ENVE 576 Indoor Air Pollution Fall 2015

Week 13: November 17, 2015

1. Epidemiology and adverse health effects

Dr. Brent Stephens, Ph.D. Department of Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Environment

Built

Advancing energy, environmental, and sustainability research within the built environment

Built Environment Research Group www.built-envi.com

Scheduling updates

- Your take home exam has been graded, returned, and grades posted on BB
 - Average grade was 90% -- quite good!
- No more HW assignments
- One more blog post due Tues Nov 24
- Final projects due Tues Dec 8
 - No presentations; reports only
- 3 more lectures including today

Today's lecture

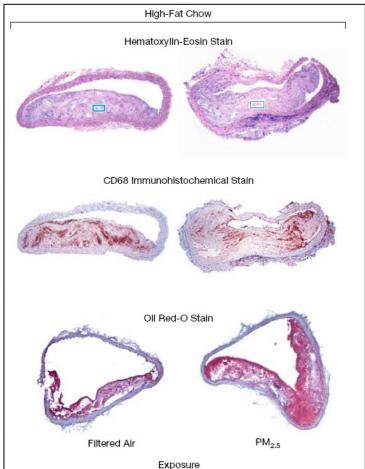
• Epidemiology and adverse health effects

ADVERSE HEALTH EFFECTS OF AIR POLLUTION

Adverse health effects of air pollution

- How do we know if something is harmful to humans?
 - Or animals? Or plants?

Primary methods of assessing health effects

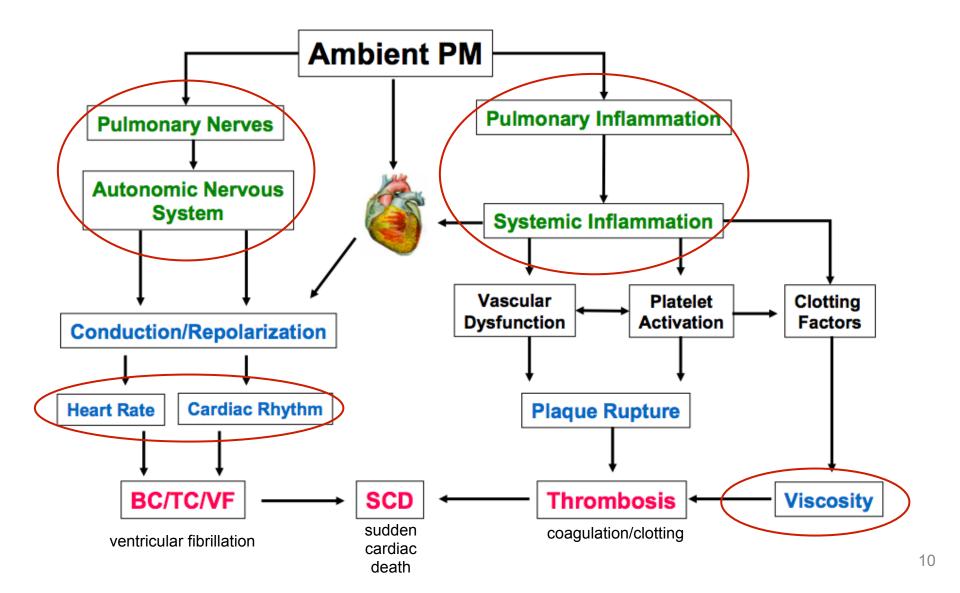

- Toxicology studies
 - Cellular level
 - Theoretical underpinnings/underlying biological mechanisms
- Entire organisms: humans or animal *models* (e.g., mice):
 - Clinical (dose-response)
 - Fundamental relationship between exposure/dose and effect
 - Causative mechanisms
 - Epidemiology (exposure-response)
 - Simply a relationship between exposure/dose in a population
 - Correlation not causation
 - But if informed by fundamental biological plausibility, it can help confirm

How do air pollutants cause health effects?

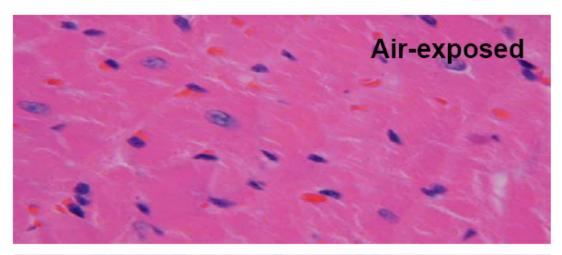
- PM or ozone induce airway inflammation
- Oxidative stress is induced by transition metals or PAHs
- Modifications of intracellular proteins/enzymes
- Biological compounds (glucans, endotoxins) affect immune response and inflammation
- Stimulation of autonomic nervous system
- Adjuvant (stimulate immune response) effects
- Pro-coagulant activity (UFPs)
- Suppression of normal defense mechanisms

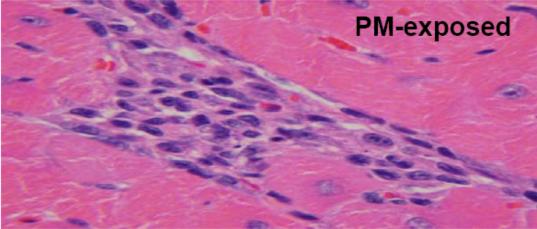
Example: Particulate matter

- Toxicological, clinical, and epidemiological studies have all increased understanding of the mechanism of action by which PM leads to adverse health effects such as mortality and lung and heart disease
- Image to the right shows abdominal arteries from mice exposed to filtered air and to fine particulate matter (PM_{2.5})
 - PM_{2.5} increased arterial blockage



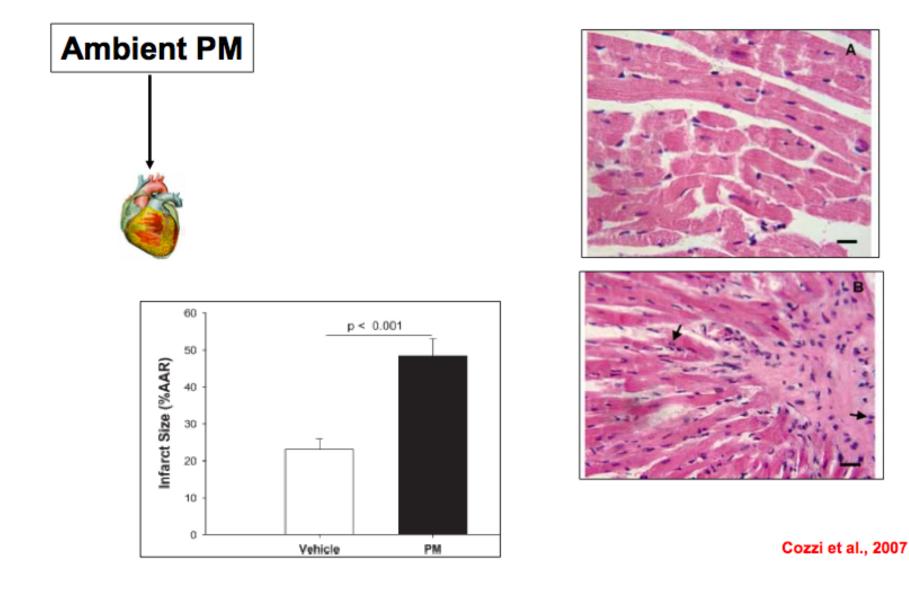
How does PM cause health effects?


- Several theories exist here... likely more than one mechanism
 - 1. PM leads to lung **irritation** which leads to increased permeability in lung tissue;
 - 2. PM increases susceptibility to viral and bacterial pathogens leading to pneumonia in vulnerable persons who are unable to clear these infections;
 - 3. PM aggravates the severity of chronic lung diseases causing rapid loss of airway function;

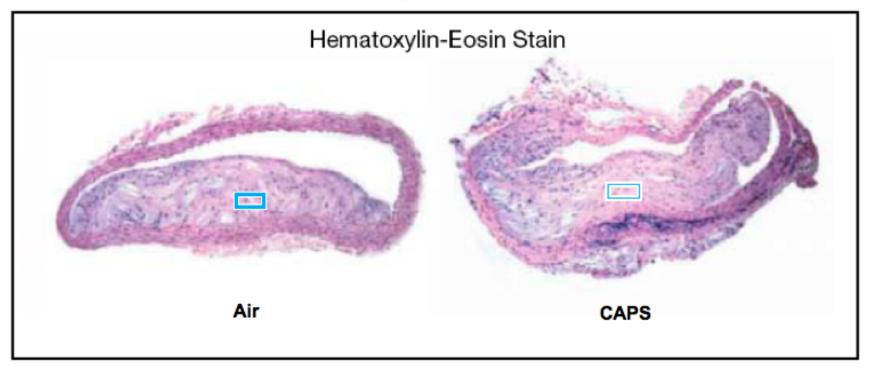

- 4. PM causes **inflammation** of lung tissue, resulting in the release of chemicals that impact heart function;
- 5. PM causes changes in blood chemistry that results in clots that can cause heart attacks.

How could PM affect the cardiovascular system?

