
of a variety of parameters such as climate zone, ventilation strategy, air
infiltration, HVAC system runtimes, and emission sources on both
building energy use and indoor air quality across the U.S. residential
building stock.
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