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ABSTRACT

Human occupants have a profound influence on indoor environments, although there is limited infor-
mation on means to cost-effectively assess occupant metrics in all types of buildings. Multiple measures
of occupancy (i.e., the number of occupants and the duration of their presence) and occupant activity
(i.e., the number of occupant movements through room doorways) were investigated in ten single-
patient rooms in a new hospital in Chicago, Illinois as part of the Hospital Microbiome Project, with
the overarching goal of determining occupant characteristics to inform an investigation of interactions
between humans and microbial communities. Four relatively low-cost, non-invasive methods to estimate
time-resolved occupancy and occupant activity were developed using data from (1) CO, concentration
sensors installed in patient rooms and the supply air streams serving each room and (2) non-directional
doorway beam-break sensors installed at each patient room doorway. A method that utilized data from
both sensors produced the most accurate estimates and was used to characterize time-varying occu-
pancy and occupant activity. Daily occupancy varied among rooms, with median values ranging from 0 to
3 persons per hour. Occupant activity exhibited less variation on average (approximately 8 doorway
movements per hour), but reached high levels on certain days for some patient rooms. No consistent
relationship was observed between estimated occupancy and occupant activity, indicating that one
metric cannot be inferred from the other. This study shows that this dual-sensor methodology provides a
relatively inexpensive, non-invasive, accurate approach to estimate occupancy and occupant activity in
an environment with rigorous privacy and security limitations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

accounted for 41% of total energy consumed in the United States [ 3].
Aside from energy consumption, human occupants have a signifi-

Human occupants have a profound impact on the built envi-
ronment, including building operation, energy consumption, and
indoor environmental quality (IEQ). Building operational parame-
ters, such as indoor temperature, relative humidity (RH), and
lighting levels, are primarily governed by occupant comfort and
preference [1] and a major component of building ventilation is
based on occupancy [2]. Maintaining these conditions requires a
substantial amount of energy; for example, in 2010, buildings
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cant impact on IEQ, particularly on indoor air quality (IAQ) and
indoor microbial communities. Human activities such as cooking
[4] and smoking [5] generate fine particles and other pollutants,
while even simple movements such as walking result in particle
resuspension [6]. Human occupants are also a prominent source of
indoor bacteria [7—12], and indoor concentrations of airborne
bacteria, including human-associated microflora and potentially
harmful pathogens, have been shown to increase with occupancy
[13].

The importance of occupants to the built environment has been
widely recognized and investigated in existing studies [14]. Occu-
pant information has been an essential component of these studies,
and a number of strategies to attain such information have been
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explored, ranging from physical observations (e.g., [15]) to more
sophisticated sensor-based methods (e.g., [16]). More intuitive
approaches have detected occupants using vision sensors,
including video camera, static camera, and/or passive infrared (PIR)
sensor networks [17—23]. Alternatively, some studies have relied
solely on CO, measurements and a steady state and/or dynamic
mass balance [24—26], while other studies investigated correla-
tions between occupancy and various environmental parameters,
such as temperature, humidity, illumination, acoustics, and motion
[25,27,28]. The use of less common indoor measurements has also
been explored, including air velocity [29], and an air quality sensor
network that monitored CO,, total volatile organic compounds
(TVOC), and particulate matter less than 2.5 pm in diameter (PM; 5)
[27]. Occupant detection methods designed specifically for office
environments have been widely investigated. Examples include
detecting occupant presence/absence with sonar-based hardware
that exists in computers and other electronic devices [30]; utilizing
chair pressure sensors, PIR sensors, and acoustic sensors (to detect
keyboard and mouse sounds) [31]; and combining information
from a variety of sensors, and employee badge and parking lot car
counts [32].

Although a number of approaches have been analysed, there is
still a gap in the literature. The majority of existing methods have
focused on estimating occupancy (i.e., the number of people in a
portion of a building and the duration of their presence), which
could be a result of the importance placed on reducing energy
consumption through building operation based on occupancy [33].
Much less attention has been given to detecting occupant activity
(i.e., occupant movements), despite evidence indicating that such
movements have a stronger effect than occupancy on certain as-
pects of IAQ, including increasing bioaerosol concentrations in
residences [34] and undermining containment strategies in hos-
pital isolation rooms [35,36]. The most relevant existing measures
of occupant activity include identifying room-to-room occupant
transitions [17,18,37], identifying high traffic areas [32], and char-
acterizing various types of desk-based office work [30,31].
Furthermore, methods of occupancy or occupant activity detection
have not been explored in a wide variety of buildings. Previously
investigated buildings imposed few limitations on the employed
detection methodologies, as most occurred in commercial office
buildings and universities, where privacy/security restrictions and
the level of invasiveness were not overwhelming concerns. This
will not hold true in all indoor environments (such as hospitals),
and there is a need to develop and evaluate methods to detect both
occupancy and occupant activity in various types of buildings.

