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Review from last time 

•  Course overview 
•  Introduction to indoor air 

–  Topics 
–  Research 
–  Literature 

•  Some basic air fundamentals 

•  Quick! 
–  What is 50 µg/m3 of NO2 in ppb at standard temperature and 

pressure indoors? 
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Today’s objectives 

•  Human exposure patterns 
–  Inhalation and intake fractions 

•  Reactor models 

•  Ventilation and air exchange rates 
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Human exposure pathways 

•  How do we come in contact with environmental contaminants? 
–  Ingestion (water, food, pharmaceuticals, hand-to-mouth) 
–  Inhalation (our focus) 
–  Dermal uptake 
–  Ocular (eyes) 
–  Hand to body 

•  We focus on inhalation exposure in this course 
4 

Sexton et al., 1995 EHP 



Inhalation exposure 

•  “Exposure” accounts for both the concentration of a substance that an 
occupant is subjected to and the amount of time the occupant is present 
with the substance 

•  If the formaldehyde concentration is 20 ppb in my bathroom and I am in 
there for 10 minutes, my exposure to formaldehyde is: 
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E = 20 ppb∗10 minutes = 200 ppb ⋅mins = 3.3 ppb ⋅hrs

E = C(t)dt
0

t
∫

Units are in [concentration × time]

E = exposure (concentration × time)
C(t) = concentration (ppb, µg/m3, #/cm3)
t = time (hr, min, sec)



Inhalation exposure 

•  Total exposure during a period of time is the sum of all exposures in 
individual microenvironments: 

•  Microenvironments include bedrooms, offices, outdoors, transportation… 
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Etotal = Ci (t)dt0

ti∫
i=1

n

∑

Etotal = total exposure during period of time (concentration × time)
Ci(t) = concentration in a particular microenvironment i (ppb, µg/m3, #/cm3)
ti = time spent in microenvironment i (hr, min, sec)



Inhalation exposure 

•  If we measure exposures to particular pollutants, we will often end 
up with time-averaged data (depending on the pollutant and 
monitoring device) 
–  In this case, the integral is simplified: 

–  So what influences exposure? 
•  Which microenvironment i  
•  The average concentration Ci

•  Time spent in microenvironment Δti

–  We need to know where people spend their time, how much time they 
spend there, and what concentration they are exposed to in that 
environment 
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Etotal = Ci ⋅ Δti
i=1

n

∑



Inhalation dose 
•  “Dose” accounts for the actual amount that crosses a contact boundary 

–  Inhalation dose is a function of the exposure (concentration), breathing rate, 
and the duration of exposure (and presumably breathing) 

–  Dose is therefore a mass (or number) of substance ingested 

•  Exposure can be measured, but dose is usually estimated 
–  Unless you’re doing toxicology work where you control the dose 
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D = C(t)Qb(t)dt0

t
∫

Dtotal = Ci (t) ⋅Qb(t)dt0

ti∫
i=1

n

∑

Dtotal = Ci ⋅Qb ⋅ Δti
i=1

n

∑

D = inhalation dose (mg, µg, # of particles, # of cells, etc.)
Qb(t) = breathing rate at time t (m3/day, m3/hr, L/min, L/s, etc.)



Breathing rates 

•  For inhalation doses we need to know breathing rates 
•  One good source is the EPA Exposure Factors Handbook 
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EPA Exposure Factors Handbook 2011 



Exposure patterns 
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•  We also need to know exposure concentrations and times 
•  What do exposure patterns look like? 

Etotal = Ci ⋅ Δti
i=1

n

∑



Relative inhalation exposures 

•  How do we compare two different microenvironments? 
–  To help focus attention on the most important/relevant environments 

•  Example: indoor vs. outdoor ozone 
–  Typical values: 
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Erelative,i− j =
Ci ⋅ Δti
Cj ⋅ Δt j

=
Ci

Cj

⋅
Δti
Δt j

Erelative,indoor−outdoor =
Cin

Cout

⋅
Δtin
Δtout

= 0.05 ⋅ (10) = 0.5 (min.)

