CAE 465/526 Building Energy Conservation Technologies

Fall 2023

October 19, 2023

Building Retrofit and Energy Efficiency Measures (EEMs) – Part 1

Built Environment Research

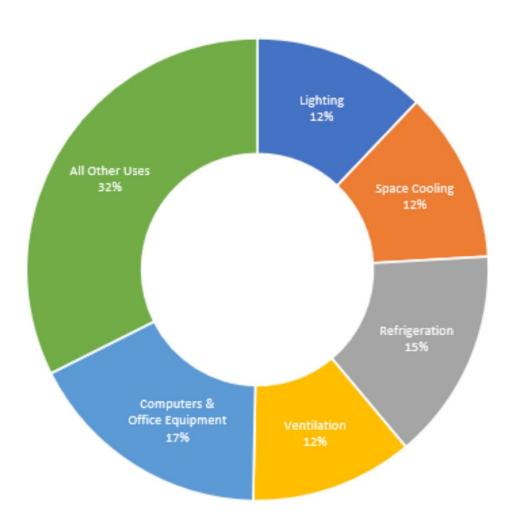
Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

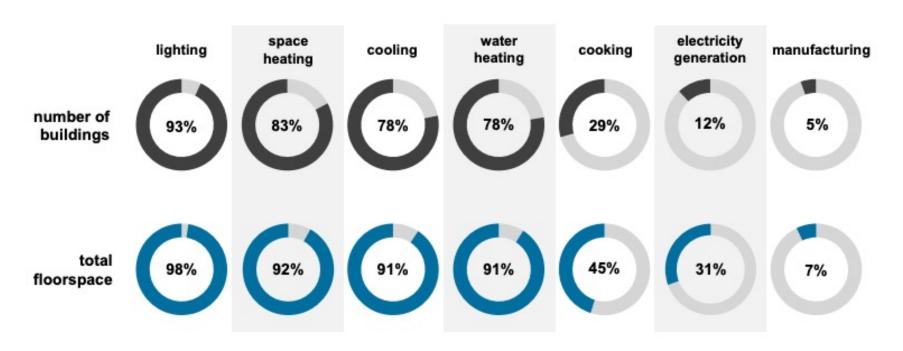
Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering
Illinois Institute of Technology

muh182@iit.edu


ANNOUNCEMENTS

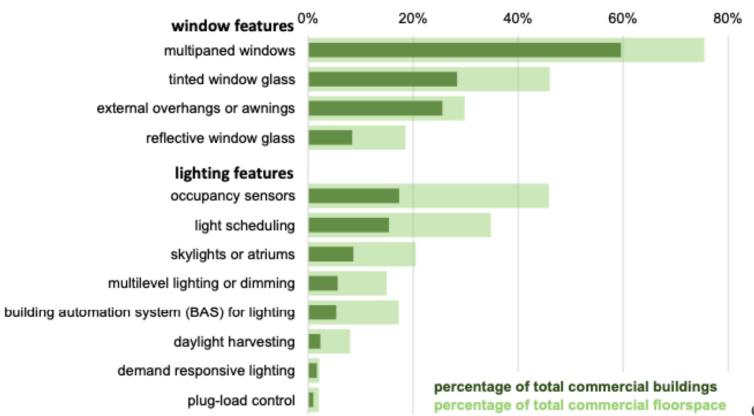
Announcements


- How was the career fair?
- Assignment 5 (the last one) is due this coming Monday
- We will start the project next week
- Midterm Exam
 - ☐ Currently scheduled for 11/02 (should we change it?)
 - Past exams are posted
 - ☐ CAE 526 students will take the midterm exam
 - ☐ IPRO students will present their progress so far as their midterm exam

LIGHTING RETROFIT

How is the percentage of lighting in commercial buildings?

• From CBECS 2018:

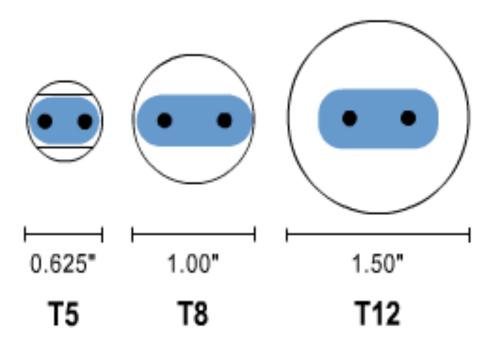

Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey

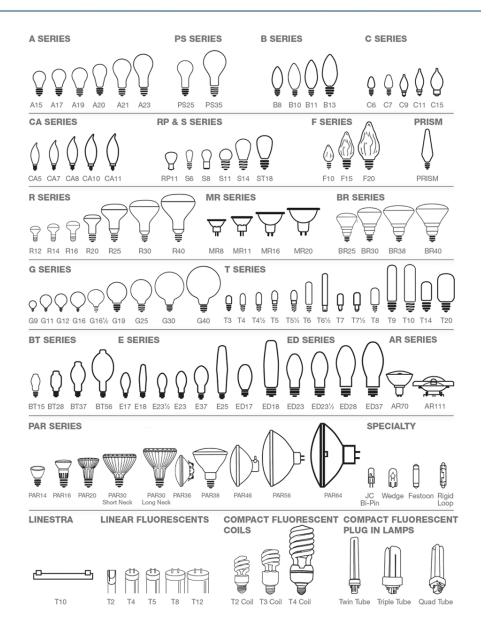
From CBECS 2018:

Lighting equipment used in commercial buildings by bulb type, 2018 percentage of buildings incandescent standard 68% fluorescent compact 19% fluorescent high-intensity discharge (HID) halogen LED 2012 2018 0% 10% 70% 80% 20% 30% 40% 50% 60%