PM causes injury to cardiac cells



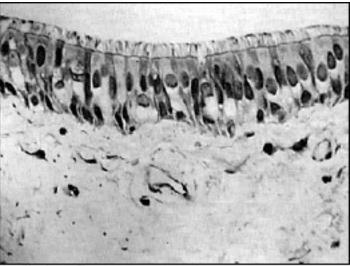
Rats exposed to ambient PM one day per week for 16 weeks


Kodavanti et al., 2003

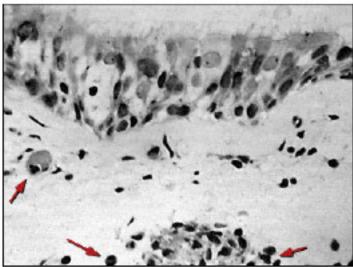
PM causes injury to cardiac cells

PM hardens arteries

Plaque area


ApoE mice exposed for 6 hrs/day, 5 days/wk x 6 months to CAPS (85 μg/m³ average) Mean levels only 15.2 μg/m³

Sun et al. 2005


Ozone damages lung tissue

 Tiny cilia that clear the lungs from mucus appear along the top of the image to the right (healthy lung tissue)

- In the lung exposed to only 20 ppb of ozone (to the right) for 4 hours of moderate exercise, many cilia appear missing and others are misshapen
 - Arrows point to tiny bodies called neutrophils which indicate inflammation

Healthy Lung Tissue

Ozone-damaged Lung Tissue

HUMAN EPIDEMIOLOGY STUDIES

Do these cell-level impacts show up in large human studies?

Human epidemiology studies

• How would you conduct an epidemiology study?

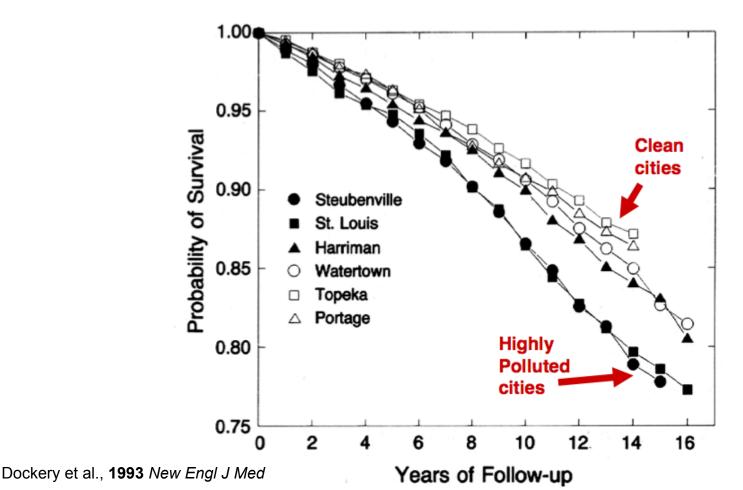
Human epidemiology studies

- Examine two populations with different exposures
 - e.g., babies home to renovated nurseries or not
 - e.g, children in homes w/ vinyl floors or not
 - e.g., spouses of smokers and non-smokers
- Collect data on health outcomes
 - Asthma, cancer, lung function, mortality, etc.
- Form 2x2 'epi matrix' for select populations

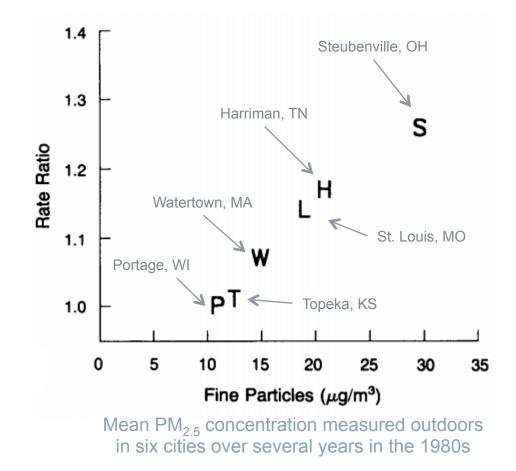
	With effect	Without effect	
Exposed	exposed with effect	exposed without effect	
Not exposed	not exposed with effect	not exposed without effect	

Human epidemiology studies

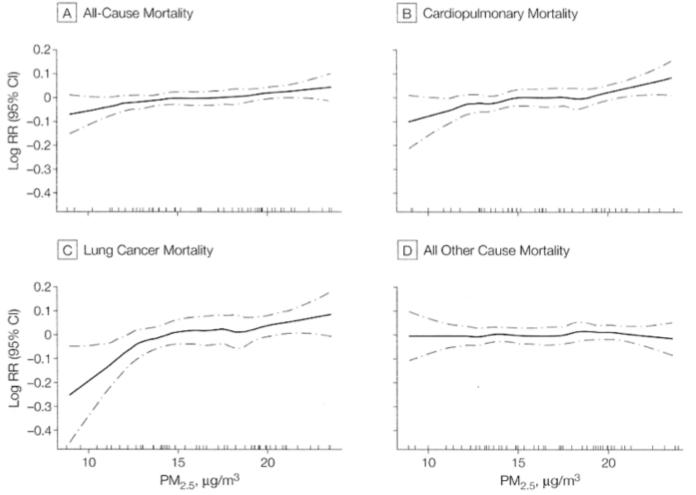
• Relative risk = RR


 $RR = \frac{(\text{exposed with effect}) / (\text{total exposed})}{(\text{not exposed with effect}) / (\text{total not exposed})}$

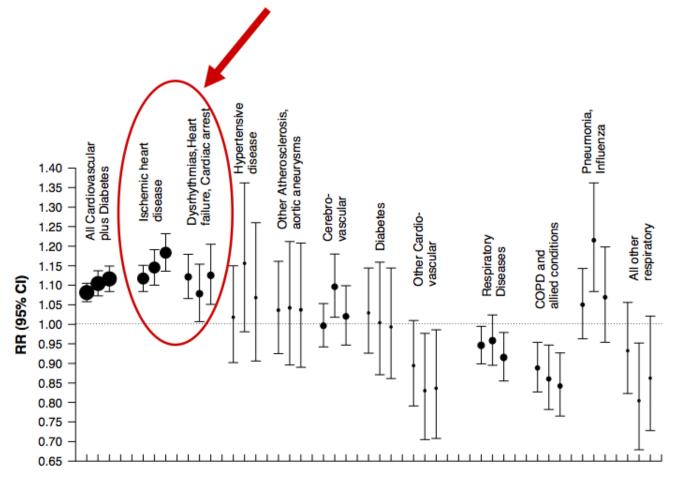
- RR > 1.0 = association
- RR >> 1.0 = strong association
- Odds ratio = OR (often ~RR)


 $OR = \frac{(\text{exposed with effect}) * (\text{not exposed without effect})}{(\text{not exposed with effect}) * (\text{exposed without effect})}$

- OR > 1.0 = association
- OR >> 1.0 = strong association


- Early high impact study: The Harvard Six Cities Study
 - Long-term air pollution linked to shortened life expectancy
 - 15 year prospective study of 8000+ adults in six US cities

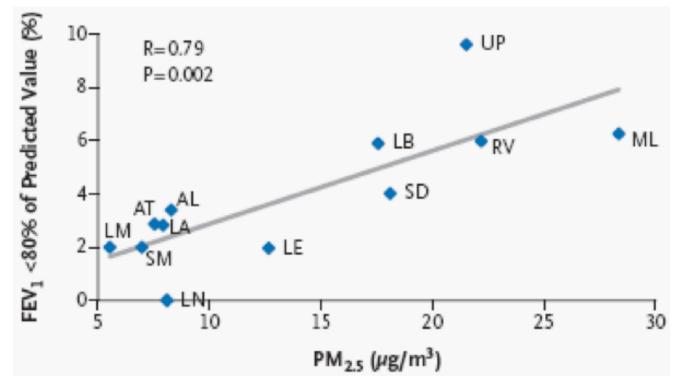
- Harvard Six Cities Study
 - Relative risk of dying almost linearly correlated with outdoor $PM_{2.5}$



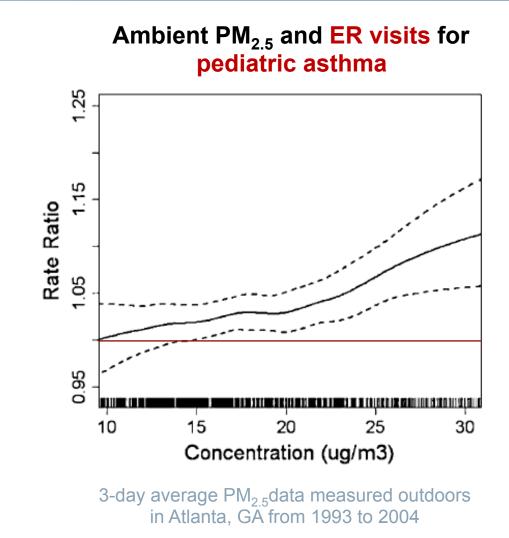
- ACS cohort: over 1 million people
 - − Increased $PM_{2.5}$ → increased risk of death

Pope et al., 2002 J Am Med Assoc

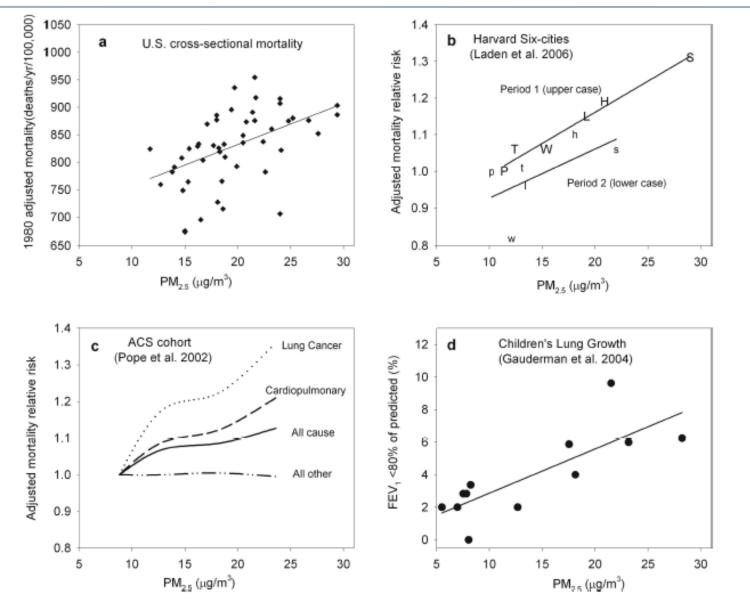
- Follow-up of ACS cohort: over 1 million people
 - Increased PM_{2.5} most strongly associated with death from heart disease, dysrhythmias (irregular heartbeat), heart failure, and cardiac arrest