In response, we evaluated multiple methods for estimating both
human occupancy and occupant activity in ten single-occupancy
hospital patient rooms using data from multiple sensors as part
of the Hospital Microbiome Project (www.hospitalmicrobiome.
com). In this study, ‘occupancy’ is defined as a measure of the
number of people in a patient room and the duration of their
presence, and ‘occupant activity’ is defined as a measure of occu-
pant movements through the patient room doorway (i.e., the
number of entrances and exits, which provides insight on the
occupant movements into and out of patient rooms but does not
provide direct measurements of in-room activity). The results from
this work (i.e., quantitative values of time-varying occupancy and
occupant activity) will inform a future comparison to companion
microbial data (when available) in order to determine potential
interactions between human occupants and microbial commu-
nities in the studied environment. To accomplish this, we devel-
oped four low-cost, non-invasive methods to estimate both
occupancy and occupant activity, which we analyse in this paper to
provide methodological recommendations for occupancy and
occupant activity detection in a type of building with several

privacy and security restrictions, as well as valuable information
regarding the levels of occupancy and occupant activity in this
unique type of environment.

2. Methods

An opportunity to study human occupants in a hospital envi-
ronment arose with the Hospital Microbiome Project, an investi-
gation of microbial communities in a newly constructed hospital
pavilion in Chicago, both before and after the hospital had opened
to occupants [38,39]. Microbial samples were taken from a variety
of surfaces, in air, and from various human sites, over the course of
approximately one year. During this time, a number of sensors were
also deployed to concurrently measure indoor environmental pa-
rameters, including temperature, RH, illuminance, room pressuri-
zation, ventilation rates, CO, concentrations, and doorway beam-
breaks in the patient rooms [40]. The goal of this joint measure-
ment campaign was to determine possible relationships between
microbial communities and indoor environmental parameters.

One environmental parameter that was predicted to have a
prominent effect on the microbial communities was human occu-
pants [41]. Information regarding occupancy and occupant activity
was therefore essential to the Hospital Microbiome Project, and so
methods to estimate these occupant parameters (within reasonable
cost constraints) in ten single-patient hospital rooms were devel-
oped. The rooms were all 33 m? (including a personal bathroom)
and 2.9 m in height with large windows along the west-facing
exterior walls. All rooms were designed and operated as neutral
pressure rooms and at least one of the double doors typically
remained closed. The five rooms on the 10th floor (referred to as
rooms 201—205) were reserved for oncology patients, whereas the
five rooms on the 9th floor (referred to as rooms 101—-105) were
reserved for patients with shorter stays. Although none of the
sensors installed in these rooms provided a direct measurement of
occupancy or occupant activity, values for these parameters for
each room were estimated by processing data from select envi-
ronmental sensors, which included both non-directional doorway
infrared (IR) beam-break sensors (SenSource PC-TB12-R People
Counters; accuracy not reported by the manufacturer; initial cost of
~$400 USD) and CO; sensors (PP Systems SBA-5 CO, Gas Analyzers;
manufacturer-reported accuracy of +20 ppm; initial cost of ~$2000
USD when combined with a data logger). The beam-break sensors
were installed at each patient room doorway to record the number
of times the beam was broken (i.e., the doorway threshold crossed
by a person); however, the device provided no indication of the
direction of movement. The CO, sensors were installed in each
patient room and in the supply air streams that served the rooms,
and recorded measurements to Onset Computing U12-013 data
loggers. All sensors recorded data at 5-min intervals, however the
measurement interval of the beam-break sensors could not be
synchronized with that of the other devices. The data streams from
these sensors were used to develop four methods of occupancy and
occupant activity detection in each patient room, defined herein as
the: (1) Beam-break, (2) CO,, (3) Lagged CO,, and (4) Combined
methods. The approach that each method utilized to estimate: (1)
occupancy and (2) occupant activity is described in the following
section. The procedure used to validate each of the four methods is
discussed later in Section 3.2.

2.1. Estimation of occupancy

2.1.1. Beam-break method

The Beam-break method only utilized data from the beam-
break sensors and estimated occupancy by applying an occupant
movement pattern to the raw beam-break count. It was assumed
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that only the patient was present in each patient room at midnight
(as the patient should be sleeping at this time), and occupancy
fluctuated after this time based on the beam-break count. Each
doorway beam-break was assumed to correspond to the movement
of a single occupant and the direction of the beam-breaks was
assumed to follow an alternating pattern, where 50% corresponded
to patient room entrances, and the other 50% corresponded to
patient room exits. This movement pattern was deemed appro-
priate for this environment as it was representative of the majority
of occupant movements (i.e., over 90%) observed during periodic
visual observations. The main challenges and error associated with
this method stemmed from the beam-break sensors, particularly,
the non-directionality of the measurements and the inability to
determine the number of occupants associated with each beam-
break (discussed further in Section 3.4).

The remaining three occupancy estimation methods differed
from the Beam-break method in that their base estimate of occu-
pancy was determined from a mass balance on CO;, concentration
data.