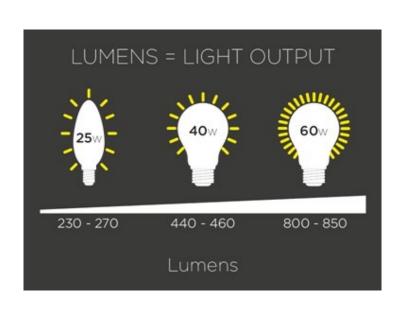
From CBECS 2018:

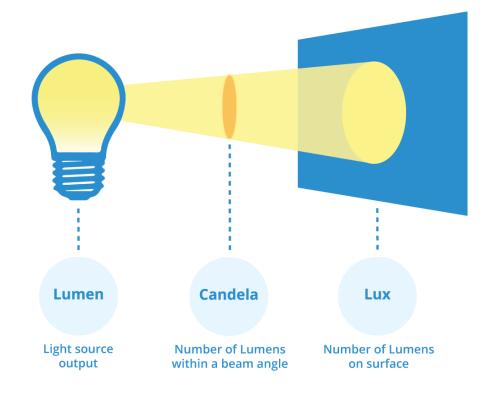
Total commercial buildings and floorspace by window and interior lighting features, 2018 percentage




Lighting bulb types:

Light tubes:

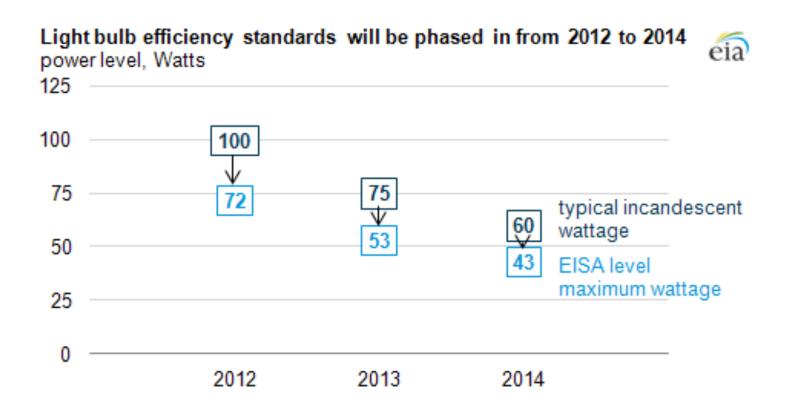

 Light bulb shape and size chart:



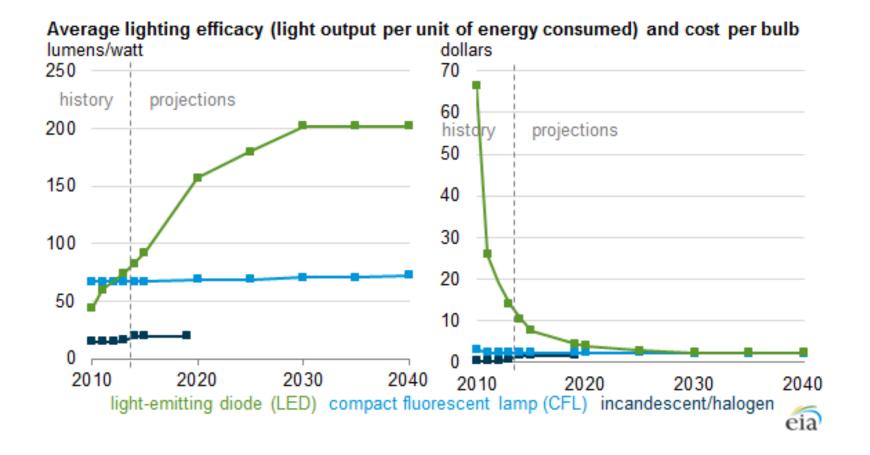
Current LED installation and the projection:

		2020	2025	2030	2035
	LED Installed Stock (million units)	2,790	5,040	6,780	7,910
	Commercial	558	964	1,230	1,370
	Residential	2,060	3,800	5,230	6,210
ء بر	Industrial	25	56	76	84
rrent . Path	Outdoor	146	218	242	256
Cur	LED Installed Stock Penetration (%)	35%	60%	76%	84%
0)	Commercial	44%	72%	88%	93%
	Residential	33%	56%	73%	82%
	Industrial	29%	63%	83%	90%
	Outdoor	66%	93%	98%	99%

Comparison between different light bulbs


Comparison between different light bulbs

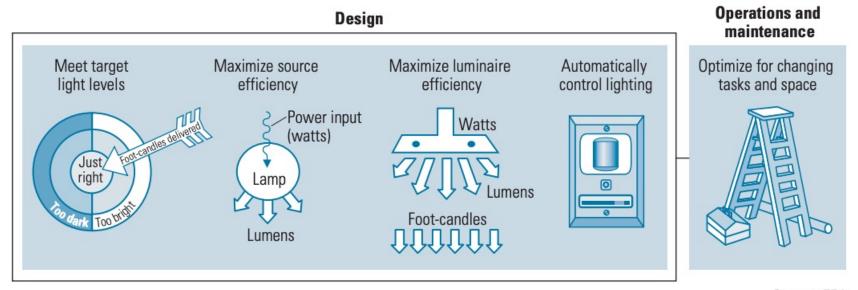
Lumens	LED (Watts)	CFL (Watts)	Incandescent (Watts)
400 to 500	6 to 7	8 to 12	40
650 to 850	7 to 10	13 to 18	60
1000 to 1400	12 to 13	18 to 22	75
1450 to 1700+	14 to 20	23 to 30	100
2700+	25 to 28	30 to 55	150