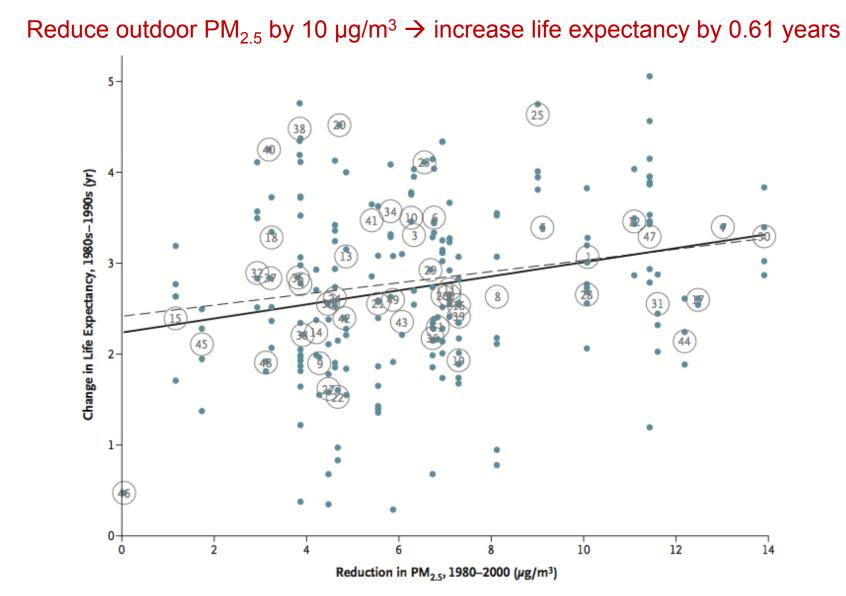
Outdoor PM and lung growth


Children living in cities with higher air pollution showed greater deficits in lung function growth

 FEV_1 = forced expiratory volume in 1 second


• Volume of air you can exhale in 1 sec

Outdoor PM and asthma



More PM_{2.5} risk relationships

Pope and Dockery, 2006 J Air Waste Manage Assoc

What happens when you reduce PM?

Increased mortality risks outdoor PM_{2.5}

All-cause mortality

- 4 ± 3% increase per 10 µg/m³ in PM_{2.5} Pope et al., **2002** *J Am Med Assoc*
- 6 ± 2% increase per 10 μg/m³ in PM_{2.5} Krewski et al., 2009 HEI Research Report
- 16 ± 9% increase per 10 µg/m³ in PM_{2.5} Laden et al., 2006 Am J Respir Crit Care Med
- Fann et al. (2012) estimated that 130,000 and 4,700 deaths were caused by PM_{2.5} and ozone in US, respectively, in 2005
 - Nearly 1.1 million life years lost from PM_{2.5} exposure and approximately 36,000 life years lost from ozone exposure
 - Among the 10 most populous counties, the percentage of deaths attributable to $\rm PM_{2.5}$ and ozone ranged from 3.5% in San Jose to 10% in Los Angeles

Fann et al., 2012 Risk Analysis

PM_{2.5} compositions

- All PM_{2.5} constituents are not equally toxic
- Sulfate ion, iron, nickel, and zinc in PM_{2.5}
 - Mortality

Burnett et al., 2000 Inhalation Toxicology

- Vanadium, elemental carbon, and nickel in PM_{2.5}
 - Cardiovascular and respiratory hospitalizations Bell et al., 2009 Am J Respir Crit Care Med
- Elemental carbon, organic carbon, and nitrates in PM_{2.5}
 - Cardiovascular deaths Ostro et al., 2007 Environ Health Perspectives
- Elemental carbon in PM_{2.5}
 - Cardiovascular hospital admissions Levy et al., 2012 Am J Epidemiology

PM size: Ultrafine particles (UFP, <100 nm)

 Mean UFP number concentrations, not mass, associated with reductions in peak expiratory flow in adult asthmatics

Penttinen et al., 2001 Eur Respir J

 Asthma medication use associated with increased PM_{2.5} mass and UFP number concentrations

von Klot et al., **2002** *Eur Respir J*

 UFP number concentrations (not PM_{2.5} mass) associated with daily total and cardio-respiratory mortality

Stölzel et al., **2007** *J Expo Sci Environ Epidem*

• UFP concentrations associated with strongest risk of stroke

Andersen et al., 2010 Eur Heart J

Summary of PM health effects

- Myocardial infarction (heart attack)
- Stroke
- Arrhythmia (irregular heart beat)
- Heart failure exacerbation
- Lung cancer
- Children's lung growth
- Hospitalizations for asthma
- Mortality
- No apparent thresholds
- Health risks link to outdoor measurements, so we don't really know enough about actual indoor exposures & health effects
 → We don't really know what threshold to target

WHERE IS PM MOST IMPORTANT IN THE US?

PM in the U.S.

- We can turn to the US EPA Integrated Science Assessment for Particulate Matter
 - 2228 pages dedicated to describing and summarizing impacts of particulate matter on human health and the environment
 - Summary of PM standards since 1971:

Year (Final Rule)	Indicator	Avg Time	Level	Form
1971 (36 FR 8186) Suspen	TSP (Total Suspended	24 h	260 µg/m ³ (primary) 150 µg/ m ³ (secondary)	Not to be exceeded more than once per yr
	Particulates)	Annual	75 μg/m ³ (primary)	Annual geometric mean
1987 (52 FR 24634) PN	DM	24 h	150 μg/m ³	Not to be exceeded more than once per yr on average over a 3-yr period
	PM ₁₀	Annual	50 µg/m³	Annual arithmetic mean, averaged over 3 yr
1997 (62 FR 38652)	PM _{2.5}	24 h	65 μg/m³	98th percentile, averaged over 3 yr
		Annual	15 µg/m³	Annual arithmetic mean, averaged over 3 yr ¹
	PM ₁₀	24 h	150 µg/m³	Initially promulgated 99th percentile, averaged over 3 yr; when 1997 standards were vacated in 1999, the form of 1987 standards remained in place (not to be exceeded more than once per yr on average over a 3-yr period)
		Annual	50 µg/m³	Annual arithmetic mean, averaged over 3 yr
2006 (71 FR 61144)	PM _{2.5}	24 h	35 µg/m³	98th percentile, averaged over 3 yr
		Annual	15 μg/m³	Annual arithmetic mean, averaged over 3 yr ²
	PM ₁₀	24 h	150 µg/m ³	Not to be exceeded more than once per yr on average over a 3-yr period

Table 1-1.Summary of NAAQS promulgated for PM, 1971-2006.

Note: When not specified, primary and secondary standards are identical.

EPA Integrated Science Assessment for PM

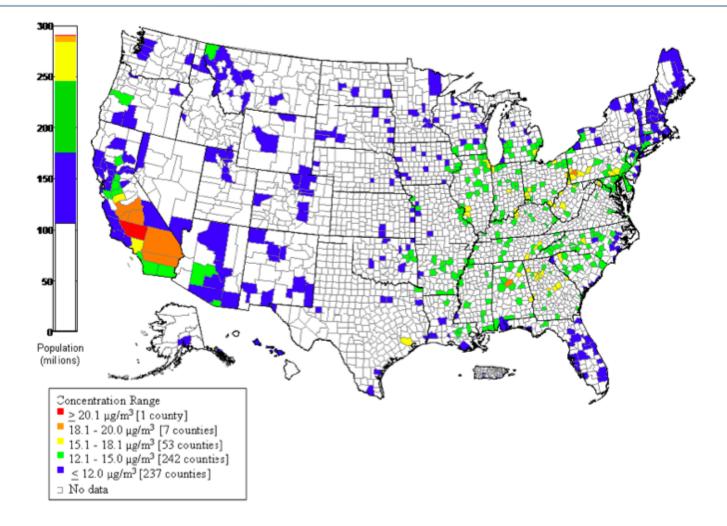
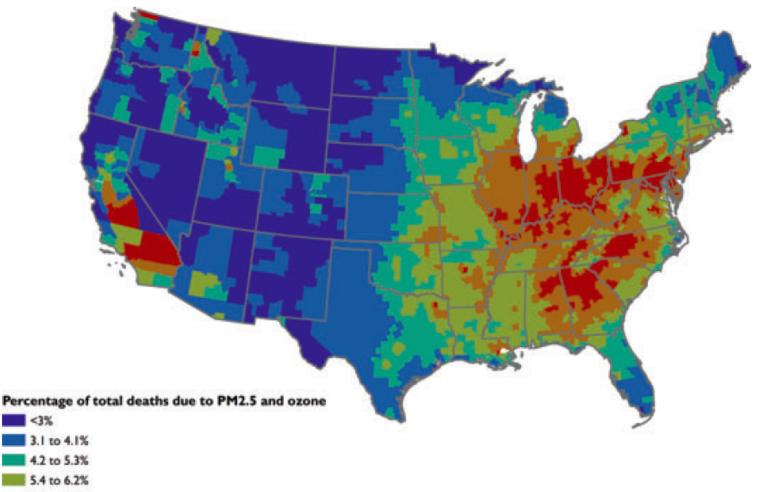



Figure 3-9. Three-yr avg 24-h PM_{2.5} concentration by county derived from FRM or FRM-like data, 2005-2007. The population bar shows the number of people residing within counties that reported county-wide average concentrations within the specified ranges.