2.1.2. CO; method
The CO, method utilized the basic form of this, as described by
the following equation and assumptions:

C _ QsupCsup +E
room Qex + Qret

where Croom is the CO, concentration in the patient room (ppm/
106), Qsyp is the AHU supply air flow rate (L/min), Cgyp is the CO;
concentration in the supply air stream for the patient room (ppm/
108), E is the CO, emission rate for a typical hospital occupant (L/
min), Qex is the AHU exhaust air flow rate (L/min), and Qe is the
AHU return air flow rate (L/min). E was assumed to be 0.39 L/min
based on the metabolic and respiratory rates for an average sized
adult engaged in very light physical activity [2]. Qsup, Qex, and Qret
were measured using a powered flow hood (with an estimated
accuracy of 5%, as described further in Section 3.4). The device was
most compatible in terms of register/grille geometry with the re-
turn and exhaust outlets, and therefore the measurements for Qex
and Q¢ were deemed acceptable. However, the device did not fit
well with the supply duct geometry (i.e., the slot diffuser) and so
there was little confidence associated with the measurements for
Qsup- An alternate approach was taken to determine a representa-
tive value for Qsup, which involved performing the steady-state
mass balance (Equation (1)) during times of zero occupancy
(defined as periods of five or more consecutive hours without a
single beam-break) with the measured Qqx and Qe values. Infor-
mation from the building operations manager suggests that Qsup
was constant, and so the median value from this analysis was used
throughout this investigation.

Furthermore, it was assumed that patient rooms were under
steady-state conditions at each 5-min measurement interval and
that mixing was complete in each room. Design supply air flow
rates ranged from 11,000—12,750 L/min for the patient rooms with
volumes near 100,000 L, providing approximately 7—8 air changes
per hour (ACH). This indicates that the time to reach 95% steady
state ranges from approximately 20—25 min. The mixing
assumption is supported in part by Wang et al.'s [25] observation
of reasonably high levels of mixing in an office and a lecture hall
with closed doors. Mixing was also investigated in the hospital
before it opened by placing five CO, sensors in a single patient
room [42]. The measurements showed that the air was reasonably
well-mixed, and although there were no indoor sources of CO,
(i.e., human occupants) at the time of this test, the large air flow
rates relative to the patient room volumes should ensure

(1)

reasonably thorough mixing when indoor sources of CO, are
present. However the main issue with this method, and all those
that incorporate this CO,-based mass balance, is the error asso-
ciated with using a generic value for E (discussed further in Sec-
tions 3.4 and 3.5).

2.1.3. Lagged CO; method

The basic mass balance approach in Section 2.1.2 was then built
upon by the remaining two methods. The Lagged CO, method also
utilized Equation (1) and the same assumptions described above,
but differed in that it incorporated a 20-min time delay on Cyoom.
This accounted for the time it takes to achieve near steady-state
conditions in each patient room for a CO, measurement at a spe-
cific instant in time.

2.14. Combined method

Finally, the time-lagged mass balance from Section 2.1.3 was
built upon by the Combined method, which included the addition
of beam-break sensor data to reflect dynamic short-term changes
in occupancy. The time-lagged mass balance served as a base es-
timate of occupancy, and the total was allowed to fluctuate based
on the beam-break activity. These fluctuations were informed by
findings from the visual observations (as explained in Section 2.1.1)
and were based on the following assumptions: (1) there was no
change in occupancy if no beam-breaks were recorded in a mea-
surement interval, (2) an even number of beam-breaks in a mea-
surement interval resulted in a change in occupancy (dependent
upon the number of measured beam-breaks) in that time interval
only (i.e., an even number of entrances and exits resulted in no
residual change in occupancy), and (3) an odd number of beam-
breaks within a measurement interval equated to a change in oc-
cupancy during the interval (dependent upon the number of
measured beam-breaks) as well as a residual change of one occu-
pant (assuming that the occupants associated with other recorded
beam-breaks measured in that time interval had exited). The di-
rection of the beam-break movement (i.e., an entrance or exit) was
informed by the difference between the CO, concentration in the
supply air stream and patient room air between consecutive time
intervals (e.g., an increase in this difference represented an occu-
pant entering and a decrease represented an occupant exiting). This
approach was made possible through the use of CO, sensors with a
high accuracy and low response time (manufacturer-reported
response time of 1.6 s).

2.2. Estimation of occupant activity

Once the four methods to estimate occupancy were established,
each method was also used to estimate occupant activity (i.e., the
number of doorway movements) using one of two approaches. The
first approach used the raw beam-break count as the value for
occupant activity, since it is a direct measure of doorway move-
ments and should capture every movement occurring within each
5-min measurement interval. The methods that incorporated
beam-break data (i.e., the Beam-break method and the Combined
method) adopted this strategy. The second main approach applied
to the methods that relied solely on CO, data: the CO, method and
Lagged CO, method. The CO; sensors do not provide a direct
measure of doorway movements, and so occupant activity was
inferred from the occupancy estimates. The CO, method and Lag-
ged CO, method assumed that a change in direction and magnitude
of the respective occupancy estimates between consecutive time
intervals indicated a doorway movement.
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2.3. Visual observations of occupancy and occupant activity