Comparison between lifespan

	Incandescent	CFL	LED
Average life span	1,200 Hours	8,000 Hours	25,000 Hours

- Lighting bulb standard took into effect in 2012 to provide:
 - □ brighter, higher-wattage general service bulbs
 - ☐ Light output of about 1,600 lumens for a typical 100-Watt incandescent bulb fell into the first stage

LED bulbs efficiency have improved significantly while their costs have decreased drastically


 LED bulbs efficiency have improved significantly while their costs have decreased drastically

Efficiency Channel	2014	2015	2020	Goal
Package Efficacy Projection ² (lm/W)	146	162	220	250
Thermal Efficiency Droop (increased T _{op})	87%	88%	93%	95%
Driver Efficiency	86%	87%	93%	96%
Fixture/Optical Efficiency	87%	89%	94%	96%
Current Efficiency Droop Correction Factor (reduced I _{op})	1.14	1.13	1.09	1.05
Overall Luminaire Efficiency	74%	77%	89%	92%
Luminaire Efficacy³ (lm/W)	108	125	196	230

Nataci

- Current Lighting Standards:
 - □ Efficiency (or efficacy) of incandescent lamps has increased only moderately
 - ☐ A typical 60-Watt incandescent lamps produce only 16 lumens/Watt and has a lifetime of 1,000 hours on average while comparable:
 - Halogen incandescent lamp produce close to 20 lumens/Watt
 - Compact fluorescent lamp (CFL) provides 67 lumens/ Watt and has 10 times lifetime
 - Solid-state light-emitting diode (LED) lamps currently produce 83 lumens/ Watt and are rated to last more than 30 times

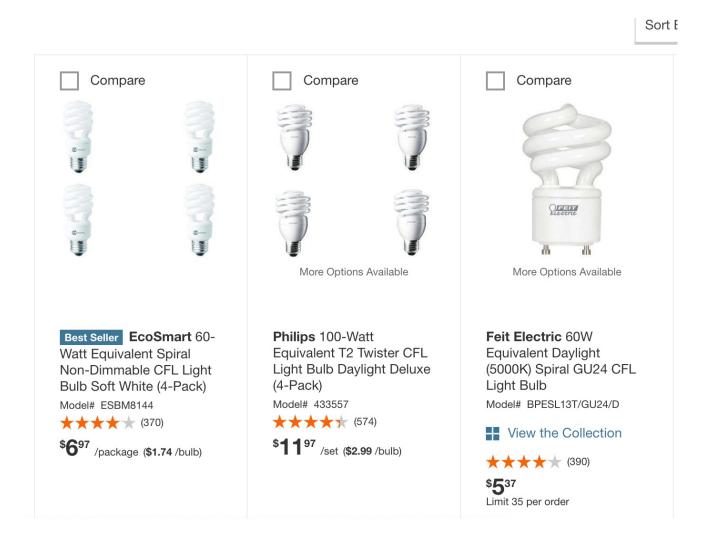
Efficient lighting retrofit considers:

Source: EPA

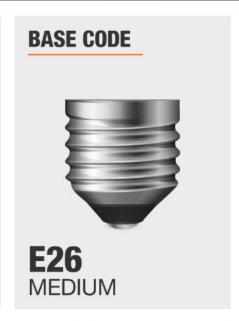
L	_aı	m	D	pr	10	эe	rty

				amp proport		
Lamp type	Mean efficacy, including ballast (mean lm/W)	Lumen maintenance (%)	Rated life (hours)	Color rendering index	Correlated color temperature (K)	Typical applications
Full-size fluorescent (T5, high-performance T8)	80 to 97	92 to 93	20,000 to 30,000	80 to 85	2,700 to 6,500	General area lighting of all kinds, including open and closed offices, classrooms, and high-bay areas
Compact fluorescent	43 to 71 ^a	86	6,000 to 12,000	80 to 85	2,700 to 6,500	Incandescent replacements in table and floor lamps, cans, wall washers, and sconces
Quartz pulse-start metal halide	60 to 80 ^a	65 to 75	20,000	65 to 70	2,900 to 4,200	Outdoor lighting, high-bay lighting, and remote-source lighting
Ceramic pulse-start metal halide	60 to 80 ^a	80	20,000	85 to 94	2,900 to 4,200	Where color is critical, including high-bay and retail applications
High-pressure sodium	60 to 110 ^a	85 to 90	24,000	22	1,900 to 2,200	Outdoor lighting and in high-bay applications where color is not critical
Induction	50 to 60 ^a	70 at 60,000 hours; 55 at 100,000 hours	100,000	80	2,700 to 4,100	Where maintenance costs are high, including roadways and tunnels, parking garages, escalator wells, warehouses, and malls
LED	15 to 30	70	50,000 ^b	80 to 90	2,700 to 10,000	In color-based applications such as exit signs, niche applications such as outdoor signage, task lamps, and accent lighting

Notes: K = kelvin; LED = light-emitting diode; Im/W = lumen per watt.


Courtesy: E SOURCE

a. Higher efficacies for higher-wattage lamps.

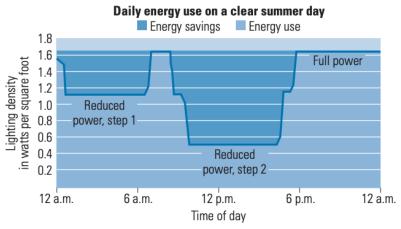

b. Time at which output has degraded to 70 percent of initial output.