Outdoor air pollution and mortality

6.3 to 7.2%

7.3 to 9.8%

Estimating the National Public Health Burden Associated with Exposure to Ambient PM_{2.5} and Ozone

Neal Fann,* Amy D. Lamson, Susan C. Anenberg, Karen Wesson, David Risley, and Bryan J. Hubbell

Fann et al., **2012** *Risk Analysis*

EPA Integrated Science Assessment for PM

Table 2-1. Summary of causal determinations for short-term exposure to PM_{2.5}.

Size Fraction	Outcome	Causality Determination
	Cardiovascular Effects	Causal
PM _{2.5}	Respiratory Effects	Likely to be causal
	Mortality	Causal

Table 2-2. Summary of causal determinations for long-term exposure to PM_{2.5}.

Size Fraction	Outcome	Causality Determination	
	Cardiovascular Effects	Causal	
	Respiratory Effects	Likely to be causal	
PM _{2.5}	Mortality	Causal	
	Reproductive and Developmental	Suggestive	
	Cancer, Mutagenicity, and Genotoxicity	Suggestive	

EPA Integrated Science Assessment for PM

Study	Outcome	Mean ^a	98th ^a	Effect Estimate (95% CI)
Chimonas & Gessner (2007, 093261)	Asthma HA	6.1		• ↓
, ,,	LRI HA	6.1		—• –+
Lisabeth et al. (2008, 155939)	Ischemic Stroke/TIA HA	7.0°	23.6	+- •
Slaughter et al. (2005, 073854)	Asthma Exacerbation	7.3°		·
Rabinovitch et al. (2006, 088031)	Asthma Medication Use	7.4	17.2	-++-
Chen et al. (2004, 087262)	COPD HA	7.7		· — • — —
Chen et al. (2004, <u>087262)</u> Chen et al. (2005, <u>087555</u>)	Respiratory HA	7.7		
Euro et al. (2006, 007000)	Respiratory HA	7.7		
Fung et al. (2006, <u>089789</u>)		7.9		
Villeneuve et al. (2003, 055051)	Nonaccidental Mortality			
Stieb et al. (2000, <u>011675</u>)	CVD ED Visits	8.5	27.3	
	Respiratory ED Visits	8.5	27.3	H 4 -
Villeneuve et al. (2006, <u>090191</u>)	Hemhrgc Stroke HA	8.5	24.0	•
	Ischemic Stroke HA	8.5	24.0	ie
	TIAHA	8.5	24.0	+ _+
Lin et al. (2005, <u>087828</u>)	RTIHA	9.6		·
Mar et al. (2004, 057309)	Respiratory Symptoms (any)	9.8°	25.8	+
	Respiratory Symptoms (any)	9.8°	25.8	·
Rich et al. (2005, 079620)	Ventricular Arrhythmia	9.8°	20.0	
Dockery et al. (2005, 078995)	Ventricular Arrhythmia	10.3°		
			29.3	
Rabinovitch et al. (2004, 096753)	Asthma Exacerbation	10.6		
Pope et al. (2006, <u>091246</u>)	IHD HA	10.7		1-4-
Slaughter et al. (2005, <u>073854</u>)	CVD HA	10.8	29.6	-+-
	Respiratory ED Visits	10.8	29.6	++
Pope et al. (2008, <u>191969</u>)	CHÊHA	10.8	44.5°	·•
Zanobetti and Schwartz (2006, 090195)	MIHA	11.1°		i
·····, <u>····</u> ,	Pneumonia HA	11.1°		+ + -
Peters et al. (2001, <u>016546</u>)	MI	12.1	28.2	
Delfino et al. (1997, 082687)	Respiratory HA (summer)	12.1	31.2	1
	MI	12.8		
Sullivan et al. (2005, 050854)				
Burnett et al. (2004, <u>086247</u>)	Nonaccidental Mortality	12.8	38.0	
Bell et al. (2008, <u>156266</u>)	Respiratory HA	12.9°	34.2	•
	CVD HA	12.9 ^d	34.2	•
Wilson et al. (2007, <u>157149</u>)"	CVD Mortality	13.0	31.6	
Zanobetti & Schwartz (2009, 188462)	Nonaccidental Mortality	13.2 ^d	34.3	
Burnett and Goldberg (2003, 042798)	Nonaccidental Mortality	13.3	38.9	•
Dominici et al. (2006, 088398)	CBVD HA	13.3	34.8	•
Bonninia at al. (2000, <u>200000</u>)	PVD HA	13.3	34.8	•
	IHD HA	13.3	34.8	
	Dysrhythmia HA	13.3	34.8	
				•
	CHF HA	13.3	34.8	le
	COPD HA	13.3	34.8	•
	RTIHA	13.3	34.8	•
Fairley (2003, <u>042850</u>)	Nonaccidental Mortality	13.6	59.0	L.
Zhang et al. (2009, 191970)	ST Segment Depression	13.9	37.6	- -
D'Connor et al. (2008, 156818)	Wheeze/Cough	14.0°	39.0 ⁹	
Klemm and Mason (2003, 042801)	Nonaccidental Mortality	14.7° ^j		•
Franklin et al. (2008, 097426)	Nonaccidental mortality	14.8	43.0	
NYDOH (2006, 090132)	Asthma ED Visits	15.0*	40.0	1.
	Asthma HA		39.0	
to et al. (2007, 156594)		15.1		1.
Franklin et al. (2007, <u>091257</u>)	Non-accidental Mortality	15.6	45.8	I•
Rich et al. (2006, 089814)	Ventricular Arrhythmia	16.2°		
Symons et al. (2006, <u>091258</u>)	CHF HA	16.5°	50.1	•
Sheppard (2003, 042826)	Asthma HA	16.7	46.6	I.e.
NYDOH (2006, 090132)	Asthma ED Visits	16.7		_ _
Burnett et al. (1997, 084194)	Respiratory HA (summer)	16.8	47.4	i
(····)	CVD HA (summer)	16.8	47.4	
^e µg/m ³ ^b Study did not present mean; median presented. ^c Mean estimated from data in study. ^c Mean value slightly different from those reported in th tudy or not reported in the published study, mean was eth ysudy authors or calculated from data provided by study.	^h Averaged annual values for provided by study author. ⁱ Air quality data obtained from the published ⁱ Mean PM₂₅ concentration in 	m original study	_{yby} 0.6	0.8 1.0 1.2 1.4
* Mean value not reported in study; median presented				
¹ 98th percentile of PM _{2.5} distribution was either provi		waral affect or	timate the	
soft percentile of PM25 distribution was either provi authors or calculated from data provided by study authors.	ded by study "Study does not present an o vertical lines represent the effe			
⁹ 98th estimated from data provided by study authors.	vertical lines represent the effe areas of Phoenix examined	aux eservitate for	eeun on site	Relative Risk / Odds Ratio

Figure 2-1. Summary of effect estimates (per 10 μg/m³) by increasing concentration from U.S. studies examining the association between short-term exposure to PM_{2.5} and cardiovascular and respiratory effects, and mortality, conducted in locations where the reported mean 24-h avg PM_{2.5} concentrations were <17 μg/m³.

EPA Integrated Science Assessment for PM

Study	Outcome	Mean [†]		E	Effect Estin	mate (95%	6 CI)		
Zeger et al. (2008, <u>191951</u>)	All-Cause Mortality, Central U.S.	10.7		·					
Kim et al. (2004, 087383)	Bronchitis (Children)	12.0		L	•				_
Zeger et al. (2008, <u>191951</u>)	All-Cause Mortality, Western U.S.	13.1		-+L					
Miller et al. (2007, 090130)	CVD Morbidity or Mortality	13.5		·	•	-			
Eftim et al. (2008, 099104)	All-Cause Mortality, ACS Sites	13.6		· +					
Goss et al. (2004, 055624)	All-Cause Mortality	13.7			•				
McConnell et al. (2003, 049490)	Bronchitis (Children)	13.8		·	•				
Zeger et al. (2008, <u>191951</u>)	All-Cause Mortality, Eastern U.S.	14.0		· -					
Krewski et al. (2009, <u>191193</u>)	All-Cause Mortality	14.0		! - ₽-					
Eftim et al. (2008, 099104)	All-Cause Mortality, Harv 6-Cities	14.1		· -	.				
Lipfert et al. (2006, 088756)	All-Cause Mortality	14.3		·					
Dockery et al. (1996, 046219)	Bronchitis (Children)	14.5	-		•				
Woodruff et al. (2008, 098386)	Infant Mortality (Respiratory)	14.8		⊥⊷					
Laden et al. (2006, 087605)	All-Cause Mortality	16.4*		·					
Woodruff et al. (2008, 098386)	Infant Mortality (Respiratory)	19.2	-						
Enstrom (2005, 087356)	All-Cause Mortality	23.4		'_ ⊷					
Chen et al. (2005, 087942)	CHD Mortality, Females	29.0		I		•			
	CHD Mortality, Males	29.0							
 Mean estimated from data in sture + µg/m³ 	dy	0.7	 0.9	1.1	 1.3	 1.5	 1.7	 1.9	2.1

Relative Risk

Figure 2-2. Summary of effect estimates (per 10 µg/m³) by increasing concentration from U.S. studies examining the association between long-term exposure to PM_{2.5} and cardiovascular and respiratory effects, and mortality.

EPA Integrated Science Assessment for PM

2.3.5.1. Effects of Short-Term Exposure to UFPs

Table 2-4. Summary of causal determinations for short-term exposure to UFPs.