Occupancy and occupant activity were also measured in the
patient rooms through periodic visual observations, which
involved a single investigator physically monitoring occupancy and
occupant activity in multiple patient rooms on the same floor over
the course of five consecutive hours on two separate occasions. This
manual count data was intended to provide true values of occu-
pancy and occupant activity, however this was not realized at all
times for both parameters (if for example, the observer was unable
to capture a doorway movement for a patient room). This manual
count data was assumed to be the most accurate measure of oc-
cupancy (since occupancy, or the number of people in a room, was
simple to monitor and could be verified at any time by the
observer), and so the occupancy estimates made with all four
methods were compared to the manual count values. However
unlike occupancy, the manual count data for occupant activity was
deemed less accurate because it was difficult for one observer to
record every doorway movement occurring in multiple rooms
simultaneously (the doorway movements were much more dy-
namic and could not be verified after the fact). The beam-break
sensor data was assumed to be the most accurate indicator of
occupant activity since the sensors are more reliable than one
observer at capturing all doorway movements. Accordingly, the
occupant activity estimates were evaluated through a comparison
to the beam-break sensor data.

3. Results and discussion
3.1. Estimates of occupancy and occupant activity

The Beam-break, CO,, Lagged CO,, and Combined methods were
used to estimate daily occupancy and daily occupant activity using
approximately six months of reliable sensor data (July
2013—]January 2014). The occupancy estimates were converted into
units of person-hours by accounting for the duration of each state
of constant occupancy, since both the number of occupants in the
patient rooms and the duration that they were present were of
interest to this study. The number of occupants can also be inferred
by dividing the number of person-hours by the number of hours in
the defined period, which is 24 h for the daily period discussed
below. The occupant activity estimates were expressed as the total
number of beam-breaks occurring each day. Sample occupancy and
occupant activity estimates for a single patient room (Room 105)

80 -

?

3

[]

N =

=

g 60

[V

e

oy

c

8

3 40

Q

(@)

=

S "
20 : . = .

Beam-break CO, Lagged CO, Combined

Fig. 1. Sample occupancy estimates for patient room 105 using each of the four
methods. The vertical histograms show values of daily occupancy (i.e., the number of
person-hours over a 24- period) for the six month measurement period. Comple-
mentary plots for all rooms are available in the Supplementary Data.
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Fig. 2. Sample occupant activity estimates for patient room 105 using each of the four
methods (the Beam-break method and the Combined method are expressed by the
same distribution, since these methods produce equal estimates of occupant activity).
The vertical histograms show daily values of occupant activity (i.e., the total number of
doorway movements occurring over a day) for the six month measurement period.
Complementary plots for all rooms are available in the Supplementary Data.

using the six months of data are shown in Figs. 1 and 2, respectively
(complementary figures for all patient rooms are included in the
Supplementary Data). Fig. 1 shows that the methods that incor-
porate CO, data produce occupancy estimates that appear similar
in terms of both range and median (i.e., 1—3 persons and approxi-
mately 2 persons, respectively), but exhibit a small number of mi-
nor differences in the frequency of certain values of occupancy. In
general, the Beam-break method occupancy estimates fall within a
smaller range of values compared to the estimates produced by
methods that incorporate CO, data (i.e., 1-2 persons vs. 1-3 per-
sons, respectively). There is no general trend in regards to the
median values, as these varied between methods depending on the
room (Fig. 1 shows sample values for room 105 only). Fig. 2 shows
that the occupant activity estimates based solely on beam-break
data entail a higher median value and wider range than those
made solely with CO; data (which is true for all rooms). Distinct
differences are apparent for both parameters, and so a method of
validation for both the occupancy and occupant activity estimates
was required.

3.2. Evaluation of estimates

The estimates were evaluated by comparing the results to the
most accurate values available for both occupancy and occupant
activity (discussed previously in Section 2.3). The most accurate
method(s) to predict occupancy and also occupant activity were
then identified (as discussed below). Following this evaluation, the
one method that provided the most accurate estimates of both
occupant parameters was determined.

3.2.1. Occupancy

The method estimates for occupancy were evaluated first by a
comparison to the visual observations. Fig. 3 shows the cumulative
deviation of the occupancy estimates made at 5-min intervals from
the manual observational count value of occupancy over 4-h pe-
riods for multiple patient rooms (i.e., there are 48 data points per 4-
h period for eight different combinations of patient room and time
of monitoring).