•	For most general lighting upgrades, the best choices are:
	☐ T8 (eight-eighths of an inch in diameter) or T5 (five-eighths of an inch in diameter) lamps
	☐ The most efficient T8s are the high-performance type
	☐ High-performance T8 lamps can be installed to replace T12 lamps
	☐ T5 lamps are not a good retrofit option, unless fixtures are being replaced as well as lamps and ballasts
	☐ The efficacy of T5s is similar to that of T8 lamps, but because they are smaller, they provide better optical control
	☐ The most common length for T8 lamps is four feet, which makes it the cheapest and easiest length to buy and stock
	☐ Eight-foot lamps are slightly more efficient, but they break more easily and can be difficult to transport

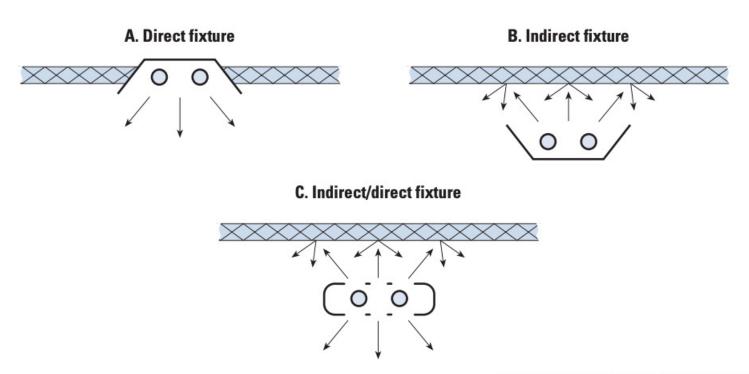
Compact Fluorescent Lamp (CFL)

SOFT WHITE

BULB COLOR

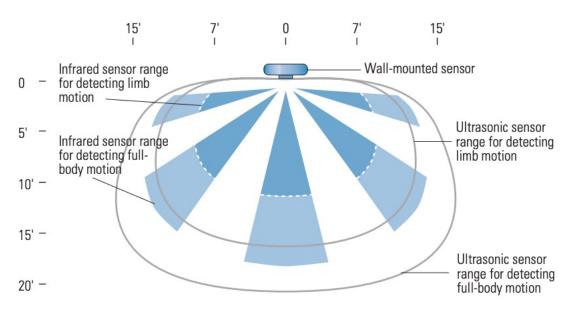


Maximize daylighting:

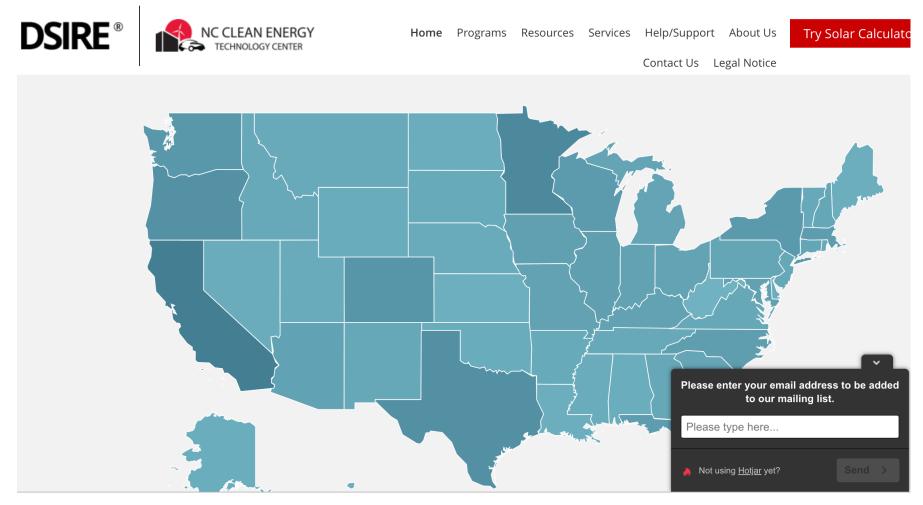


Clear acrylic White translucent acrylic glazing Side-lighting Light shelf

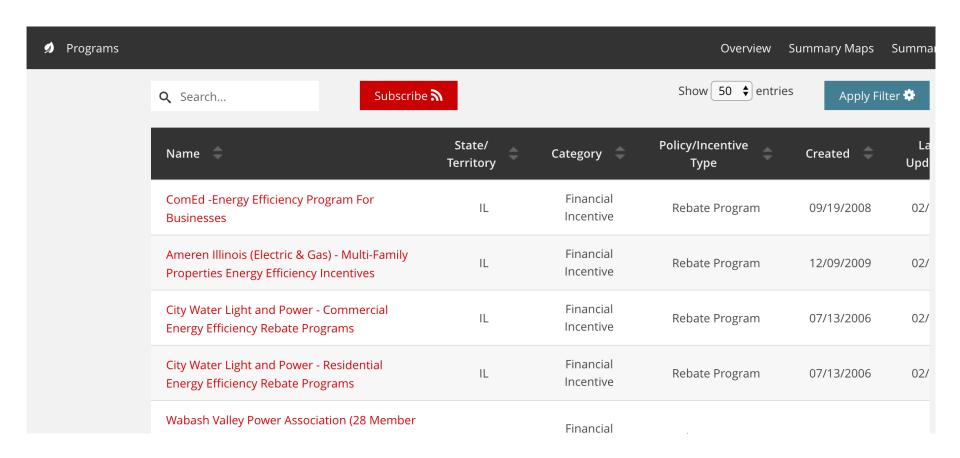
Top-lighting


Source: California Energy Commission, PIER program

Fixture installation options are:


Courtesy: E source Lighting Technology Atlas (2005)

 Occupancy sensor technologies are relatively inexpensive and cost effective:



Courtesy: E source Lighting Technology Atlas (2005)

Resources to find local policies and incentives:

For example, for IL, we can find the following resources:

 For example, we can consider ComEd lighting retrofit incentives:

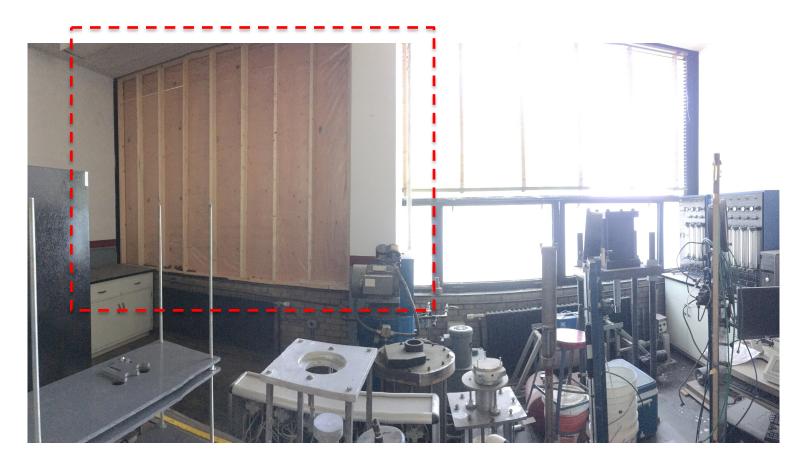
Programs		Overview	Summary Maps
	Incentive Amount:	Lighting Building Energy Management System: \$0.15 - \$0.35/sq. ft. LED Fixtures/Retrofits: \$0.50 - \$0.60/watt reduced LED Open Sign: \$40/sign LED Channel Sign: \$12 - \$30/letter Occupancy Sensors: \$0.10/watt controlled Vacancy Sensors: \$0.10/watt controlled Daylighting Controls: \$0.12/watt controlled Time Clocks for Lighting: \$0.03/watt controlled Plug-Load Occupancy Sensors: \$10/sensor Occupancy Sensors + Daylighting Controls: \$0.18/watt controlled Lighting Control System: \$0.25/watt controlled Measurement & Verification: \$0.10 - \$0.15/kWh saved above targe LED Traffic Signals: \$40 - \$100/lamp Photocells: \$0.08/watt controlled Photocells + Time Clock: \$0.09/watt controlled	t

Replacing city lights

The City of Chicago is installing better quality, more reliable LED light fixtures on streets, alleys and viaducts to increase safety, reduce energy costs and improve the environment.

The city-wide lighting initiative will replace over 270,000 existing outdated High Pressure Sodium (HPS) light fixtures with new energy-efficient LED lights and create a modern lighting management system to streamline maintenance and repairs. This program will also include a limited amount of pole replacement and wiring repairs to stabilize the lighting.

CLASS ACTIVITY


Class Activity

•	Spend 20 to 30 minutes to compare different lighting options
	☐ CFL, Fluorescent, LED
	☐ Lumen
	☐ Foot-Candle
	■ Wattage
	☐ Sizes
	☐ Length
•	Complete this table:
	https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYl3cB5poRmNHMOfJb292LX-gPelbX1Yo/edit#gid=564635926

BUILDING WINDOW RETROFIT

Building Window Retrofit

- Window replacement in AM Hall:
 - Remove the old windows
 - Build a temp wall within the spaces approximately 10-12 inch off the window/brick wall

Window Replacement

Building Window Retrofit

Window replacement in AM Hall:

CLASS ACTIVITY

Class Activity

 Take a look at the documents for the window replacement of Alumni Memorial Hall building uploaded on Blackboard and summarize your findings

- Complete this table:
 - https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYl3cB5poRmNHMOfJb292LX-gPelbX1Yo/edit#gid=1397098367

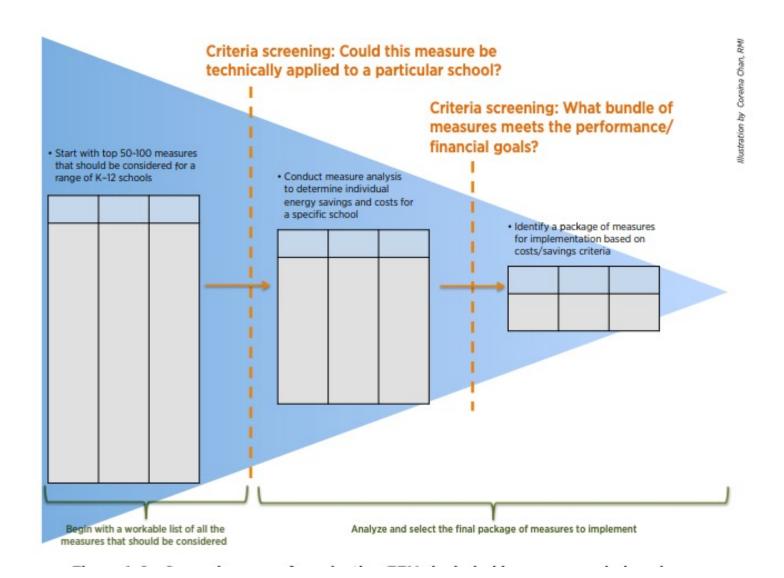
THERMOSTAT RETROFIT

Thermostat Retrofit

AERG EXAMPLE (K-12)

Advanced Energy Retrofit Guides

Buildings


Buildings » Commercial Buildings » Design & Decision Support Guides » Advanced Energy Retrofit Guides

The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy-efficiency upgrades in commercial buildings.