Erelative,indoor−outdoor =
Cin

Cout

⋅
Δtin
Δtout

= 0.5 ⋅ (20) =10 (max.)

Cin

Cout

≈ 0.05− 0.5
Δtin
Δtout

≈10− 20

1-2 is 
typical 

This means that at least ~33% of outdoor ozone exposure probably occurs indoors 
•  0.5 as much indoor vs. outdoor exposure → 0.67 outdoors + 0.33 indoors 
•  And probably much more (as much as 90% in some cases) 



Human activity patterns 

•  So we need to understand where we spend our time in order 
to understand what exposures are important 
– Δti 

•  Where do we spend our time? 
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Human activity patterns 
•  The National Human Activity Pattern Survey (NHAPS) 

–  A 2-year phone survey of ~9400 people in the U.S. (1992-1994) 
–  Out of date, but remains highly cited as one of the first nationally 

representative activity surveys 
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Klepeis et al., J Exp. Anal. Environ. Epidem. 2001, 11, 231-252 

Example 
time 
activity 
diary 
from 
NHAPS 



Human activity patterns 
•  The National Human Activity Pattern Survey (NHAPS) 

–  How much time do people spend in what environments? 
–  And what fraction of people do that? 

•  A nation of doers? 
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Klepeis et al., J Exp. Anal. Environ. Epidem. 2001, 11, 231-252 

Variability between populations: 
99.4% of people spent time at home 
•  990 minutes on average, 990/1440 = 69% of the day 
Only 59.3% of people went outdoors 
•  Of those that did, they spent 109 minutes outdoors, on average 
•  109/1440 = 7.5% of the day 



Human activity patterns 
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Klepeis et al., J Exp. Anal. Environ. Epidem. 2001, 11, 231-252 

•  The National Human Activity Pattern Survey (NHAPS) 
–  Overall nationwide averages 



Human activity patterns 
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Klepeis et al., J Exp. Anal. Environ. Epidem. 2001, 11, 231-252 

•  The National Human Activity Pattern Survey (NHAPS) 
–  Time spent with a smoker 



Human activity patterns 
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Klepeis et al., J Exp. Anal. Environ. Epidem. 2001, 11, 231-252 

•  The National Human Activity Pattern Survey (NHAPS) 
–  Probability distributions in each environment 



Human activity patterns 
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Klepeis et al., J Exp. Anal. Environ. Epidem. 2001, 11, 231-252 

•  The National Human Activity Pattern Survey (NHAPS) 
–  Time-varying activity patterns 



Human activity patterns 

•  What are some other ways to collect human activity data? 
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Human activity patterns 

•  What are some other ways to collect human activity data? 
–  GPS instruments 

20 
Elgethun et al., EHP 2003, 111, 115-122 



Indoor exposures 

•  So we spend a lot of time indoors (Δtindoor is large) 
–  Do we also encounter large concentrations? (Cindoor) 

•  Depends on what emissions we’re talking about 

•  Let’s first discuss “intake fractions” 
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Intake fractions 

•  Emissions to intake relationships 
–  A 1 kg mass of pollutant is emitted into the environment from a point 

source 50 miles away from you 
–  A 0.01 kg (10 g) mass of pollutant is emitted into your home air 
–  Which is more important to you from an exposure standpoint? 

•  An intake fraction helps describe the importance of emissions 
–  Integrated intake of a pollutant released from a source and summed 

over all exposed individuals during a given exposure time, per unit of 
emitted pollutant: 
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Bennett et al., 2002 Environ Sci Technol 

iF =
mass intake of pollutant by an individual

people,time
∑

mass of pollutant released into the environment



Intake fractions 

•  Values of iF depend on several factors: 
–  Chemical properties of the contaminant 
–  Emission locations 
–  Environmental conditions 
–  Exposure pathways 
–  Receptor (i.e., human) locations and activities 
–  Population characteristics 
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Bennett et al., 2002 Environ Sci Technol 