These results for occupancy show that each of the methods
produce an equally accurate long-term estimate of occupancy, as
the deviations of the occupancy estimates produced by each of the
four methods were not statistically significant from each other (t-
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Fig. 3. Cumulative deviation of occupancy estimates from the manual count value
(represented by 0 on the y-axis) over 4-h periods for various patient rooms that were
monitored at different times. Positive values indicate an overestimation with respect to
the manual count value, and negative values correspond to an underestimation. A
deviation of zero indicates agreement with the manual count value.

test p > 0.05) and the median value for each method was very close
to the manual count value (i.e., a deviation from the manual count
near 0, ranging from 0.13—0.36 person-hours over 4-h periods, as
shown in Fig. 3). However, the methods do differ in terms of their
variability. The coefficient of variation (i.e., standard deviation over
mean) for the deviation of the Beam-Break, CO,, Lagged CO,, and
Combined estimates from the manual count estimate was
approximately —33, 3, 4, and 4, respectively. These values indicate
that the inclusion of CO, data produced more consistent estimates
of occupancy at each instant in time over longer periods of time,
whereas beam-break sensor data on its own is more likely to pro-
duce a more variable estimate of occupancy at a specific instant in
time. Furthermore, although the Beam-break method is more likely
to overestimate occupancy (as its median is slightly greater than
zero), it also produces underestimates in occupancy that are much
larger than those of the other methods. The number of occupants in
each patient room often exceeded one just before midnight for the
Beam-break method estimates (however 90% of estimates still
remained below four occupants for each room at this time), which
means that either upper boundaries need to be applied in order to
satisfy the initial assumptions, or that days with a high and un-
reasonable number of residual occupants should be disregarded.
The number of occupants just before midnight was lower on
average for the methods that incorporated CO; data, which also do
not include the assumption of a single occupant at midnight, and so
the above remedies are not needed for these methods. For these
reasons, the three methods that incorporate CO, data (i.e., the CO,,
Lagged CO,, and Combined methods) are the preferred methods to
estimate occupancy of the four methods under analysis.

3.2.2. Occupant activity

Fig. 4 provides a sample comparison (for patient room 105) of
the occupant activity estimates to the beam-break sensor count
over four 1-h periods. The Beam-break and Combined methods are
expressed by a single bar in Fig. 4 because they utilize the same
approach (i.e., the use of beam-break sensor data directly) and
therefore produce the same estimate for occupant activity.

The sample results in Fig. 4 show a trend in method accuracy
that is similar to the other patient rooms, albeit with some differ-
ences in magnitude. In general, the manual count data is most
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similar to the beam-break data (the benchmark dataset for occu-
pant activity, as explained in Section 2.3), but it does not capture
every movement. On average, the manual count data missed 5—6
beam-breaks per hour (equating to an average relative error of
approximately 43%) during the periods of visual observations. The
methods based solely on CO; sensor data (i.e., the CO, and Lagged
CO, methods) provide even less information, as the CO, sensors
have difficulty detecting dynamic short-term, and in some in-
stances, smaller, changes in occupancy (e.g., activities occurring
within a 5-min interval). Both CO,-based methods failed to detect
an average of 8—9 doorway movements per hour compared to the
beam-break sensor measurements (equating to a relative error of
close to 70%) during the periods when visual observations took
place (the validation exercise was limited to these time periods so
that all measurement methods could be compared). Therefore the
preferred methods to estimate occupant activity are those that
utilize beam-break sensor data: the Beam-break method and the
Combined method.

3.2.3. Interpretation of results

Based on these collective results, the Combined method ap-
pears to be the preferred way to estimate both occupancy and
occupant activity, as it produced the most accurate estimates of
both parameters. Several studies support this finding, as they have
identified a strong correlation between CO, concentrations and
human occupancy [27,43]. However, other investigations that
estimated occupancy using only CO, concentrations in a mass
balance noted delays in the estimates [22] and difficulties
detecting low levels of occupancy [43] and minor changes in oc-
cupancy (e.g., two to three persons) [24,25]. The Combined
method overcomes such difficulties by utilizing CO, sensors with a
high accuracy to achieve improved estimates during low occu-
pancy periods, accounting for the time delay in the CO, sensor
measurements, and also by supplementing the mass balance on
CO, concentration data with beam-break sensor data to capture
small changes in occupancy. The beam-break data also provides a
robust measure of occupant activity, which has not been widely
explored [34]. Furthermore, the error and labour-intensiveness
associated with the visual observations justifies the need for an
alternative method to estimate these occupant parameters. The
Combined method provides an improved approach to attain
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occupant information in buildings that are more difficult to
characterize (accordingly, the following results and discussion
pertain to the Combined method).

3.3. Occupant characteristics and implications in hospital patient
rooms

The occupancy and occupant activity estimates provide insight
on the occupant behaviours occurring in the patient rooms. The
results for daily occupancy and occupant activity using the six
months of data (Figs. 5 and 6, respectively) show variation both
within the patient rooms over time and among patient rooms.
Occupancy was noticeably higher in rooms 103 and 105 (median
person-hour values equate to roughly 3 and 2 persons, respec-
tively) and noticeably lower in rooms 101 and 202 (median per-
son-hour values equate to 0 persons for both). These differences
could be attributed to varying numbers of visitors/staff, varying
unoccupied periods, or the use of an unrepresentative value of E
(discussed further in Section 3.5). In general, occupancy was
slightly higher on the 9th floor (rooms 101—105), whereas occupant
activity was higher (in terms of the median and maximum) in
rooms on the 10th floor (rooms 201—205), which could be a result
of patient condition (e.g., 10th floor rooms were occupied by
oncology patients, who typically had longer stays than patients on
the 9th floor).