	Energy Manager	Custodial Staff	School Board or Financial Manager	Teachers and Students	Community and Parents	Utilities and Auditors
1 Introduction		•	•	•	•	•
2 Overview: Plan, Execute, Follow Up	•		•			
3 Existing Building Commissioning	•	•		•		•
4 Building Retrofits	•		•			•
5 Measurement and Verification		•				
6 Operations and Maintenance	•	•				
7 Conclusion	•	•	•	•	•	•

Case Study 1: Vigo County School Corporation

Quick Facts

- Facility Name: Vigo County School Corporation
- Facility Type: K-12 Schools
- Location: Terre Haute, Indiana
- Number of Buildings: 29

Project Description

The Vigo County School Corporation (VCSC) in Terre Haute, Indiana, and under the leadership of Superintendent Daniel Tanoos, partnered with Energy Systems Group to develop and implement comprehensive energy savings performance contracts. VCSC is made up of 3 high schools, 2 alternative schools, 6 middle schools, and 18 elementary schools.

In 1999, VCSC decided to take control over rising operating costs with an assessment of its utility costs, which at the time averaged \$0.845/ft². This was compared to other Indiana school facilities that had installed energy retrofits resulting in energy costs as low as \$0.65/ft². Of the 19 VCSC schools surveyed, 9 were operating at more than \$0.90/ft².

In 2000, VCSC and Energy Systems Group entered into an initial agreement to provide energy-related upgrades at 20 of its facilities. This initial project resulted in a

guaranteed cost reduction of more than \$1 million per year over the term of the agreement. To date, Energy Systems Group has met its savings guarantee.

VCSC has implemented more than \$29 million in comprehensive energy improvements and renovation projects in six phases which are estimated to save close to \$35 million over the terms of the contracts.

Environmental Benefits

- Removes emissions equivalent to more than 5,200 passenger vehicles per year.
- Creates enough electricity to provide power for more than 3,800 homes per year.
- Planting more than 6,500 acres of forests annually.

Key EEMs:

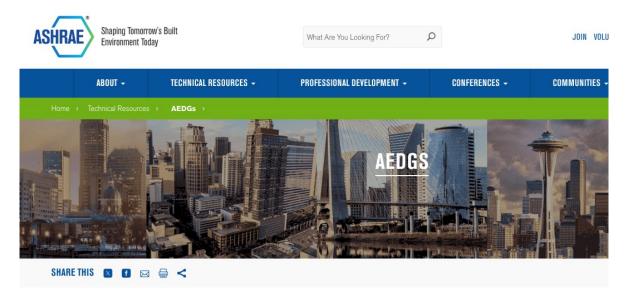
- Comprehensive HVAC improvements and replacements
- · Lighting systems redesigns and retrofits
- First school in Indiana to be 100% retrofitted with lightemitting diodes (LEDs)
- · Electrical system upgrades
- District-wide EMS

- Window replacements
- · Hot water pump replacements
- 1.5-kW wind turbine with curriculum for science students
- · High school pool improvements.

nstallation Costs	M&V Costs	Total Cost Incen	t Without tives	Financial Incentives		Actual Project Costs	
\$29,922,466	\$75,477	\$29,97	77,943	\$60,000		\$29,862,466	
Energy \$ Savings	O&M \$ Sav	O&M \$ Savings		Capital Cost Avoidance		Total Annual \$ Savings	
\$592,321/year	\$1,395,838/year		\$1,206,457/year			\$3,194,616	
Energy Cost Intensity Pre-Retrofit	Energy Cost Intensity Post-Retrofit			Cost Intensity AE 90.1-2004	(E	Simple Payback (years) excluding Incentives)	
\$0.84/ft ²	\$0.70/f	t²	\$	1.40/ft ²		9.3 (9.4)	

			App	olicable	to:	
System	EEM Description	Hot- Humid	Hot Dry	Marine	Cold	Very Cold
	Replace incandescent lamps in exit signs with LEDs	1	✓	1	1	1
	Replace T12 fluorescent lamps and magnetic ballasts with high- efficiency T8 lamps and instant-start electronic ballasts	1	1	1	1	1
	Replace incandescent lamps with compact fluorescent lamps (CFLs)	1	✓	1	1	1
Lighting	Install wireless motion sensors for lighting in rooms that are used intermittently	1	✓	1	1	1
	Install photosensors and dimming ballasts to dim lights when daylighting is sufficient	1	1	1	1	1
	Replace high intensity discharge (HID) lights with T5 high- output (HO) fluorescents in gymnasiums	1	1	1	1	1
	Install more efficient exterior lighting for façades and parking lot		1	1	1	1
Plug and	Replace cafeteria appliances with ENERGY STAR models	1	1	1	1	1
process loads	Install VSD demand control for kitchen hood exhaust fans	1	✓	1	1	1