Size Fraction	Outcome	Causality Determination		
	Cardiovascular Effects	Suggestive		
UFPs	Respiratory Effects	Suggestive		

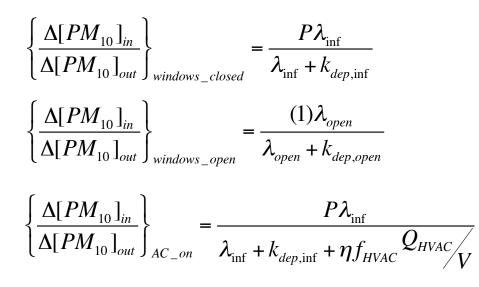
Summary of PM health effects

- Short-term exposure exacerbates cardiovascular and pulmonary disease
 - Increases risk of having symptoms, requiring medical attention, and/ or even dying
- Long-term exposure results in even larger increased risks of respiratory and cardiovascular disease and death
- US policy appears to have improved human health
 - But has not eliminated concern

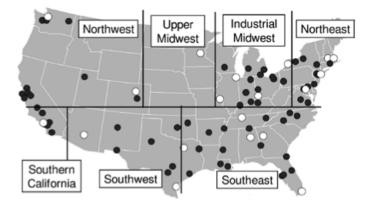
WHAT ABOUT INDOOR EXPOSURES?

And epidemiology studies

Indoor proportions of outdoor pollutants


- Most of the health effect estimates we've described use outdoor monitoring data
 - Usually assumes everyone in a location is exposed to the same concentration
- We've already discussed (and had HW problems) on how outdoor pollution becomes indoor pollution
 - Where we spend most of our time
- How do we get better exposure estimates and thus health effect responses?

Example: Indoor exposure to "outdoor PM₁₀"


Indoor Exposure to "Outdoor PM₁₀"

Assessing Its Influence on the Relationship Between PM₁₀ and Short-term Mortality in U.S. Cities

- A recent study attempted to account for variations in AER across the US and, after assuming some base values for k_{dep} and P for PM₁₀, they predicted indoor concentrations of outdoor PM₁₀ inside average homes in each region
 - Compared those estimates to short-term mortality data to see if their predicted average indoor concentration correlated with mortality rates

Chen et al., 2012 Epidemiology

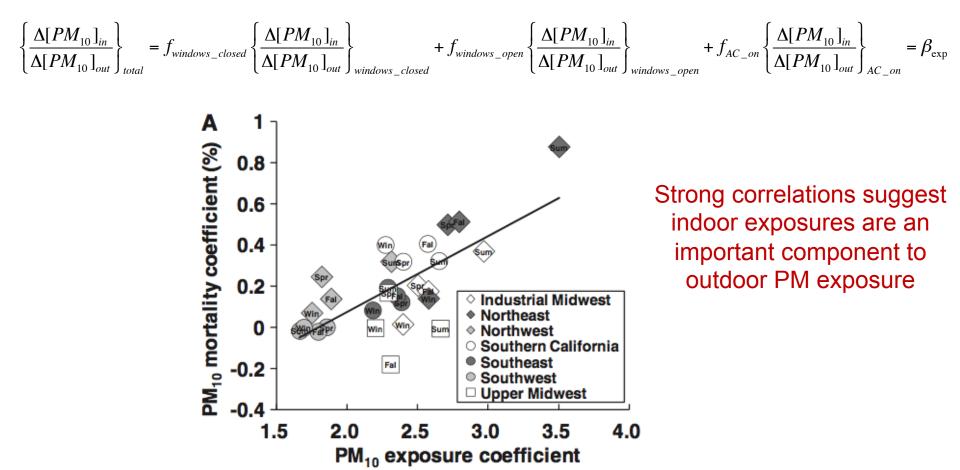


FIGURE 1. Location within the seven U.S. regions of the 19 cities from the NMMAPS with detailed building infiltration rates (open circles) that were used in the original analysis (Figure 2) and the 64 NMMAPS cities with less well-characterized building infiltration rates (closed circles) that were added to the extended analysis (Figure 3).

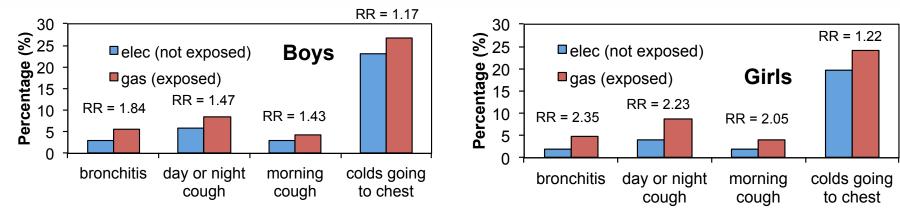
Example: Indoor exposure to "outdoor PM₁₀"

Indoor Exposure to "Outdoor PM₁₀"

Assessing Its Influence on the Relationship Between PM₁₀ and Short-term Mortality in U.S. Cities

OTHER INDOOR AIR EPIDEMIOLOGY STUDIES

Association between gas cooking and respiratory disease in children


Melia et al., British Medical Journal **1977**, 2, 149-152

- Four year longitudinal study of the prevalence of respiratory symptoms and disease in almost 6000 6-11 year old school children
 - Children from homes in which gas was used for cooking were found to have more cough, "colds going to the chest," and bronchitis than children from homes where electricity was used

TABLE I-Prevalence (%) of respiratory symptoms and diseases during last 12 months in boys and girls according to type of fuel used for cooking in the home

				Boys			Girls			
Symptoms a	nd dise	ases	-	Electricity	Gas	P*	Electricity	Gas	P*	
Bronchitis Day or night cough Morning cough Colds going to chest Wheeze	··· ··· ··		· · · · · · · · · · · · · · · · · · ·	3·1 5·8 3·0 23·0 10·3	5.7 8.5 4.3 26.8 11.2	<0.001 <0.007 <0.07 <0.02 ≈0.5	2·0 3·9 2·0 19·8 5·7	4.7 8.7 4.1 24.1 8.6	<0.001 <0.001 <0.001 <0.006 <0.005	
Asthma No of children				1.8	2.7	≈ 0.2	1.0	1.6	≈ 0.2	

*Probability value for difference between prevalence rates, χ^2 test.

Respiratory Symptoms in Children and Indoor Exposure to Nitrogen Dioxide and Gas Stoves

Garrett et al., Am. J. Respir. Crit. Care. Med. 1998, 158, 891-895

Gas stoves

- NO₂ measured in 80 homes in Australia using passive samplers
 - 148 children 7-14 years old were recruited (53 had asthma)
 - Indoor median NO₂ concentrations were 6 ppb (max 128 ppb)
 - Respiratory symptoms were more common in children exposed to a gas stove (OR = 2.3) after adjustments for parental allergy, parental asthma, and gender
 - NO₂ exposure was a marginal risk factor for respiratory symptoms
 - Gas stove was still a risk factor after accounting for NO₂
 - What does that mean?

Respiratory	% of	Gas St	ove Exposure	Bedroom NO_2		
Symptom	Children	OR*	95% CI	OR*	95% CI	
Cough	59	2.25	1.13-4.49	1.47	0.99-2.18	
Shortness of breath	31	1.49	0.72-3.08	1.23	0.92-1.64	
Waking short of breath	17	1.01	0.42-2.45	1.04	0.71-1.53	
Wheeze	24	1.79	0.80-3.99	1.15	0.85-1.54	
Asthma attacks	23	1.73	0.77-3.90	1.06	0.77-1.46	
Chest tightness	13	3.11	1.07-9.05	1.12	0.81-1.56	
Cough in the morning	24	1.42	0.63-3.19	1.25	0.92-1.69	
Chest tightness in morning	14	1.10	0.42-2.88	1.32	0.95-1.84	

* Adjusted for parental asthma, parental allergy, and sex.

A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII Kile et al., *Environmental Health* **2014**, 13, 71

Gas stoves

The Third National Health and Nutrition Examination Survey was used to identify U.S. children aged 2–16 years with information on respiratory outcomes (asthma, wheeze, and bronchitis) who lived in homes where gas stoves were used in the previous 12 months and whose parents provided information on ventilation. Logistic regression models evaluated the association between prevalent respiratory outcomes and ventilation in homes that used gas stoves for cooking and/or heating. Linear regression models assessed the association between spirometry measurements and ventilation use in children aged 8–16 years.

Table 2 Adjusted Odds ratios and 95% confidence intervals for the association between respiratory illnesses in children aged 2–16 years who live in households that use gas stove with ventilation compared to households that use gas stoves without ventilation (Model 1)

	Ever diagnosed with asthma ^a (N = 5,745)		Wheeze in p (N = 5,744)	ast 12 months ^b	Ever diagnosed with bronchitis ^c (N = 7,255)	
Ventilation of gas stove	No. cases	OR (95% CI)	No. cases	OR (95% CI)	No. cases	OR (95% CI)
No	269	1 Ref.	561	1 Ref.	188	1 Ref.
Yes	224	0.64 (0.43, 0.97)*	458	0.60 (0.42, 0.86)*	128	0.60 (0.37, 0.95)*

*P-value <0.05.

^aAdjusted for age group, sex, parental history of asthma or hay fever, and furry or feathery pets in the house, household income < \$20,000, and BMI percentiles for age.

^bAdjusted for age group, parental history of asthma or hay fever, furry or feathery pets in the house, indoor tobacco smoke, race-ethnicity, household income < \$20,000, and BMI percentile for age.

^cAdjusted for age group, parental history of asthma or hay fever, indoor tobacco smoke, race-ethnicity, household income < \$20,000, and census region.

"One-second forced expiratory volume (FEV₁) and FEV₁/FVC ratio was also higher in girls who lived in households that used gas stoves with ventilation compared to households that used gas stoves without ventilation."