The median value for occupant activity implies an average of
approximately 8 beam-breaks each hour, with more extreme cases
exceeding 17 beam-breaks per hour on average (Fig. 6). These
median and extreme values exhibit less variation than those for
occupancy, which is an important point of distinction because it
implies that occupancy and occupant activity might not be as
closely related as one might think. This hypothesis was confirmed
by calculating Spearman correlation coefficients with Bonferonni
correction, which yielded only low to moderate positive correla-
tions (ranging from 0.24 to 0.51) in each patient room, which im-
plies that there is no strong or consistent correlation between
occupancy and occupant activity in this investigation. While there
is limited data on occupant activity (i.e., doorway movements) in
hospitals, a previous study recorded anywhere from 10 to 60 per-
sons entering/exiting a single hospital operating theatre within 30-
min periods [37], which serves to illustrate that occupant activity
can be unexpectedly high in hospitals, due to various medical
procedures and patient needs, in otherwise relatively low-
occupancy areas.
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ments occurring over a day) for each of the ten patient rooms using the Combined
method and the six months of measured data.

For the purposes of the Hospital Microbiome Project (i.e.,
determining interactions between microbial communities, indoor
environmental parameters, and occupant characteristics), it is ideal
to estimate occupancy and occupant activity, since they both have
significance to the built environment and to the ongoing microbial
analysis. It has been shown that human occupants have a dominant
effect on indoor bacterial bioaerosols [45,46] and bacteria from
human skin, hair, and nostrils have been shown to leave a distinct
human mark on indoor air during periods of occupancy [8,46,47].
Additionally, each human sustains a unique microbiome, which
will rapidly colonize an indoor environment [11]. In the Home
Microbiome study, it was found that the microbial communities
associated with an initial occupant were replaced by those of a new
occupant in less than a day [11]. The succession of microbial com-
munities in the patient rooms under investigation will likely differ
due to a rigorous cleaning procedure prior to the admission of a
new patient. Greene et al. [37] found higher airborne bacterial
counts in hospitals during periods of high occupancy and activity
compared to times immediately following a thorough cleaning and
with fewer occupants. Therefore in this study, it is likely that pe-
riods with distinct microbial communities (associated with specific
admitted patients) will be separated by periods with disrupted
microbial ecology due to patient room cleaning. This can provide
insight pertaining to the microbes associated with certain patients
and/or rooms, which can be coupled with the Combined method
estimates to identify areas of high occupancy and/or occupant ac-
tivity, which could potentially represent areas with elevated levels
of certain airborne particles [48].

3.4. Combined method uncertainty

In order to determine such occupant characterizations, it is
important to understand the associated uncertainty and error in
the method used herein. To do so, the propagated uncertainty was
determined for the occupancy estimates made with the Combined
method. The uncertainty associated with Croom and Csup was taken
as 20 ppm, the manufacturer reported uncertainty associated with
the CO, sensors (for a measurement range of 0—2000 ppm). The
uncertainty associated with the air flow measurements made with
the powered flow hood varies depending on the measurement
scenario; however a 5% measurement uncertainty was deemed
reasonable for the Qpt and Qex measurements in this study
[44,49—51]. The uncertainty associated with Qsyp was then
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determined by calculating the propagated uncertainty associated
with the mass balance on CO, during times of zero occupancy.
Finally, the uncertainty associated with E was taken as the standard
deviation of a distribution of possible values for E (described
further in Section 3.5).

There was no manufacturer-reported uncertainty with the
beam-break sensors, but there was uncertainty associated with the
direction of the beam-breaks and also with the number of occu-
pants that moved through the doorway during each beam-break. It
was assumed that 50% of the beam-breaks corresponded to en-
trances, while the other 50% corresponded to exits. The manual
count data reveals that there were slightly more exits than en-
trances (due to the number of persons associated with each
doorway movement), with the most extreme ratio consisting of
approximately 43% entrances and 57% exits. On average, there was
2.6% error associated with the initial 50% assumption. Furthermore,
it was assumed that each doorway beam-break corresponded to the
movement of a single occupant. However, the manual count data
indicates that approximately 90% of the total observed beam-
breaks corresponded to the movement of a single occupant.
Approximately 7.5%, 1.5%, and 1% of the total observed beam-breaks
corresponded to the movements of two, three, and four occupants,
respectively (movements involving more than four occupants were
not observed). This supports the assumption that a beam-break
likely corresponds to the movement of one occupant, but also im-
plies that there is approximately 10% estimated uncertainty asso-
ciated with this assumption.

