CAE 465/526 Building Energy Conservation Technologies Fall 2023

October 12, 2023

Sensitivity analysis, building energy audits and commissioning

Built Environment Research @ III] 🐋 🚓 🛧 🕂

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

9TH ANNUAL CAEE CAREER FAIR

Hosted by CAEE orgs and Career Services

> OCTOBER 17, 2023 2:00PM - 5:00PM HERMAN HALL

A digital resume book will be made available to registered companies a week before the fair begins. For more information scan the QR code below!

Announcements

+ Follow

We're excited to open the 2024 SmithGroup Justice, Equity, Diversity & Inclusion Scholarship program for applications. The scholarship supports students from underrepresented backgrounds who are studying architecture, engineering, interior design, landscape architecture or urban planning.

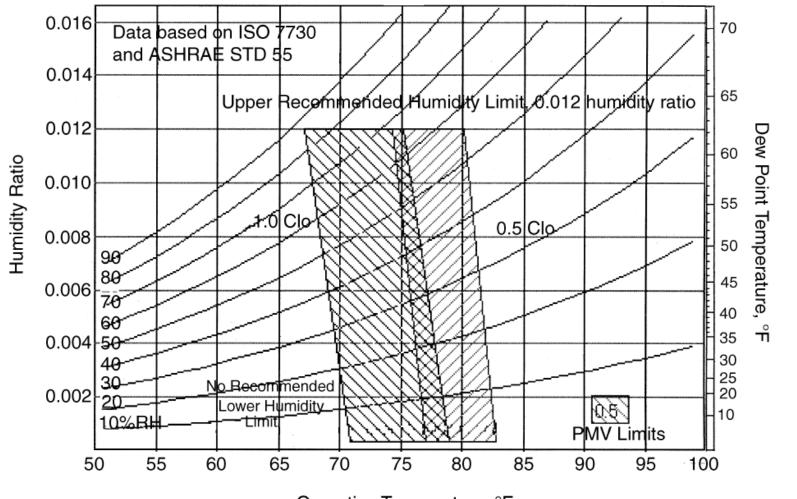
Each scholarship includes both tuition support and a paid summer internship at one of SmithGroup's locations. Applications are due November 30.

Learn more about eligibility, requirements and the application process: https://lnkd.in/dJuNTEKt

https://www.smithgroup.com/jedi-scholarship

Announcements

Assignment 5 is posted (no late submission – link will disappear)