Intake fractions 
•  Lai et al. (2000) estimated IFs for several scenarios 

–  Outdoor air basins, point releases, and line sources; vehicles; and indoors 

24 
Lai et al., 2000 J Air Waste Manag Assoc 

Individual IFs 

Population wide IFs 



Intake fraction example 

•  Benzene example 
–  Benzene is emitted to outdoor air from motor vehicles 
–  Benzene is also present in environmental tobacco smoke (ETS) 

•  Outdoor benzene in California’s South Cost air basin (SoCAB) 
–  16,000 km2 area 
–  Home to 14 million people who drive vehicles ~0.5 billion km daily 

•  They use ~59 million L of gasoline daily 
•  ~280 mg of benzene is emitted per L of gasoline 
•  Total emissions of ~17 metric tons (17000 kg) of benzene per day 
•  Outdoor iFs range approximately 1×10-6 to 5×10-4  

–  Depending on meteorology and other factors 
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Bennett et al., 2002 Environ Sci Technol 



Intake fraction example 

•  Benzene from ETS indoors 
–  SoCAB is also home to ~1.9 million smokers 

•  Consuming 42 million cigarettes daily 
–  Assume that 50% of cigarettes consumed in the area are smoked in homes 
–  Benzene emission factors for ETS are 280-610 µg per cigarette  

•  Assume ~450 µg per cigarette 
–  Total estimated residential emissions of benzene from ETS are ~9 kg/day 

•  That is only ~0.05% of the total emitted by motor vehicles 

–  But, the iF for a nonreactive pollutant in a residence is ~7×10-3 
•  That is 10-100+ times as high as for outdoor emissions (1×10-6-5×10-4) 

–  Overall, vehicles account for inhalation of ~1 kg/day of benzene inhalation 
•  Across the basin population 

–  ETS accounts for ~60 g/day 
•  So while ETS accounts for only 0.05% of the emissions, it accounts for 

~6% of benzene intake in the area 
–  Non-negligible amount (and IF is 120 times higher than E) 

26 
Bennett et al., 2002 Environ Sci Technol 



Intake fractions 

•  So what was the answer to our original question? 
–  A 1 kg mass of pollutant is emitted into the environment from a point 

source 50 miles away from you 
–  A 0.01 kg (10 g) mass of pollutant is emitted into your home air 
–  Which is more important to you from an exposure standpoint? 

–  Indoor emission is ~1/100th of the outdoor mass emission 
–  But indoor IF is ~10 to ~1000 higher 
–  So the overall effect on intake is generally higher for the indoor 

source 
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Mass balances and indoor concentrations 

•  We’ve talked about time we spend indoors (Δtindoor ) 
•  And we’ve talked about emission to intake ratios 
•  But do we also encounter large concentrations? (Cindoor) 

•  Need to be able to measure and predict Cindoor 
•  And model what affects Cindoor 

28 

Mean concentrations 
in U.S. residences: 

Logue et al. 2012 EHP 



Modern indoor environments 
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To understand the levels of airborne pollutants that we are exposed to, 
we need to understand the underlying physical, chemical, and biological 

mechanisms that drive pollutant emission, transport, and control 

Ventilation/ 
Air Exchange 

Ventilation/ 
Air Exchange 

Outdoor 
Pollutants 

Indoor 
Emissions 

Deposition/Surface 
Reactions 

Adsorption/ 
Desorption 

Homogeneous 
Chemistry 

Filtration 

Phase change, partitioning & 
byproduct formation 

Resuspension 

T/RH 



Indoor environment: Mass balance 

•  Simplest case: Neglecting indoor physics/chemistry 
–  No deposition, no reaction 
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Mass 
accumulation 

rate 
[mass / time] 

= Mass flow in 
[mass / time] 

Mass flow out 
[mass / time] 

Mass emitted 
[mass / time] - + 

dm
dt

=
dCV
dt

=V dC
dt

+C dV
dt0 

Assumptions: 
•  Building/room can be treated as well-mixed 



Indoor environment: Simple mass balance 
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Ventilation/ 
Air Exchange 