The above values were used to determine the level of uncer-
tainty associated with the occupancy estimates, which was
approximately 1.3 person-hours for a 1-h period. This is a reason-
ably small amount of uncertainty compared to previous studies due
to the high accuracy of the CO, sensors used (i.e., +20 ppm for
0—2000 ppm compared to past studies that used less accurate CO,
sensors with +5% or +75 ppm for 0—2000 ppm) [25]. This uncer-
tainty should still be accounted for because it has a proportionally
larger effect in hospital patient rooms, which have lower occu-
pancies than other types of buildings (e.g., an uncertainty of 1.0
person-hour in the estimate could equate to an error of 100%, or a
doubling of the actual occupancy, in patient rooms devoted to a
single patient). Furthermore the uncertainty associated with the
beam-break sensors does not affect the estimates of occupant ac-
tivity, since this parameter is a measure of the number of doorway
movements only, and does not consider the number or direction of
occupants associated with each movement. However these factors
are significant to the indoor environment in terms of the magni-
tude of resuspension and the locations where it occurs, and so these
factors should be considered in addition to, and independently of,
the total beam-break count. Although the uncertainty in this study
is small, reducing it further can improve the confidence associated
with the estimates.

3.5. Influence of occupant CO, emission rate

One approach to reduce the uncertainty is to improve the ac-
curacy of model inputs and assumptions. This was investigated for
the per-person emission rate, E, because it contributed a high de-
gree of uncertainty to the estimates. The value for E was assumed to
be constant across all patient rooms, but will vary in reality be-
tween individuals and throughout the course of the day for specific
individuals [52] based on a number of factors, such as age, weight,
gender, activity level, and the proportion of consumed macronu-
trients. The effect of these variations was investigated by per-
forming a sensitivity analysis on E. A distribution of values for E was
generated based on the literature (Table 1). Percentile values from
this generated distribution along with 10% variations from the

selected value (Table 2) were used to generate alternate estimates
of occupancy using the Combined method (time-series sample
shown in Fig. 7).

The results show that varying the value of E to any of the
alternative values presented in Table 2 produced a statistically
significant difference (t-test p < 0.05). This is apparent when
examining Fig. 7, as there are noticeable differences between the
occupancy estimates made with the selected emission rate (rep-
resented by the dashed line in Fig. 7) and the estimates made with
the alternative emission rates. The majority of values for E pro-
duced occupancy estimates that were within a reasonably close
range, with the exception of the lowest value for E, which produced
a much higher estimate of occupancy. These estimates frequently
exceeded 200 person-hours, and on some days, exceeded 400
person-hours, which correspond to average occupancies of
approximately eight and sixteen persons, respectively. Although it
is possible that patient rooms contained visitors and staff members
in addition to the patients, these levels of occupancy are highly
unlikely in hospital patient rooms and were not observed during
the manual counts. Since the results from a much lower value for E
are unrealistic (and those cited in the literature are from much
older studies that do not provide details of the assumed occupant
characteristics), the value for E for hospital occupants should be
selected from the smaller range of larger values described in this
section (i.e., 0.36—0.44 L/min). These are also similar to values from
recent studies of human CO, emission rates involving similar ac-
tivity levels [58]. Consideration should be given to this selection, as
the value for E is highly variable and can cause a significant dif-
ference in the results.

One approach to reduce this error is to select a customized value
of E for each occupant. To investigate this, patient characteristics
(i.e., weight, age, gender, and duration of room occupancy) were
used to select unique values for E following procedures outlined in
ASTM D6245 [59] and recommendations from the EPA Exposures
Handbook [60]. Estimates were generated using the Combined
method, and were compared to the manual count estimates, as well
as the Combined method estimates using the generic value of E.
Due to a limited amount of patient information, there was only one
4-h period where the customized Combined method estimates
could be compared to the other two estimates. This one comparison
revealed that incorporating an emission rate based on occupant
characteristics improved the estimate accuracy by approximately
0.5 person-hours over a 4-h estimation period. This approach could
therefore potentially improve occupancy estimates over both short
and long-term periods, although it requires detailed information on
occupant characteristics that may not be available in all environ-
ments at all times (as was the case in this study).

3.6. Other potential surrogates for occupancy

Another approach to overcome the error associated with E (and
a potential lack of information on occupant characteristics) is to use
other indoor environmental parameters as a surrogate for occu-
pancy. Patient room temperature and relative humidity were
selected since they should theoretically be affected by human oc-
cupants. Both parameters were measured at 5-min intervals in each
patient room with an Onset U12-012 data logger (temperature
accuracy of +0.4 °C at 25 °C and RH accuracy of +2.5% from 10% to
90% RH). Both datasets were used to conduct a mass balance on
moisture content in the air (in a similar approach to Equation (1),
but with the humidity ratio instead of CO,). Temperature, RH, and
the calculated humidity ratio were then compared to the manual
count data to determine potential relationships. Correlation co-
efficients with Bonferroni correction ranged from low negative to
moderately high positive values indicating no strong or consistent
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Table 1

Potential values for E from the literature.
E (L/min) Occupant description Source
0.15 Quiet adult sleeper [53]
0.17 Child engaged in very light activity (1.2 met) [54]
0.20 Average sized adult seated/sleeping quietly 2]
0.25 Restless adult sleeper [53]
0.30 Average sized adult engaged in office work 2]
0.31 Average sized adult engaged in light office work (1.2 met) [54]
0.31 Typical office worker [55]
0.32 Typical office worker [55]
0.35 Typical University library occupant [56]
0.39 Upper end of “very light” activity (~1.3 met) [2]
0.47 Bar occupants [57]
0.60 Average sized adult engaged in office work (upper end at 2 met) [54]

Table 2

Alternate values of E for comparison.