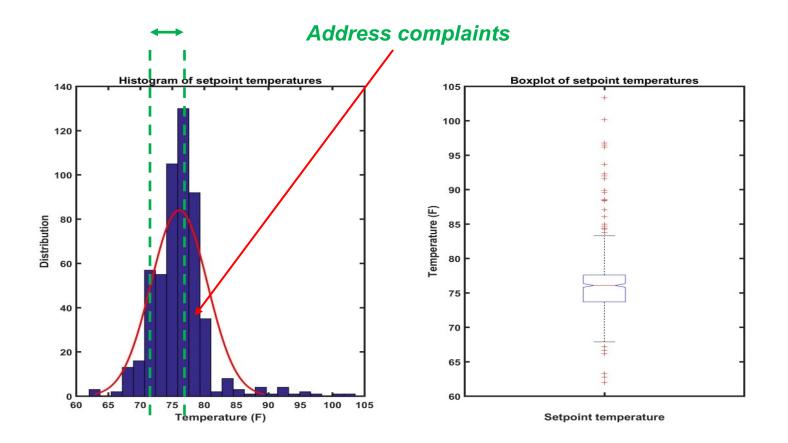

SURFACE MATCHING

Surface Matching

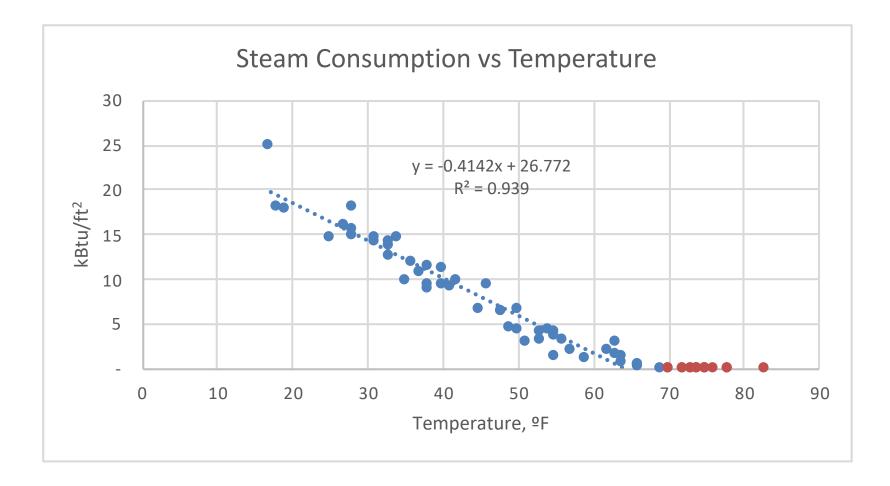
Library	Edit			
Measu	res			
🔻 Envelo	pe	6		
Form 1				
Forr	n	1		
	n SurfaceMatching	1		
	SurfaceMatching	1		

SETPOINTS

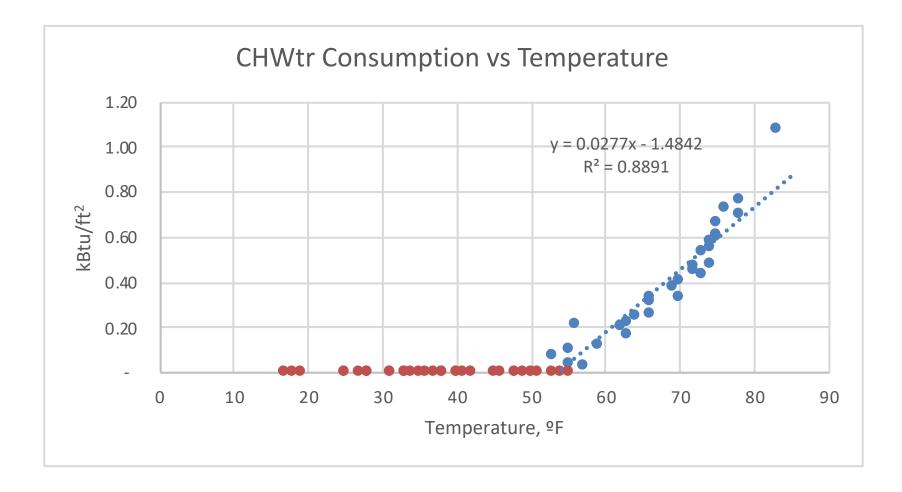
Setpoints



Operative Temperature, °F


Setpoints

Poor management of temperature setpoints in the buildings


Thermal comfort range

• Wishnick Hall monthly data:

• Wishnick Hall monthly data:

DESIGN VENTILATION

Outdoor Air

- Minimum outdoor air fraction very important
- EnergyPlus options:
 - OA per person (default 20 cfm)
 - OA per floor area
 - OA per zone
 - OA air change per hour
 - Use ~0.1-0.2CFM/ft² (or 20% design flow rate)
 - Look at floor plans & ASHRAE 62.1

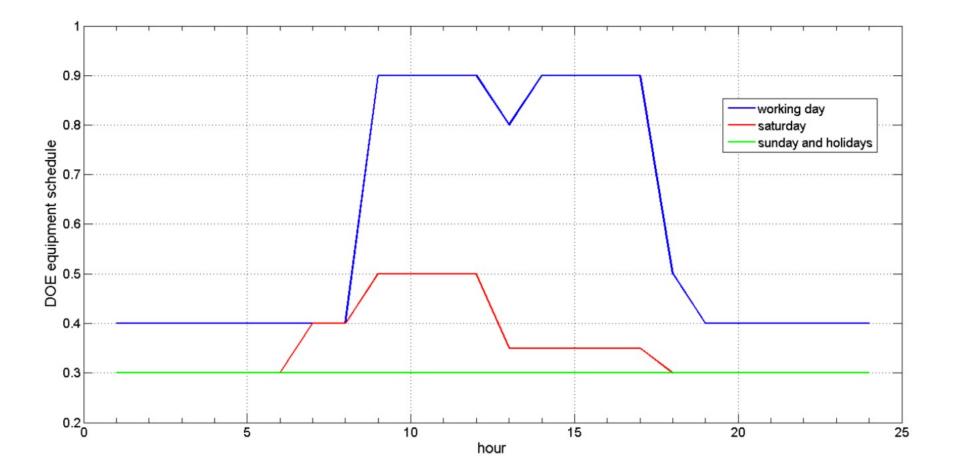
INFILTRATION

Infiltration

- Infiltration options in E+:
 - Design Flow Rate:

 $Infiltration = (I_{Design})(F_{Schedule})[A + B[T_{Zone} - T_{Out}] + C(Wind Speed) + D(Wind Speed)]$

• Effective Leakage Area:


Infiltration =
$$(F_{Schedule}) \frac{A_L}{1000} \sqrt{C_S \Delta T + C_W (Wind Speed)^2}$$

• Flow Coefficient

 $Infiltration = (F_{Schedule})\sqrt{(cC_{S}\Delta T^{n})^{2} + (cC_{W}(s \times Wind Speed)^{2n})^{2}}$

PLUG LOAD

Plug Load Schedule

Is this close to the reality?

Plug Load Schedule

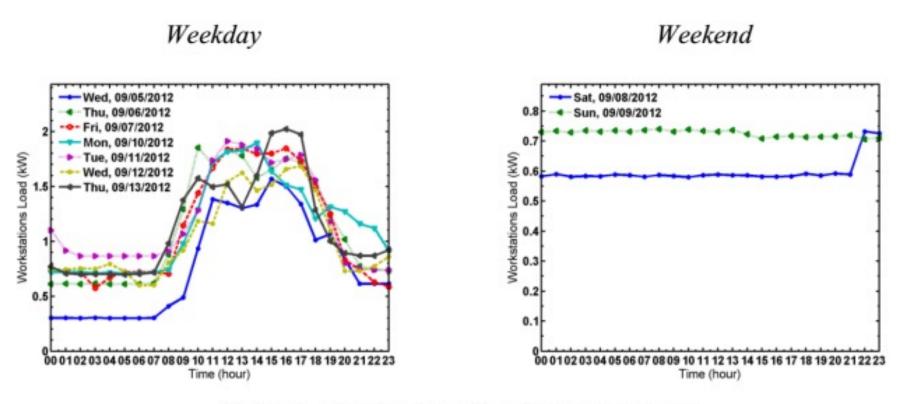


Figure 4. Plug load profiles for workstations.

LIGHTING

Lighting Load

f_{convected} = 1.0 – (Fraction Latent + Fraction Radiant + Fraction Lost)

Lighting Schedule

• Suggested DOE Reference building lighting schedule

Lighting Power Density

Lighting Power Density (LPD)

TABLE 9.5.1

Lighting Power Densities

Using the Building Area Method LPD Building Area Type^a (W/ft^2) Automotive facility 0.82 Convention center 1.08Courthouse 1.05 Dining: bar lounge/leisure 0.99 Dining: cafeteria/fast food 0.90 Dining: family 0.89 Dormitory 0.61 Exercise center 0.88Fire station 0.71Gymnasium 1.00Health-care clinic 0.87 Hospital 1.21 1.00Hotel Library 1.18

Manufacturing facility	1.11
Motel	0.88
Motion picture theater	0.83
Multifamily	0.60
Museum	1.06
Office	0.90
Parking garage	0.25
Penitentiary	0.97
Performing arts theater	1.39
Police station	0.96
Post office	0.87
Religious building	1.05
Retail	1.40
School/university	0.99
Sports arena	0.78
Town hall	0.92
Transportation	0.77
Warehouse	0.66
Workshop	1.20

^a In cases where both a general building area type and a specific building area type are listed, the specific building area type shall apply.

