CAE 553 Measurements and Instrumentation in Architectural Engineering Fall 2018

October 2, 2018 HVAC/Energy: Electric Power

Built Environment Research @ III] 🐋 🚓 M 🗸

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

ELECTRIC DEFINITIONS

- Electric Current:
 - Flow of electrons
 - Unit is ampere
- Electric Resistance:
 - Measure of difficulty to pass electric current
 - Unit is ohm
- Voltage:
 - Electric potential
 - Unit is voltage (V)

Have you seen similar terminology in heat transfer?

- Power:
 - The rate of electrical energy transformed
 - Unit is J/S = Watt
 - P = V x I (Apparent vs real power)
- Electric consumption:
 - Is the form of energy consumption that uses electric energy
- Transformers
 - Reduce voltage from the power lines (from more than 110 kV to 110 V)

- Alternating Current:
 - Change of current direction periodically, change the voltage level
 - <u>https://youtu.be/i-j-1j2gD28</u>
 - <u>https://cdn.sparkfun.com/assets/a/0/7/b/a/</u>
 <u>522783e0757b7fc2168b4567.gif</u>

learn.sparkfun.com

- Alternating Current:
 - What's the voltage and current in this form?

- Alternating Current:
 - What's the voltage and current in this form?

RMS value =
$$\sqrt{\frac{1}{b-a}\int_{a}^{b}y^{2}dt}$$

$$V_{RMS} = 0.7 \times V_{peak}$$
 or $V_{peak} = 1.4 \times V_{RMS}$

- Direct Current:
 - Provides a constant voltage and current

- AC vs. DC
- AC is
 - Used for building electrical outlets
 - Easier to transport and generate across long distances
 - Transported at high voltage (110 kV)
 - Low amperage
 - Less heat generated
 - Use transformers to lower voltage on the distribution site

- AC vs. DC
- DC:
 - Most appliances convert from AC back to DC
 - Examples:
 - Cell phones
 - Flatscreen TVs
 - Laptops

Electric wiring

- Line:
 - Usually black color wire known as hot comes from the electric panel
- Load:
 - Usually black or red color wire
 - Continuation of the line and goes to the device
- Neutral:
 - Usually white color wire
 - Completes the circuit
 - Carries excess current to ground
- Ground:
 - Usually green
 - Carries any inadvertent current from the circuit

Function	Color Code (for 120//208/240 V)	Color Code (for 277/480 V)	
Three Phase Line (L1)			
Three Phase Line (L2)			
Three Phase Line (L3)			
Neutral (N)			
Protective Earth or Ground (PG)			
Single Phase Line		(for 2 nd hot)	

gogowire.co

Electric Power

- Single Phase:
 - Entail two wires of Alternating Current (AC) power
 - Use mostly in residential buildings
 - What is the voltage in the US?
 - Other countries?

- Three phase:
 - Entail three wires of AC power
 - Use mostly in commercial buildings
 - Provide 1.732 times more power than single phase (sqrt(3))

- Most US industrial facilities use two high voltage configurations:
 - 480V Three phase Wye ("Y")
 - 480V Three phase Delta

- Benefits are:
 - Reduce construction cost for electrical service, wiring, and electrical devices
 - Reduce energy loses

Electric Power

480V Three phase Wye:
Use 277V or below 300V
Can be used for single phase lighting

• 480V Three phase Delta:

load

Electric Power

- What is the typical electric power draw for the following items:
 - Your personal laptop?
 - Your phone?
 - LED lights?
 - Fluorescent lights?
 - Your office desktop?

 Calculate the monthly electric consumption of the devices the above devices

Examples of Devices

Appliance	Power rating(in Watts) Standard	Current consumption in 1 Hour (in Amps)
Compact Fluorescent Lamp CFL	8,11,18,35	0.03,0.040,0.078,0.15
Bulb	25,40,60,100	0.11,0.17,0.26,0.43
Fluorescent Lamp	20,40	0.01,0.2
Fan	25-80	0.1-0.4
TV	80-400	0.42
Fridge	200-300	1-1.4
Heater	1000-3000	4.5-15
Vacuum cleaner	150-400	0.7-2
Mixi	300-600	1.4-2.8
Washing Machine	800-1000	4-4.5
Microwave Oven	600-1500	2.6-6.5
Table Fan	10-25	0.04-0.11
Computer	80-150	1-1.3
Laptop	20-50	0.09-0.22
Laser Printer	1000-1500	4.3-6.5
Ink Jet Printer	25-50	0.11-0.22
Electric Iron	450-1000	2-3
DVD	20-50	0.09-0.22
A/C 1HP	1000-1500	4.3-6.5
Water Pump 1/2 HP	500-1000	2.17-4.3
Hair Dryer	1200-1500	5.2-6.5
Music system	20-40	0.09-0.17

electroschematics.com

Examples of Devices

1 hp = 745.7 Watt

energyvanguard

• Power factor "true power": is the cosine of the phase angle between current and voltage

• Power factor "true power": is the cosine of the phase angle between current and voltage

Load Types

- Type of loads:
 - Resistive:
 - Incandescent lamp, resistance heat
 - Inductive
 - Motors, contractor coils, relays
 - Capacitive
 - Start capacitors
 - Combination of these loads

Load Types

Resistive load profile:

Inductive load lagging:

Capacitive load leading:

21

Progress Energy

Power Factor

P, Real Power

Power factor is usually less than 1

Progress Energy

22

• Power factor is equal to:

B= True Power

Watts, KW, Power

ELECTRIC POWER MEASUREMENTS

Ammeter

- Ammeters:
 - Are low-resistance instruments for measuring current
 - Should be connected in series with the circuit being measured
 - Have minimal influences on the measurement
 - Have several ranges