Association of domestic exposure to volatile organic compounds with asthma in young children

Rumchev et al., Thorax 2004, 59, 746-751

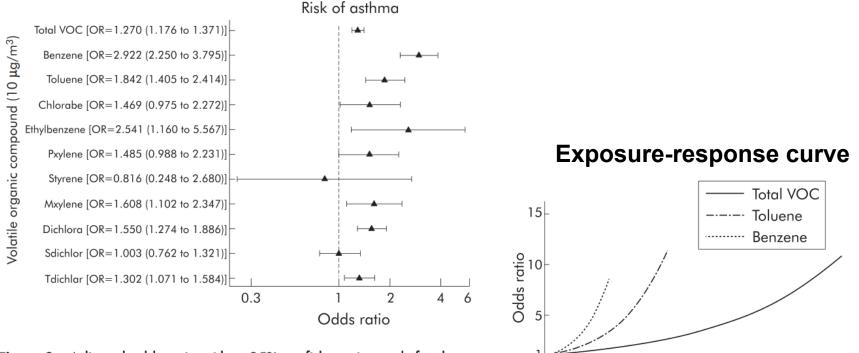

- Population based case-control study conducted in Perth, Australia
 - Children 6 months to 3 years of age (cases = 88; controls = 104)
 - Cases had asthma; controls did not
 - Housing questionnaires were given and indoor VOCs were measured

Figure 1 Seasonal differences in exposure levels to total volatile organic compounds (VOCs, μ g/m³) for asthmatic and non-asthmatic children.

Association of domestic exposure to volatile organic compounds with asthma in young children

- Cases had significantly higher VOC levels than controls (p < 0.01)
 - Highest odds ratios were benzene > ethylbenzene > toluene

0t

0

Figure 3 Adjusted odds ratio with \pm 95% confidence intervals for the risk of asthma with each 10 mg increase in exposure to VOCs.

Figure 2 Asthma in young children associated with exposure to indoor volatile organic compounds ($\mu g/m^3$): odds ratios adjusted for age, sex, atopy, socioeconomic status, smoking indoors, air conditioning, house dust mites, and gas appliances.

Volatile organic compound (μ g/m³)

40

20

80

60

100

Frequent use of chemical household products is associated with persistent wheezing in pre-school age children

Sherriff et al., Thorax 2005, 60, 45-49

- Frequency of use of 11 chemical based domestic products was determined via questionnaires completed by women during pregnancy
 - Given a "total chemical burden" score (TCB)
- Four wheezing patterns were defined for the period from baby's birth to 42 months of age (never, transient early, persistent, late onset)
- 13971 children tracked; completely data for 7019 children

Fifteen product categories were included in the questionnaire and, from this initial list, we selected the 11 most frequently used (by at least 5% of the study sample). The products chosen (and the percentages of women using them) were: disinfectant (87.4%), bleach (84.8%), carpet cleaner (35.8%), window cleaner (60.5%), dry cleaning fluid (5.4%), aerosols (71.7%), turpentine/white spirit (22.6%), air fresheners (spray, stick or aerosol) (68%), paint stripper (5.5%), paint or varnish (32.9%), and pesticides/insect killers (21.2%). A simple score for frequency of use of each product was derived (0 = not at all, 1 = less than once a week, 2 = about once aweek, 3 = most days, 4 = every day) and the scores for each product were summed to produce a total chemical burden (TCB) score for each respondent which could range from 0 (no exposure) to 55 (exposed to all 11 products daily).

Frequent use of chemical household products is associated with persistent wheezing in pre-school age children

Use of cleaning products

Sherriff et al., Thorax 2005, 60, 45-49

Table 1 Unadjusted and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for wheezing phenotypes* (transient early wheeze, persistent wheeze, and late onset wheeze (0–42 months)) according to total chemical burden (TCB) score measured during pregnancy (continuous)

Wheezing phenotype	% (N)	Unadjusted OR (95% CI) (N = 7019)	Unadjusted p value	Adjusted OR** (95% Cl) (N = 5691)	Adjusted p value
Never wheezed Transient early wheeze Persistent wheeze Late onset wheeze	71.2 (5001) 19.1 (1340) 6.2 (432) 3.5 (246)	1 (reference) 1.02 (1.00 to 1.03) 1.08 (1.05 to 1.11) 1.02 (0.99 to 1.05)	0.04 <0.0001 0.2	1 (reference) 1.01 (0.99 to 1.02) 1.06 (1.03 to 1.09) 1.02 (0.98 to 1.06)	0.6 0.0001 0.3

*Never wheezed 0–42 months. Transient early wheeze: wheeze 0–6 months and no wheeze 6–42 months. Persistent wheeze: wheeze 6–18 months, 18– 30 months and 30–42 months. Late onset wheeze: wheeze onset 30–42 months.

**Adjusted for weekend exposure to environmental tobacco smoke at 6 months, maternal smoking during pregnancy, maternal history of asthma, maternal parity, crowding in the home, sex, contact with pets, damp housing, maternal age at delivery, maternal educational attainment, housing tenure, hours mother worked outside home, month of returning chemical usage questionnaire, and duration of breastfeeding.

Table 2 Unadjusted and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for wheezing phenotypes* (transient early wheeze, persistent wheeze, and late onset wheeze (0–42 months)) according to total chemical burden (TCB) score measured during pregnancy (bottom decile versus top decile)

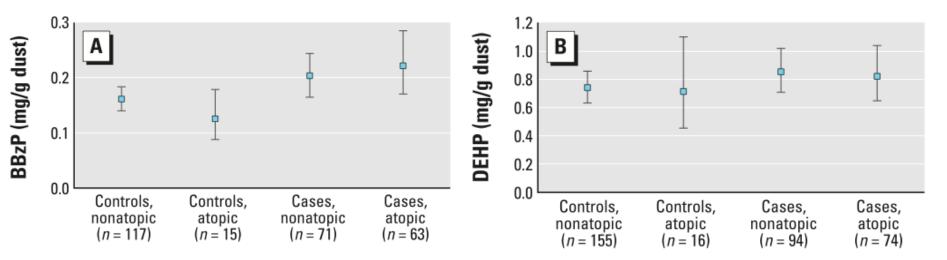
Wheezing phenotype	Bottom decile of TCB % (N)	Top decile of TCB % (N)	Unadjusted OR (95% CI) (N = 7019)	Unadjusted p value	Adjusted OR** (95% Cl) (N = 5691)	Adjusted p value
Never wheezed Transient early wheeze Persistent wheeze Late onset wheeze	74.9 (603) 18.8 (151) 4.0 (32) 2.4 (19)	66.9 (338) 19.0 (96) 10.1 (51) 4.0 (20)	1 (reference) 1.13 (0.90 to 1.50) 2.84 (1.79 to 4.51) 1.88 (0.99 to 3.57)	0.4 <0.0001 0.05	1 (reference) 0.94 (0.60 to 1.40) 2.30 (1.20 to 4.39) 2.02 (0.80 to 5.15)	0.7 0.012 0.14

*Never wheezed 0-42 months. Transient early wheeze: wheeze 0-6 months and no wheeze 6-42 months. Persistent wheeze: wheeze 6-18 months, 18-30 months and 30-42 months. Late onset wheeze: wheeze onset 30-42 months.

**Adjusted for weekend exposure to environmental tobacco smoke at 6 months, maternal smoking during pregnancy, maternal history of asthma, maternal parity, crowding in the home, sex, contact with pets, damp housing, maternal age at delivery, maternal educational attainment, housing tenure, hours mother worked outside home, month of returning chemical usage questionnaire, and duration of breastfeeding.

The Use of Household Cleaning Sprays and Adult Asthma

Zock et al., Am. J. Respir. Crit. Care. Med. 2007, 176, 735-741


- Identified 3503 people in 10 countries who do the cleaning in their homes and who were free of asthma at the beginning of the study
- Frequency of use of 15 types of cleaning products was obtained by interview
- Tracked incidence of asthma
- Use of cleaning sprays at least weekly (42% of participants) was associated with asthma symptoms or medication use (RR = 1.49) and wheeze (RR = 1.39)
 - Asthma was higher among those using sprays at least 4 days per week (RR = 2.11)
 - Highest risks for glass-cleaning, furniture, and air-freshener sprays
 - Non-spray-form products were not associated

What about SVOCs?

The Association between Asthma and Allergic Symptoms in Children and Phthalates in House Dust: A Nested Case–Control Study

Bornehag et al., Environ. Health Perspect. 2004, 112, 1393-1397

- Cohort of 10852 children
 - 198 cases with persistent allergic symptoms
 - 202 controls without symptoms
- Measured phthalate concentrations in house dust
- BBzp (butyl benzyl phthalate) was higher in cases than controls
 - Associated with rhinitis (stuffy/runny nose) and eczema (inflammation of skin)
- DEHP was associated with asthma

SVOCs and thyroid function

Relationship between Urinary Phthalate and Bisphenol A Concentrations and Serum Thyroid Measures in U.S. Adults and Adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008

- Analysis of urinary biomarker data of exposure to phthalates (DEHP, DBP) and BPA for 1346 adults and 329 adolescents using the National Health and Nutrition Examination Survey (NHANES)
 - Compared to serum thyroid measures
- Found significant relationships between phthalates (and possibly BPA) and altered thyroid hormones
 - These hormones play important roles in fetal and child growth and brain development, as well as metabolism, energy balance, and other functions in the nervous, cardiovascular, pulmonary, and reproductive systems

Ventilation rates and health

Association between ventilation rates in 390 Swedish homes and allergic symptoms in children Bornehag et al., Indoor Air 2005

- Same cases (198) and controls (202) from before
- Compared symptoms and diagnoses to AER measurements
 - Cases had significantly **lower** ventilation rates

Table 3 Differences in mean ventilation rate between cases and controls in different groups of buildings