			App	olicable	to:	
System	EEM Description	Hot- Humid	Hot Dry	Marine	Cold	Very Cold
Envelope	Add reflective roof covering	1	1		1	
Service water heating	Install low-flow showerheads in locker rooms	1	1	1	1	1
	Add evaporative precooling of condenser supply air		1			
	Add a small condensing boiler to handle the base load and summer load, with current inefficient boiler operating when heating loads are highest		1	1	1	1
	Install VSDs on chilled-water and hot water pumps		1	1	1	1
HVAC Heating	Replace standard furnace with a high- efficiency condensing furnace		1	1	1	1
and cooling	Install an EMS and replace pneumatic controls with direct digital controls (DDCs)		1	1	1	1
	Replace oversized, inefficient fans and motors with rightsized National Electric Manufacturers Association (NEMA) premium efficiency models	1	1	1	1	1
	Convert CV or dual-duct air handling system to variable air volume (VAV) (add dampers, VSD fan motors)	1	1	1	1	1
	Install VSDs on cooling tower fans	1	1	1	1	1
	Install a dry-bulb airside economizer	1	1	1	1	1
HVAC Ventilation	Upgrade to DCV to reduce OA flow during partial occupancy		1	1	1	1
	Add heat/energy recovery to the ventilation system	1	1	1	1	1


Table E-2 Recommended Temperature Setbacks and Setups for U.S. Climate Zones

	Massive	Building	Metal Building		
Climate Zone	Heating Setback (°F)	Cooling Setup (°F)	Heating Setback (°F)	Cooling Setup (°F)	
1A	4.3	10.4	4.1	7.7	
2A	9.4	13.9	10.1	11.2	
3A	9.4	13.1	13.3	12.9	
4A	19.4	16.4	20.7	15.3	
5A	18	10.8	22.1	13.5	
6A	20.5	10.4	23.9	12.7	
2B	9.7	20.5	8.6	15.5	
3B	7.9	14.2	12.1	13.5	
4B	20.7	16.5	21.9	15.8	
5B	19.4	10.6	22.1	12.1	
6B	19.4	10.3	22.3	12.1	
7	20.7	8.8	6.3	11.5	
8	22.3	5	23	7.9	

CLASS ACTIVITY

Class Activity

Download the K-12 or office building AEDG

Advanced Energy Design Guides

Free Download or Purchase From Bookstore

To promote building energy efficiency, ASHRAE and its partners are making the Advanced Energy Design Guides available for free download (PDF). The zero energy Guides offer designers and contractors the tools needed for achieving zero energy buildings. The 50% Guides offer designers and contractors the tools needed for achieving a 50% energy savings compared to buildings that meet the minimum requirements of Standard 90.1-2004, and the 30% Guides offer a 30% energy savings compared to buildings that meet the minimum energy requirements of Standard 90.1-1999.

ASHRAE, in collaboration with AIA (American Institute of Architects), IES (Illuminating Engineering Society), USGBC (U.S. Green Building Council) and the DOE (Department of Energy) continues to develop the Advanced Energy Design Guide (AEDG) Series.

Class Activity

- Summarize and compare the lighting recommendations
 - https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYI3cB5poRmNHMOfJb292LX-gPelbX1Yo/edit#gid=1106944457

PAYBACK PERIOD EXAMPLES

An example of short payback period in Dayton Ohio:

	AR No.	Description	Payback (yrs)
Lighting	1	Replace Metal Halide Lamps with T-8 Flourescent Fixtures	2.3
Ligh	2	Install Photosensor Controls to Utilize Daylight	0.6
Space Conditioning	3	Install Programable Thermostat in the Office	0.2
Spo Condit	4	Adjust the Year Round Thermostat Set Points in the Office	0.2
Air	5	Reduce Overall Pressure in Compressed Air System	0.2
Compressed Air	6	Reduce Leaks in Compressed Air System	1.1
Сот	7	Eliminate use of Air Motors on Pipe Turners	1.0

	AR No.	Description	Cost-Benefit Analysis Results	Simple Payback (yrs)
Lighting	Replace 8' T-12 Bulbs with 8' T-Bulbs		1.085	3.6
Ligh	2	Install Photo Sensor Controls	0.525	2.0
Comp Air	3	Lower Air Compressor Discharge Pressure	0.093	0.3
Space Conditioning	4	Install Programmable Thermostats	0.128	0.4
Space Condition	5	Increase Air Conditioning Thermostat Set Points	0.012	0.0
Other	Rec.	Replace 4' T-12 Lamps with 4' T-8 Lamps	1.881	4.9

- Building: Liberty Tower (Dayton, Ohio)
 - 85-year-old
 - □ 114,000 ft²
- Three energy efficiency measures are:
 - ☐ Steam boiler replaced with vertical fire tube boilers
 - ☐ Replace interior and exterior with LEDs
 - Building control upgrade

- Building: Liberty Tower (Dayton, Ohio)
 - ☐ LEDs consume 60% less energy
 - ☐ Add controls to dim or turn off the lights
 - □ LED lights fail in a different way, so control may be an important factor in the light selection

- Building: Liberty Tower (Dayton, Ohio)
 - ☐ Total cost: \$870,000
 - ☐ Annual utility cost savings \$99,000
 - ☐ Payback period:

$$Payback = \frac{870,000}{99,000} = 8.8 \ years$$

☐ The project has received \$70,000 in utility rebates, making the economic case more practical

$$Payback = \frac{(870,000 - 70,000)}{99,000} = 7.8 \ years$$

- Long payback period for building envelopes:
 - ☐ It is hard to do a building envelope retrofit since owners only 60% of the commercial floorspaces
 - ☐ They do not have a good payback period
 - □ Usually there are different motivations to conduct a building envelope retrofit