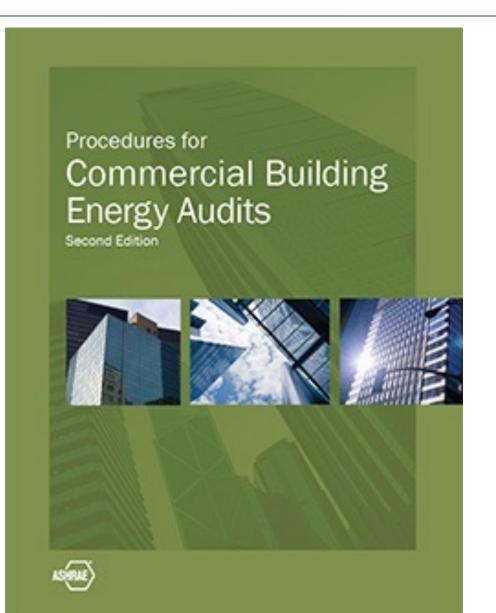
Is this close to the reality?

Lighting Power Use

• Lighting power use is equal to =

Diversity Factor \times LPD \times Area

SIMULATION


Convergence Tolerances

- Convergence tolerances during warm up days:
 - Design days or run periods repeat until the simulation reaches to the desired convergence tolerances
 - There will be a warning is the convergence is not met during the load calculations
 - □ It is possible to increase the number of warm up days

Run Simulation
Run 😡
warming up
Warming up
Warming up
Warming up
Performing Zone Sizing Simulation
for Sizing Period: #7 CHICAGO OHARE INTL AP ANN HUM_N 99.6% CONDNS DP=>MCDB
Calculating System sizing
for Sizing Period: #1 CHICAGO OHARE INTL AP ANN CLG .4% CONDNS DB=>MWB
Calculating System sizing
for Sizing Period: #2 CHICAGO OHARE INTL AP ANN CLG .4% CONDNS DP=>MDB
Calculating System sizing
for Sizing Period: #3 CHICAGO OHARE INTL AP ANN CLG .4% CONDNS ENTH=>MDB
Calculating System sizing
for Sizing Period: #4 CHICAGO OHARE INTL AP ANN CLG .4% CONDNS WB=>MDB
Calculating System sizing
for Sizing Period: #5 CHICAGO OHARE INTL AP ANN HTG 99.6% CONDNS DB
Calculating System sizing
for Sizing Period: #6 CHICAGO OHARE INTL AP ANN HTG WIND 99.6% CONDNS WS=>MCDB
Calculating System sizing
for Sizing Period: #7 CHICAGO OHARE INTL AP ANN HUM_N 99.6% CONDNS DP=>MCDB
Adjusting Air System Sizing
Adjusting Standard 62.1 Ventilation Sizing
Initializing Simulation
Reporting Surfaces
Beginning Primary Simulation
Initializing New Environment Parameters

COMMERCIAL BUILDING ENERGY AUDITS

Reference: Procedures for commercial building energy audits, 2nd Edition, ASHRAE

• Suggested retrofit phases

PhaseI	PhaseII	PhaseIII	PhaseIV	Phase V
Project Setup and Pre- retrofit Survey	Energy Auditing and Performance Assessment	Identification of Retrofit Options	Site Implementation and Commissioning	Validation and Verification
 Define scope of work Set project targets Determine available resources Pre-retrofit survey 	 Energy auditing Select key performance indicators Building performance assessment & diagnostics 	 Energy saving estimation Economic analysis Risk assessment Prioritize retrofit options 	 Site implementation Test and commissioning (T&C) 	 Post measurement and verification (M&V) Post occupancy survey

- A commercial building energy analysis has three levels of:
 Level 1: Walkthrough analysis
 - □ Level 2: Energy survey analysis
 - Level 3: Detailed analysis of capital-intensive modifications

- There is a prerequisite for any audit named "Preliminary Energy-Use Analysis (PEA)"
- There are another category named "Targeted audits"

Preliminary Energy- Use Analysis

- Calculate kBtu/sf
- Compare to similar

level 1: Walk-through

- Rough Costs and Savings for EEMs
- Identify Capital Projects

Level 2: Energy Survey & Analysis

- End-use Breakdown
- Detailed Analysis
- Cost & Savings for EEMs
- O&M Changes

Level 3: Detailed Survey & Analysis

- Refined analysis
- Additional Measurements
- Hourly Simulation

- Requirements of Preliminary Energy Analysis (PEA) are to:
 - □ Analyze historic utility use, peak demand and cost
 - Develop Energy Cost Index (ECI) of the building in terms of \$/ft²-year
 - Develop EUI in kBtu/ft²
 - □ Compare the EUI to the similar buildings
 - □ Analyze monthly data or interval data