			<i>P</i> -value	Э		
Type of buildings	Cases	Controls	t-test	Mann-Whi	tney U	
Single-family houses (<i>n</i>) Mean ach in total building (<i>n</i>) Ach in child's bedroom (<i>n</i>)	161 0.34 (161) 0.32 (158)	172 0.38 (169) 0.37 (166)	0.025 0.020	0.014 0.011	Significant	
Chain houses (<i>n</i>) Mean ach in total building (<i>n</i>) Ach in child's bedroom (<i>n</i>) Multi-family houses (<i>n</i>)	12 0.37 0.40 25	11 0.32 0.33 19	0.627	0.622 0.712	difference was ~14% lower ACH cases than contro	_
Mean ach in total building (n) Ach in child's bedroom (n) All types of building (n)	0.49 (25) 0.50 (23) 198	0.47 (18) 0.52 (17) 202	0.793 0.807	1.000 0.967		
Mean ach in total building (n) Ach in child's bedroom (n)	0.36 (198) 0.34 (193)	0.39 (198) 0.38 (194)	0.126 0.099	0.053 0.068		55

HVAC systems and health

Risk factors in heating, ventilating, and air-conditioning systems for occupant symptoms in US office buildings: the US EPA BASE study

Mendell et al., Indoor Air 2008

- 'Building-related symptoms' in office workers were assessed in 97 airconditioned office buildings in the US
- A primary correlation between building symptoms and HVAC characteristics was:
 - Outdoor air intakes less than 60 m above ground level were associated with significant increases in most symptoms
 - For upper respiratory symptoms, OR for intake heights were:
 - <30 m: OR = 2.0
 - 30-60 m: OR = 2.7
 - Below ground: OR = 2.1
 - Above 60 m; OR = 1.0
 - Poorly maintained humidification systems and infrequent cleaning of cooling coils and drain pans were also associated
 - What does this suggest?

A NOTE ON CARCINOGENS

Weight of evidence categories

- There are several categories of ratings for human carcinogens
- A: Human carcinogen
 - Good epi data
 - Very few of these
- B: probable human carcinogen
 - B1 = limited epi data
 - B2 = inadequate epi but good non-human data
- C: possible human carcinogen
 - No epi data
 - Limited non-human animal
- D: not classified (inadequate data)
- E: evidence of non-carcinogencity

Getting weight of evidence data

• EPA IRIS: Integrated Risk Information System

<u>http://www.epa.gov/IRIS/</u>

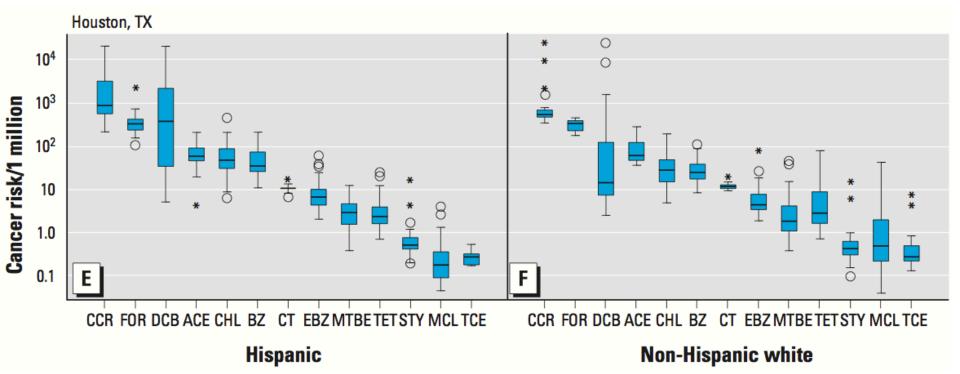
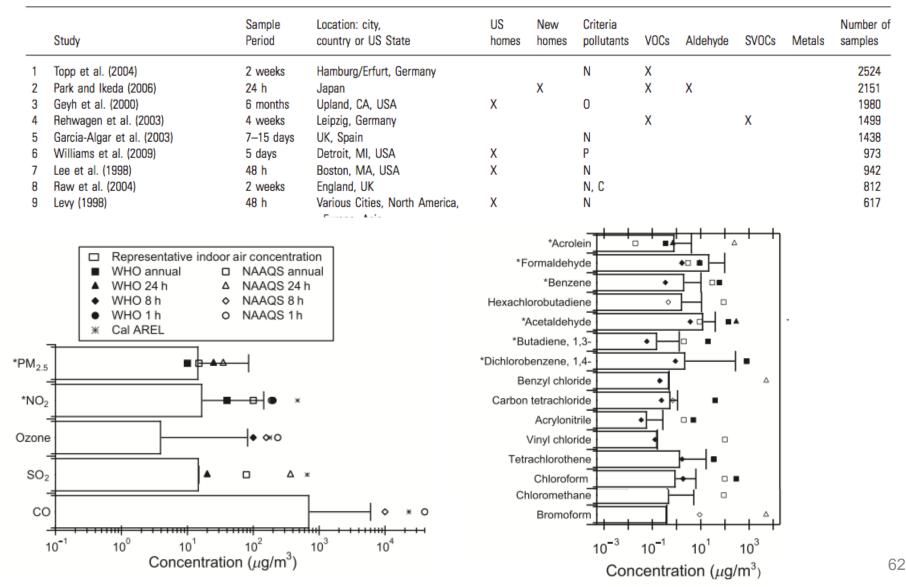

Chemical	Category	Potency factor oral route (mg/kg-day) ⁻¹	Potency factor inhalation route (mg/kg-day) ⁻¹
Arsenic	А	1.75	50
Benzene	А	$2.9 imes10^{-2}$	2.9×10^{-2}
Benzol(a)pyrene	B2	11.5	6.11
Cadmium	B1		6.1
Carbon tetrachloride	B2	0.13	
Chloroform	B2	$6.1 imes 10^{-3}$	$8.1 imes 10^{-2}$
Chromium VI	А		41
DDT	B2	0.34	
1,1-Dichloroethylene	С	0.58	1.16
Dieldrin	B2	30	
Heptachlor	B2	3.4	
Hexachloroethane	С	$1.4 imes 10^{-2}$	
Methylene chloride	B2	$7.5 imes 10^{-3}$	1.4×10^{-2}
Nickel and compounds	А		1.19
Polychlorinated biphenyls (PCBs)	B2	7.7	1.19
2,3,7,8-TCDD (dioxin)	B2	1.56×10^{5}	
Tetrachloroethylene	B2	5.1×10^{-2}	$1.0 - 3.3 \times 10^{-3}$
1,1,1-Trichloroethane (1,1,1-TCA)	D		
Trichloroethylene (TCE)	B2	$1.1 imes 10^{-2}$	1.3×10^{-2}
Vinyl chloride	А	2.3	0.295

TABLE 4.9 Toxicity data for selected potential carcinogens

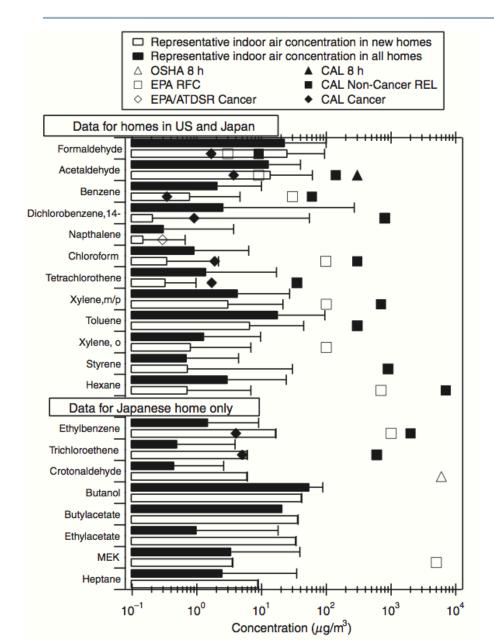
Source: U.S. EPA http://www.epa.gov/iris.

Cancer Risk Disparities between Hispanic and Non-Hispanic White Populations: The Role of Exposure to Indoor Air Pollution Hun et al., Environ Health Persp 2009

METHODS: We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics.



CONCLUSIONS: Hispanics appear to be disproportionately affected by certain HAPs from indoor and outdoor sources. Policies that aim to reduce risk from exposure to HAPs for the entire population and population subgroups should consider indoor air pollution.


LINKING INDOOR AIR AND EPIDEMIOLOGY

Hazard assessment of chemical air contaminants measured in residences Logue et al., Indoor Air 2010

Table 1 Publications with chronic exposure-relevant concentrations

Hazard assessment of chemical air contaminants measured in residences Logue et al., Indoor Air 2010

"Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes, and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM_{25} . Activity-based emissions are shown to pose potential acute health hazards for PM_{2.5}, formaldehyde, CO, chloroform, and NO₂."

A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences Logue et al., Environ Health Persp 2012

 $DALYs = (\partial DALYs / \partial disease incidence)$ × disease incidence.