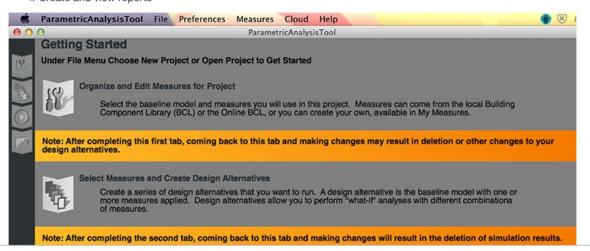
EEM	Cost / Unit	Cost	Source
Occupancy Sensors	\$1.06/ft ²	\$ 44,991	RSMeans, "5 fixtures per 1000 S.F., including
Condensing Boiler	\$20,706 +	\$ 31,401	occupancy and time switching" RSMeans, commercial gas boilers
Light Power Density Reduction	\$13.82/MBH \$4.78/ft ²	\$ 202,886	RSMeans, "Fluorescent high-bay 4 lamp fixture, 1W/sf,59FC, 4 fixtures per 1000 S.F."
Condensing Unit	\$7,909 +	\$ 132,687	RSMeans, packaged air-cooled refrigerant
Replacement Window Film	\$766/ton \$18.93/ft ²	\$ 182,311	compressor and condensor RSMeans, "Solar Films on Glass" average of min/max value
Wall Insulation	glazing \$4.78/ft² wall area	\$ 927,930	RSMeans, "4 in. EPS insulation, Commercial renovation Exterior Insulation and Finish System",

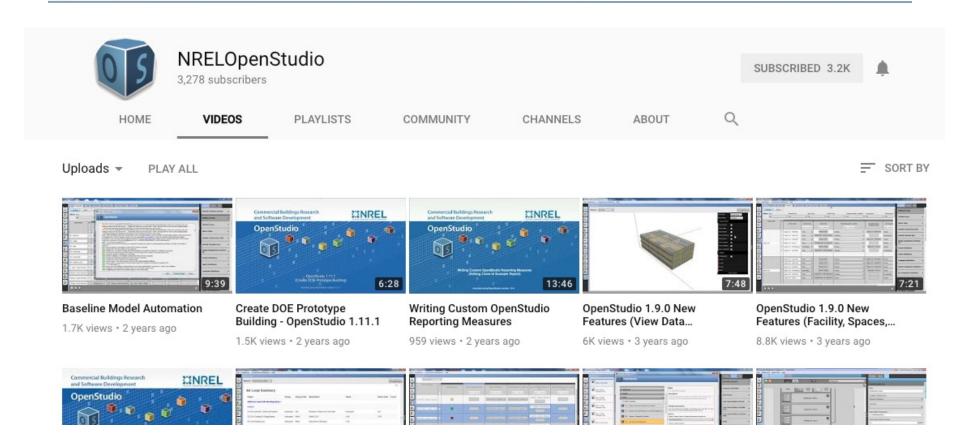
Energy Efficiency Measures	Simple Payback
Condensing Boiler	9.4
Occupancy Sensors	10.4
Light Power Density Reduction	32.4
Condensing Unit Replacement	41.2
Window Film	70.7
Wall Insulation	247.0

OPENSTUDIO MEASURES

Creating a Project Loading a Baseline Model Organize and Edit Measures for Project Select Measures and Create Design Alternatives Run Simulations Create and View Reports Running on the Cloud Viewing Results Publications Back to OpenStudio®

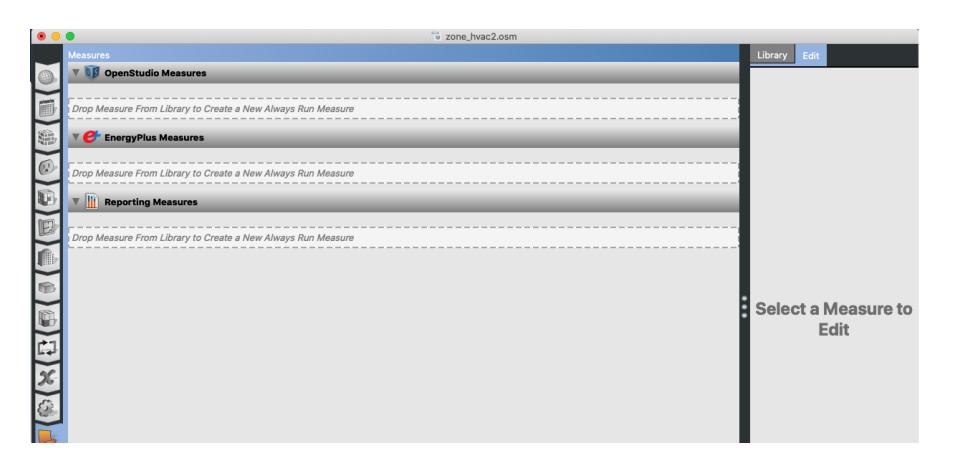
Parametric Analysis Tool (PAT) Interface Guide


PAT removes the need to hand edit each model to try out different architectures, energy efficiency measures, and mechanical systems. PAT applies scripts to your baseline model and lets you quickly compare many alternatives. OpenStudio has developed a workflow that allows energy modelers to create and run a customized parametric analysis using commercially available cloud computing services. This workflow will enable anyone to perform powerful parametric studies in a reasonable time for a relatively low cost.


Creating a Project

The Parametric Analysis Tool Quick Start Guide (PDF) provides an introduction to the interface and workflow for creating multiple design alternatives from a seed model.

When you first open PAT you will see the screen below. It shows the workflow:


- 1. Organize and edit measures for project
- Select measures and create design alternatives
- 3. Run simulations
- 4. Create and view reports

How many of you have watched any videos related to OpenStudio?

- Useful links:
 - □ https://www.youtube.com/watch?v=3rmElK_OB28
 - https://www.youtube.com/watch?v=4g5nJzDoh58
 - https://www.youtube.com/watch?v=9WgUhiJ785I
 - □ https://www.youtube.com/watch?v=0||NfGNe5x0