E (L/min) Description of value

0.086 10th percentile value from distribution (based on values from the literature)
0.27 Mean value from distribution (based on values in the literature)

0.36 10% less than the chosen value

0.39 Selected value for this investigation (based on [2])

0.43 10% more than the chosen value

0.44 90th percentile value from distribution (based on values from the literature)

relationship in all cases. A linear regression analysis further sup-
ported this, as the R? values were close to zero for each parameter
in each room, indicating no linear relationship. Finally, a Wilcoxon
matched-pairs signed rank test and equality of matched pairs of
observations test further supported this, by identifying offsets be-
tween data pairs and unequal distributions for all comparisons.
These tests were also performed on the six months of occupancy
data produced with the Combined method to observe potential
correlations over a longer period of time; however results were
similar to those using the manual count data.

Evidently, patient room temperature, RH, and humidity ratio are
not suitable indicators of occupancy in this study, and were also not
useful for estimating occupant activity. This is likely a result of the
very small changes in each of these parameters (caused by low
levels of occupancy), as well as the homogenizing effect of the
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day) using the Combined method and various values of E to show the effect of the
occupant CO, emission rate on the occupancy estimates. The dashed line represents
the generic value used in this study and the solid lines represent plausible alternatives.
Estimates are shown for patient room 105 as an example.

hospital HVAC system in this relatively tightly controlled environ-
ment [40]. However, previous studies have identified strong cor-
relations between occupancy and CO; concentration and acoustic
measurements in an office environment [27]. Another study
installed a number of environmental sensors in a university office
to detect low levels of occupancy, and found that features extracted
from humidity, CO,, and acoustic sensor data exhibited high cor-
relations to human occupants, while features extracted from tem-
perature sensor data showed weak correlations to occupants [28].
So although indoor temperature and RH were not suitable surro-
gates for occupancy in this tightly controlled hospital, this does not
discount their use in other built environments and investigations.

3.7. Influence of data logging frequency

Of the sensors deployed, the beam-break and CO, sensors were
most useful in determining occupant parameters and are recom-
mended for similar investigations with similar resources. The 5-
min measurement interval produced an abundance of data, but
also entailed maintenance and time (data logger storage reached
capacity within 10 days), which may not be feasible in other in-
vestigations. To determine if such a frequent measurement interval
was necessary, data points from the beam-break and CO, concen-
tration datasets were eliminated to simulate 10-, 20-, 30-, and 60-
min measurement intervals. These new datasets were used to es-
timate occupancy using the Combined method (the time lag
applied to Cioom increased to 30 and 60 min for those simulated
measurement intervals, respectively), and the results were
compared to the estimates using the original dataset with 5-min
measurement intervals (a time-series sample is shown in Fig. 8).

Increasing the measurement interval produced a statistically
significant difference (t-test p < 0.05) in the estimates in some, but
not all, instances. This is evident in Fig. 8, as there are distinct
differences between various estimates on some days, while the
estimates appear very similar on others. The median percent
change across all rooms ranged from 1.5—89.0%, 0.5—110.0%,
0.1-147.0%, and 1.7—224.0% for the 10-, 20-, 30-, and 60-min
measurement intervals, respectively, indicating that an increase
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in the measurement interval is likely to cause an increase in the
occupancy estimates. Although some of these increases seem large,
they have a proportionally smaller absolute effect in the context of
single-patient rooms, where a 200% increase could equate to the
addition of 2 persons. A smaller/shorter data logging interval is
recommended for estimating occupancy in hospital patient rooms
in order to detect changes in occupancy that are small in magnitude
and short in duration, as observed in this study. Occupant dynamics
will differ in other indoor environments however, and so the data
logging interval should be investigated in different buildings to
determine an appropriate measurement rate, especially since the
data logging interval was observed to affect results (in this study)
and there is no standard measurement interval currently in use
[17,28].

4. Conclusions

The cumulative analytical and methodological results from this
investigation address a gap in the literature by examining methods
of detection that estimated both occupancy and occupant activity
in hospital patient rooms. A combined method, which incorporated
both CO; and non-directional single IR beam-break sensor data,
was found to produce the most accurate estimates of both pa-
rameters. Sources of error and uncertainty in this method (e.g.,
input assumptions, environmental measurements, and the data
logging interval) were determined to be reasonably small, while
strategies to further reduce this error were also explored. The
resulting occupant information can be used to identify areas of high
occupancy and/or occupant activity within the hospital that may
have influenced the IEQ. This occupant information can later be
compared to the companion microbial data to determine potential
interactions between the human and microbial communities. These
cumulative findings can be used to better understand occupant
behaviours and their effect on the indoor air and surface parame-
ters in a hospital environment.
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