Ventilation/ 
Air Exchange 

Outdoor 
Pollutants 

Indoor 
Emission 

T/RH 

V dC
dt

= PQCout −QC +E

t = time (hour)
V = indoor volume (m3)
C = indoor concentration (µg/m3)
Q = volumetric flow rate (m3/hr)
Cout = outdoor concentration (µg/m3)
P = penetration factor (-)
E = mass emission rate (µg/hr)

Cout

Q

P
V

Q

E

C



Indoor environment: Simple mass balance 

•  Divide by volume 
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V dC
dt

= PQCout −QC +E

dC
dt

= PQ
V
Cout −

Q
V
C + E

V

dC
dt

= PλCout −λC +
E
V

λ =
Q
V
= air exchange rate ( 1

hr
)



Indoor environment: Simple mass balance 

•  Assume steady-state conditions: 

•  If λ is large (and/or E is small): PCout >> E/λV 
–  C approaches Cout (depending on P) 
–  This means outdoor sources are relatively more important 

•  If λ is small (and/or E is large): PCout << E/λV 
–  C approaches E/λV 
–  This means indoor sources are relatively more important 

33 

dC
dt

= PλCout −λC +
E
V

0 

Css = PCout +
E
λV



Steady state mass balance 

•  Example steady state calculations:   

•  Assume P = 1 and Cout = 0: 

•  Assume V = 200 m3, how are C, E, and λ related? 

34 

Css = PCout +
E
λV

Css =
E
λV
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What are typical values of λ (AER)? 

•  Distribution of AERs in ~2800 homes in the U.S. 
–  Measured using PFT (perfluorocarbon tracer) in the early 1990s 

•  What do you think this curve looks like now? 
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Murray and Burmaster, 1995 Risk Analysis 
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What are typical values of λ (AER)? 

•  Distribution of AERs U.S. homes 
–  Early 1990s and revisited in 2010 (Persily et al. 2010) 
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Murray and Burmaster, 1995 Risk Analysis; Persily et al. 2010 Indoor Air 
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•  What about new homes? 

1990s median ~0.5/hr 
2010 median ~0.4/hr 
•  20% reduction in 20 years 



What are typical values of λ (AER)? 

•  Distribution of AERs U.S. homes 
–  Addition of 106 new homes (Offermann et al., 2009) 
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Offermann et al. 2009 CEC PIER Report 

•  Not uncommon for new homes to have AER = 0.05-0.20 per hour 

1990s median ~0.5/hr 
2010 median ~0.4/hr 
2009 new home median ~0.26/hr 



Steady state mass balance with AER 

•  What do trends in AERs mean for indoor concentrations? 
–  Nonreactive pollutants at steady date (without an outdoor source) 
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Limitations to previous mass balance 

•  Well-mixed assumption 
–  Occupant exposure can be much higher than estimated near source 
–  Cooking, cleaning, vicinity of smoker 
–  Personal cloud or “pig pen” effect is where: 

•  Assumption of no sinks or transformations 
–  Adsorption, desorption, deposition, and reactions all ignored (for now) 

•  Assumption of no control of pollutants 
–  No whole building filtration or portable air cleaner (for now) 

•  Also assumed steady-state 
–  What about a dynamic solution? 

39 

Cpersonal >Cindoor



Dynamic solution to mass balance 

•  Start with basic mass balance: 

•  Rearrange: 

•  Factor out (-1): 

•  Substitute: 

–  So that: 40 

dC
dt

= PλCout −λC +
E
V

1

PλCout −λC +
E
V

dC = dt

1

λC −PλCout −
E
V

dC = −dt

Let x = denominator = λC −PλCout −
E
V

dx
dC

= λ dC = 1
λ
dx



Dynamic solution to mass balance 

•  We can now solve this simpler equation 
Rearrange:     Integrate both sides:   Solution with x: 
 
 
 
 
Substitute back in for x: 
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1

λC −PλCout −
E
V

dC = −dt

Letting x = λC −PλCout −
E
V

 and thus dx
dC

= λ  transforms:

1
λ
1
x
!