500 Ω F.S. = 1 mA

Fig. 16 Ammeter Connected in Power Circuit

Ammeter

- Have two windings:
 - Connect the primary in series with the circuit in which the current is measured
 - Connect the secondary winding a scaled-down version of the primary current, which is connected to an ammeter

Fig. 17 Ammeter with Current Transformer

Voltmeter

- Benefit from high-resistance instruments
- Connect across the load in parallel
- Influence measurements (ideally has finite impedance)

Fig. 18 Voltmeter Connected Across Load

Voltmeter

- Utilize voltage transformers to increase the operating range of a voltmeter
- Typically use isolation from high voltages and prevent operator injury
 - Similar to Ammeters:
 - One winding is connected across the high voltage to be measured
 - One connected to the voltmeter

Fig. 19 Voltmeter with Potential Transformer

Watt Meters

- Measure the active power of an AC circuit
- Combines voltmeter and ammeter
- Entail two sets of terminals:
 - One connected to the load voltage
 - One connected in series to the load current

Fig. 20 Wattmeter in Single-Phase Circuit Measuring Power Load plus Loss in Current-Coil Circuit

Fig. 21 Wattmeter in Single-Phase Circuit Measuring Power Load plus Loss in Potential-Coil Circuit

Extend the range with transformers or isolate it from high voltage

Fig. 22 Wattmeter with Current and Potential Transformer

Power-Factor Meters

- Meter measure the ratio of active to apparent power
- Have similar connections to wattmeters
- Extend the range using current and voltage transformer

Fig. 25 Single-Phase Power-Factor Meter

Fig. 26 Three-Wire, Three-Phase Power-Factor Meter

Clamp Meter

• Clamp Meter = Ampmeter + Voltmeter

 Created primarily as a single purpose test tool for electricians

- Evolved to:
 - Include additional measurement functions
 - Provide higher accuracy
 - Use for specific measurement features

Clamp Meter

- Can measure large AC currents based on simple transformer action:
 - Clamp around a conductor carrying AC current
 - Convert that current into a secondary winding that is connected across the shunt of the meter's input

- If the secondary has 1000 windings, then the secondary current is 1/1000 the current flowing in the primary:
 - 1 amp of current in the conductor being measured would produce
 0.001 amps or 1 milliamp

Digital Multimeter (DMM)

Product Comparison	Fluke 3000 FC Series Wireless Multimeter »	Fluke 87V Industrial Multimeter »	Fluke 279 FC TRMS Thermal Multimeter »
Price comparison	\$299.99	\$449.99	\$999.99
Safety rating: CAT IV 600 V/ CAT III 1000 V	√	4	√
Counts	6,000	20,000	6,000
Voltage AC/DC	1000 V	1000 V	1000 V
Current AC/DC	400 mA	10 A	2500 A AC w/iFlex current clamp DC Current via accessory clamp
Measurement temperature	with T3000 temp module	1	
Frequency and capacitance measurements	4	4	~
Resistance, continuity and diode measurements	4	4	~
Logging/Graphing	with optional FC modules and phone app or PC software		via phone app Fluke

34

Clamp Meter vs Digital Multimeter

- Clamp meters vs. common digital multimeter (DMM):
 - Similar functionality with an internal current transformer

Transcat.com

Clamp Meter

Clamp Meter

- Specification of Fluke 902 Clamp Meter:
 - 600 A AC current measurement
 - 600 V AC and DC voltage measurement
 - Temperature measurement from -10 °C to 400 °C (14 °F to 752 °F)
 - 1000 µF capacitance measurement
 - DC Current measurement to 200 μ A
 - Resistance measurement to 60 k Ω

Home Electric Measurements & Utilities

Advanced Power Strips

TRICKLESTAR 7-OUTLET MULTI SENSING APS \$48

ComedMarket.com

Home Electric Measurements & Utilities

- Advanced Power Strips works based on the idea of plug load managements. They include:
 - Couple of controlled outlets:
 - Different thresholds (e.g. 10 W, 22 W, and 42 W)
 - 1-2 always on outlet(s)

ELECTRICITY DATA LOGGERS

Logging electricity use

- Power is instantaneous
- Energy is integral
- Do electricity data loggers log power or energy?
 - i.e. power *draw* or power *consumption*?

Logging electricity use

Electromechanical induction watt-hour meter

Counts the revolutions of a metal disc that rotates at a speed proportional to the power

https://www.electrical4u.com

https://the-gadgeteer.com

Plug-Load Monitors "Kill A Watt"

- Monitor appliance consumption
- Record for an interval

Model:	P4400
Operating Voltage:	115 VAC
Max Voltage:	125 VAC
Max Current:	15 A<
Max Power:	1875 VA
Weight:	5 oz.
Dimensions:	5 1/8" H x 2 3/8" W x 1 5/8" D

P3international.com

• Actual building measurement

ICON Lab Measurements

Weekday

• Servers

Weekday

Workstations

Weekday

Copier / Printer

Weekday

Delgoshaei et al.

Kitchen

Weekday

CLASS ACTIVITY

Class Activity: Electrical Power Measurements

- Activity:
 - Measure power draw / electricity consumption of:
 - 1. A fan at three different fan speeds (low, medium, and high)
 - 2. A portable space heater
 - 3. Lamps with CFL and incandescent light bulbs
- Using the following tools:
 - Onset Energy Logger Pro with CT only (no voltage)
 - Onset HOBO Plug Load Logger
 - Fluke hand held clamp meter
 - Kill a Watt
 - Watts Up Pro

Class Activity

Onset Energy Logger Pro w/ CT

Fluke clamp meter

Class Activity

Onset plug load loggers

Kill A Watt meters