Intake-incidence-DALY approach

 Δ Incidence = $-\{y_0 \times [\exp(-\beta \Delta C_{exposure}) - 1]\}$ × population,

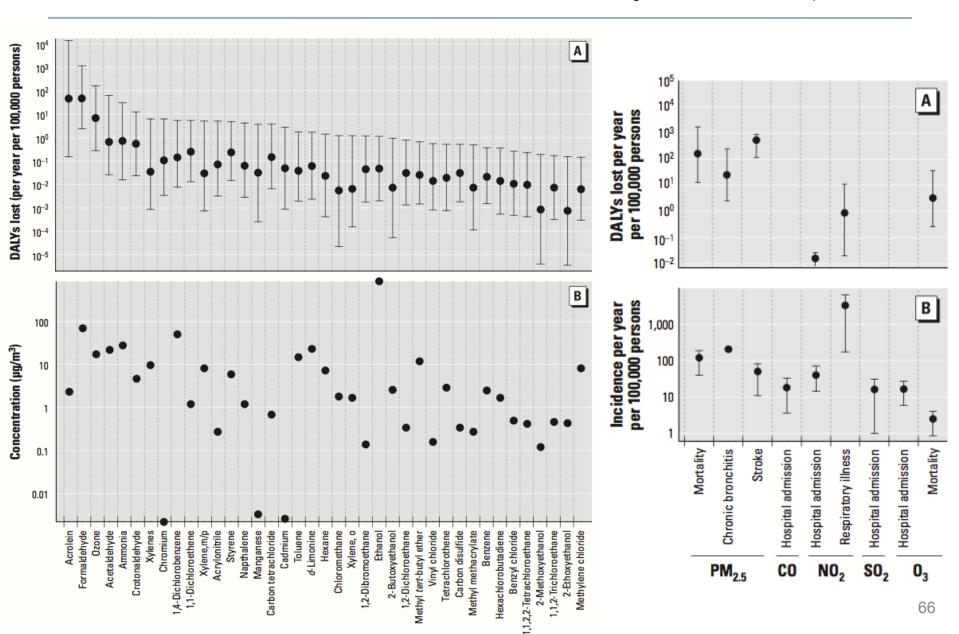
 $\Delta C_{\text{exposure}} = 0.7 C_{\text{indoors}}$

Intake-DALY approach

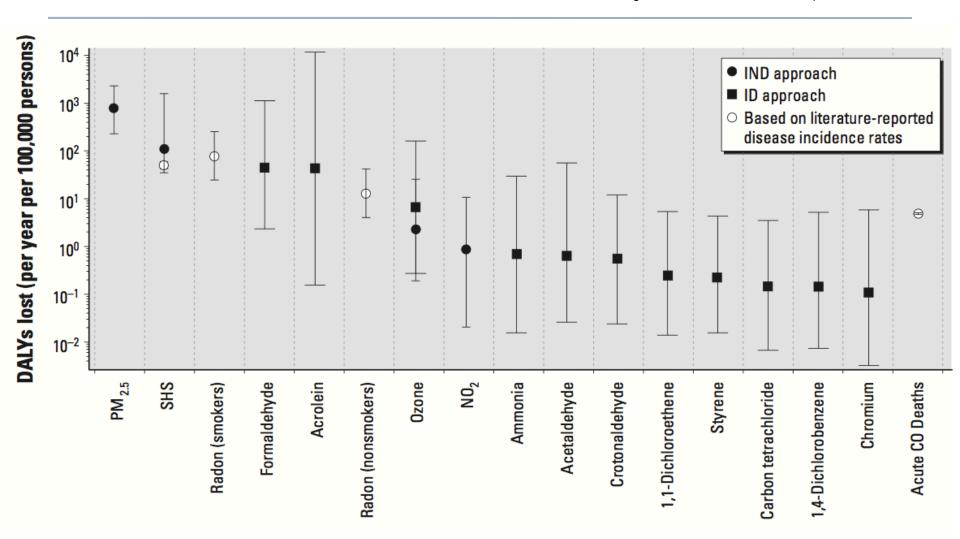
 $DALYs = (\partial DALY / \partial disease incidence)$ \times (∂ disease incidence/ ∂ intake) × intake,

 $DALYs_i = (\partial DALY / \partial intake) \times intake,$

 $DALY_{s_i} =$ $C_i \times V \times [(\partial DALY_{cancer}/\partial intake)_i]$ × ADAF + (∂DALYnoncancer/∂intake)_i],


Pollutant	Concentration	Pollutant	Concentration
1,1,2,2-Tetrachloroethane	0.42	Cyclohexane	5.2
1,1,2-Trichloroethane	0.42	Di(2-ethylhexyl) adipate	0.2 1.6 × 10 ^{−2}
1,1-Dichloroethene	1.2	Dibenzo[a,c+a,h]anthracene	1.4 × 10 ⁻⁵
	0.14	Dibromochloromethane	0.44
1,2-Dibromoethane	0.14	d-Limonine	23
1,2-Dichloroethane			
1,3-Butadiene	0.46	Ethanol	860
1,4-Dichlorobenzene	50	Ethylbenzene	3.9
2-Butoxyethanol	2.6	Formaldehyde	69
2-Ethylhexanol	3.7	Hexachlorobutadiene	1.7
2-Ethoxyethanol	0.43	Hexane	7.3
2-Methoxyethanol	0.12	Isopropylbenzene	0.4
Acetaldehyde	22	Manganese	3.3 × 10 ^{−3}
Acrolein	2.3	Methyl ethyl ketone	7.4
Acrylonitrile	0.27	Mercury	1.6 × 10 ⁻⁴
Ammonia	28	Methyl methacrylate	0.27
Arsenic	9.8 × 10 ⁻⁴	Methylene chloride	8.2
Atrazine	5.9 × 10 ⁻⁴	Methyl isobutyl ketone	1.2
Benzaldehyde	2.5	Methyl tert-butyl ether	12
Benzene	2.5	Naphthalene	1.2
Benzo[a]pyrene	9.1 × 10 ^{−5}	NO ₂	13.1
Benzyl chloride	0.5	o-Phenylphenol	0.13
Beryllium	1.6×10^{-6}	Ozone	17.2
Bis(2-ethylhexyl) phthalate	0.14	Pentachlorophenol	2.9×10^{-3}
Bromodichloromethane	0.49	PM25	15.9
Bromoform	0.39	Styrene	5.9
Cadmium	2.6×10^{-3}	SO ₂	2.9
Carbon disulfide	0.34	Tetrachloroethene	1.7
CO	810	Tetrahydrofuran	15
Carbon tetrachloride	0.68	Toluene	2.3
Chlorobenzene	0.68	Trichloroethene	0.16
Chloroethane	0.26	Vinyl chloride	1.7
Chloroform	1.5	Xylene, o	8.2
Chloromethane	1.8	Xylene, m/p	9.7
Chromium	2.2 × 10 ^{−3}	Xylenes	7.4
Crotonaldehyde	4.7	1111110	1.4

A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences Logue et al., Environ Health Persp 2012


	Criteria pollutant C-R function		s lost per inci	
Pollutant	Outcome	β-Coefficient (95% CI)	Уо	DALYs lost per incidence (95% CI)
PM _{2.5}	Total mortality (Pope et al. 2002)	0.058 (0.002, 0.010)	7.4 × 10 ^{−3}	1.4 (0.14, 14) (Pope 2007; Pope et al. 2002, 2009)
	Chronic bronchitis (Abbey et al. 1995)	0.091 (0.078, 0.105)	0.4 × 10 ^{−3}	1.2 (0.12, 12) (Lvovsky et al. 2000; Melse et al. 2010)
	Nonfatal stroke (Brook et al. 2010)	0.025 (0.002, 0.048)	0.2 × 10 ^{−3}	0 complications: 9.5 (9.25, 9.75) 1 complication: 11.7 (11.1, 12.4) > 1 complication: 13.1 (12.2, 14.0) (Hong et al. 2010)
CO	Hospital admissions (Burnett et al. 1999)			4 × 10 ⁻⁴ (Lvovsky et al. 2000)
	Asthma	0.033 (0.016, 0.050)	1.8 × 10 ⁻³	
	Lung disease	0.025 (0.000, 0.057)	2.1 × 10 ⁻³	
	Dysrhythmias Heart failure	0.058 (0.012, 0.102) 0.034 (0.002, 0.066)	2.4 × 10 ^{−3} 3.4 × 10 ^{−3}	
NO ₂	Hospital admissions (Burnett et al. 1999)			4×10^{-4} (Lvovsky et al. 2000)
	Respiratory issues Congestive heart failure	0.004 (0.000, 0.008) 0.003 (0.001, 0.004)	9.5 × 10 ⁻³ 3.4 × 10 ⁻³	
	Ischemic heart disease	0.003 (0.002, 0.004)	8.0 × 10 ^{−3}	4 - 10 ⁻⁴ (Lucrater et al. 2000)
	Respiratory illness, indicated by symptoms (Hasselblad et al. 1992)	0.028 (0.002, 0.053)	N/A	4 × 10 ⁻⁴ (Lvovsky et al. 2000)
Ozone	Mortality (Jerrett et al. 2010; Samet et al. 1997)	0.001 (0.000, 0.002)	7.7 × 10 ^{−3}	1.0 (0.1, 10) (Levy et al. 2001; Lvovsky et al. 2000)
	Hospital admissions (Burnett et al. 1999)			4 × 10 ⁻⁴ (Lvovsky et al. 2000)
	Asthma	0.003 (0.001, 0.004)	1.8 × 10 ⁻³	
	Lung disease	0.003 (0.001, 0.005)	2.1 × 10 ⁻³	
	Respiratory infection Dysrhythmias	0.002 (0.001, 0.003) 0.002 (0.000, 0.004)	5.8 × 10 ⁻³ 2.4 × 10 ⁻³	
SO ₂	Hospital admissions (Burnett et al. 1999)	0.002 (0.000, 0.003)	8.0 × 10 ⁻³	4×10^{-4} (Lvovsky et al. 2000)

N/A, not applicable. y_0 is the baseline prevalence of illness per year, and β is the coefficient of the concentration change used for inputs into Equation 3.

A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences

A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences

Summary

- We have a LOT of information about adverse health effects and outdoor air pollution
 - Animal studies, cell level studies, epidemiology studies
- We have much LESS information about indoor air and adverse health effects
 - Most of this information suggests strong connections
- There are new methods/efforts to link epidemiology functions to indoor air pollutants to estimate health effects across the building stock
 - Including under changing conditions (e.g., ventilation, filtration, or source control)