"
#
$

%
&dx = −dt

into 

1
x
!

"
#
$

%
&dx = −λdt

1
x
dx

x0

x
∫ = −λ dt

0

t
∫ ln(x)

x0

x
= −λt

ln
λC −PλCout −

E
V

λC(t = 0)−PλCout −
E
V

"

#
$

%
$

&

'
$

(
$
= −λt



Dynamic solution to mass balance 

•  Raise e to both sides: 

•  Rearrange: 
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ln
λC −PλCout −

E
V

λC(t = 0)−PλCout −
E
V

"

#
$

%
$

&

'
$

(
$
= −λt

λC −PλCout −
E
V

λC(t = 0)−PλCout −
E
V

= e−λt

λC −PλCout −
E
V
= λC(t = 0)−PλCout −

E
V

"
#
$

%
&
'
e−λt



Dynamic solution to mass balance 

•  Solve for C: 
–  Which is C at time t, or C(t) 

•  What do these two terms represent? 

•  What happens as t → ∞ ? 
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λC −PλCout −
E
V
= λC(t = 0)−PλCout −

E
V

"
#
$

%
&
'
e−λt

C(t) =C(t = 0)e−λt + PCout +
E
λV

"

#
$

%

&
' 1− e−λt( )

C(t→∞) =PCout +
E
λV

= our steady state solution

0 0 



Dynamic solution to mass balance 

•  Example concentration profile 
–  V = 200 m3, E = 100 µg/hr, λ = 0.4/hr, Cout = 0, P = 1 
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Time to reach steady state 

•  If we assume an inert pollutant emitted indoors with an initial 
concentration of zero, how long would it take to achieve 95% 
of steady state? 

•  95% of steady-state is reached when: 
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C(t) =C(t = 0)e−λt + PCout +
E
λV

"

#
$

%

&
' 1− e−λt( )

1− e−λt( ) = 0.95 e−λt =1− 0.95= 0.05

−λt = ln(0.05) λt = − ln(0.05) = 3

t = 3
λConsider λ = 0.1 hr-1 

t to 95% steady state = 30 hours 
Consider λ = 1 hr-1 

t to 95% steady state = 3 hours 



How do we measure λ? 

•  One method is to inject an inert tracer gas, and measure the 
decay from C(t=0) after time t=0 

46 



How do we measure λ? 

•  One method is to inject an inert tracer gas, and measure the 
decay from C(t=0) after time t=0 
–  In this case, E = 0 
–  Assume P = 0 (reasonable for inert gas)  

47 

C(t) =C(t = 0)e−λt + PCout +
E
λV

"

#
$

%

&
' 1− e−λt( )

0 

C(t) =C(t = 0)e−λt +Cout 1− e
−λt( )

C(t) =C(t = 0)e−λt +Cout −Coute
−λt

C(t)−Cout = C(t = 0)−Cout{ }e−λt



How do we measure λ? 

•  Take the natural log of both sides: 

•  To find λ, plot left hand side versus right hand side 
–  Slope of that line is λ 
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C(t)−Cout = C(t = 0)−Cout{ }e−λt

C(t)−Cout

C(t = 0)−Cout

= e−λt

− ln C(t)−Cout

C(t = 0)−Cout

"
#
$

%
&
'
= λt



How do we measure λ? 

•  Example: You perform a tracer test with CO2 
–  You measure a constant outdoor concentration of 400 ppm 
–  You elevate indoors to 2000 ppm, then leave for 6 hours 
–  You record these data: 
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Time (hour) 49 

Time 
(hr) 

C(t) 
(ppm) 

0 2500 
1 1450 
2 900 
3 660 
4 530 
5 460 
6 430 

Plot the LHS vs time 

− ln C(t)−Cout

C(t = 0)−Cout

"
#
$

%
&
'
= λt



y = 0.7058x 
R² = 0.9997 
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How do we measure λ? 

•  Example: You perform a tracer test with CO2 
–  You measure a constant outdoor concentration of 400 ppm 
–  You elevate indoors to 2000 ppm, then leave for 6 hours 
–  You record these data: 
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Time 
(hr) 

C(t) 
(ppm) 

0 2500 
1 1450 
2 900 
3 660 
4 530 
5 460 
6 430 

Plot the LHS vs time 

And perform linear regression 

− ln C(t)−Cout

C(t = 0)−Cout

"
#
$

%
&
'
= λt

AER = λ = slope = 0.71 hr-1 



What makes a good tracer gas? 
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•  Carbon dioxide (CO2) 
–  People are a source 
–  Need to account for E/V 

•  Nitrous oxide (N2O) 
–  Laughing gas 
–  Toxic at high levels 

•  Freon (CFC) 
–  Global warming potential 

•  Helium (He) 
–  Costs 

•  Sulfur hexafluoride (SF6) 
–  Global warming potential 

•  Non-reactive (inert) 
•  Non-toxic 
•  Colorless 
•  Odorless 
•  Cheap 

–  Gas 
–  Sensor 

•  Low detection limits 
•  Portable 

Characteristics Commonly used gases 



Variation in AER within buildings 
•  Air exchange rates differ from building to building 

–  Differences vary by driving forces and building characteristics   
•  Example research: “Continuous measurements of air change rates in an 

occupied house for 1 year: the effect of temperature, wind, fans, and 
windows” 

–  4600 AERs measured by automated SF6 system in one house for 2 years! 

52 
Wallace et al. 2002 J Expo Anal Environ Epidem 



Variation in AER within buildings 

53 
Wallace et al. 2002 J Expo Anal Environ Epidem 

AERs in individual buildings can vary by season 
•  Driving forces: temperature, wind speed 

AERs can vary by I/O temperature  
within seasons 



CO2 concentrations in the classroom 

•  How can we estimate the ventilation rate in this classroom? 
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What if our pollutant has another loss term? 

•  Rarely are we working with inert pollutants 
–  Other loss mechanisms are important 
–  Deposition to surfaces, control by HVAC filter, reaction, evaporation… 
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Indoor 
Emission 

T/RH 

Cout

λ

P
V

λ

E

C

Control/Filtration 

New terms
Qf = airflow rate through filter (m3/hr)
η = filter removal efficiency (-)

Qf

η



Mass balance with filtration  

•  New term to mass balance: 

•  Assume steady state for now, divide by λ, and solve for C: 

•  CADR = Clear Air Delivery Rate 
56 

V dC
dt

= PQCout −QC +E −ηQfC

dC
dt

= PλCout −λC +
E
V
−
ηQf

V
C

0 

C =
PCout +

E
λV

1+
ηQf

λV

C =
PCout +

E
λV

1+ CADR
λV

CADR =ηQf



Dynamic solution with filtration 

•  Going through the same process as before but with a new loss term: 
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V dC
dt

= PQCout −QC +E −ηQfC

C(t) =C(t = 0)e
− λ+

CADR
V

"

#
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%

&
't
+
PCout +

E
λV

1+ CADR
λV
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V
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&
''

steady-
state 

solution 

how close to 
steady-state 

have you risen? 

how far from 
your initial 

concentration 
have you 
fallen? 



Generalized steady and dynamic mass balance solutions 
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dC
dt

= S − LC

S = sources = λPCout +
E
V

L = losses = λ + CADR
V

+ kdeposition + krxn +...

Css =
S
L

C(t) =C0e
−Lt +

S
L
1− e−Lt( )

General steady-state solution: 

General dynamic solution: 



Assignment: HW 1 

•  HW 1 has been posted to BB 
–  Covers AER estimation and basic steady state calcs 

•  Due 1 week from today in class 
–  Upload a PDF, email me a PDF, or turn in hardcopy in class 
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Next time 

•  Overview of indoor pollutants 
–  Particles 
–  Gas-phase compounds 
–  Biological 

•  Typical concentrations measured in field studies 
–  Will go into individual dynamics later in the course 

•  Read Weschler paper if interested 
–  How have indoor pollutants changed since the 1950s? 
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