- Level 1 (walkthrough) requirements are:
 - □ Assess energy and cost using data compiled in PEA
 - Conduct brief survey of the building
 - □ Identify low-cost/no-cost energy efficiency measures
 - □ Provide a list of capital improvements
 - □ Prioritize items for improvements in Level 2 and 3
 - Remember energy and cost saving calculations in this level are approximate

- Level 2 audit (energy, survey, analysis) includes:
 - Involve a more detailed building survey and breakdown of the end-uses
 - Identify more savings for all practical EEMs to meet the building owner and operator's constraints
 - Provide additional capital improvements that may require additional data collection

- Level 3 audits (detailed analysis of capital-intensive) include:
 - Focus on potential capital-intensive projects identified during Level 2 analysis
 - Require more field data gathering as well as more rigorous engineering and economic analyses
 - □ Often include modeling "simulation"
 - Go beyond Level 2 economic analysis and use Life-Cycle Cost Analysis (LCCA) for decision-making

- Targeted audits have different intensions. For example, it could consider:
 - □ Single energy-using system
 - Central plant
 - Area of the building (e.g., boiler control, lighting retrofit, chiller replacement)

• Energy audit required tasks comparisons:

Table 1 — Energy Audit Required Tasks

		Level	
Process	1	2	3
Conduct PEA	•	•	•
Conduct walk-through survey	•		•
Identify low-cost/no-cost recommendations			
Identify capital improvements	•		•
Review mechanical and electrical (M&E) design and condition and O&M practices			•
Measure key parameters			•
Analyze capital measures (savings and costs, including interactions)			
Meet with owner/operators to review recommendations			•
Conduct additional testing/monitoring			•
Perform detailed system modeling			•
Provide schematic layouts for recommendations			

• Energy audit required tasks:

Preliminary Energy Use Analysis	Analysis of two or more years of utility consumption
Site Visit Procedures	Activities to prepare for the on-site audit
Measurement	Site visit and audit of building to collect data to quantifying operating parameters and performance
Analysis	 Description and analysis of the energy-using systems of the building Can include a whole building energy model
Energy Efficiency Measure Types	Classify and recommended energy efficient measures and bundle together synergistic measures
Economic Evaluation	Evaluate the capital costs and life cycle cost analysis of efficiency measures and bundles of efficiency measures
Developing an Audit Report	Provide complete information needed by an owner/operator to decide whether to implement recommended measures
Presentation	Meet with the owner/operator to review the report, explain results and plan the next step
ImplementingMeasures	 Implement the chosen efficiency measures Includes Measures & Verification and continuous commissioning

• Reporting format:

	ALC: NO.	Level		Level	
Report	1	2	3		
Estimate savings from utility rate change	•	•	•		
Compare EUI to EUIs of similar sites		•			
Summarize utility data			•		
Estimate savings if EUI were to meet target	•	•	•		
Estimate low-cost/no-cost savings		•	•		
Calculate detailed end-use breakdown		•	•		
Estimate capital project costs and savings		•	•		
Complete building description and equipment inventory		•	•		
Document general description of considered measures		•	•		
Recommend measurement and verification (M&V) method		•			
Perform financial analysis of recommended EEMs			•		
Write detailed description of recommended measures					
Compile detailed EEM cost estimates					

• ASHRAE Audit forms have different categories:

TABLE OF CONTENTS

PCBEA Sample Forms

GENERAL INFORMATION

- 1.0 Basic Site Information
- 1.10 Capital Improvement Plan
- 1.11 Operations and Maintenance Costs
- 1.12 Space Function Summary

GEOMETRY AND ENVELOPE

- 1.21 Sketches
- 1.22 Opaque Surfaces
- 1.23 Fenestration
- 1.24 Opaque Doors

SCHEDULES

- 1.31 Occupancy
- 1.32 Lighting
- 1.33 Plug Loads
- 1.34 HVAC
- 1.40 Peak Occupancy

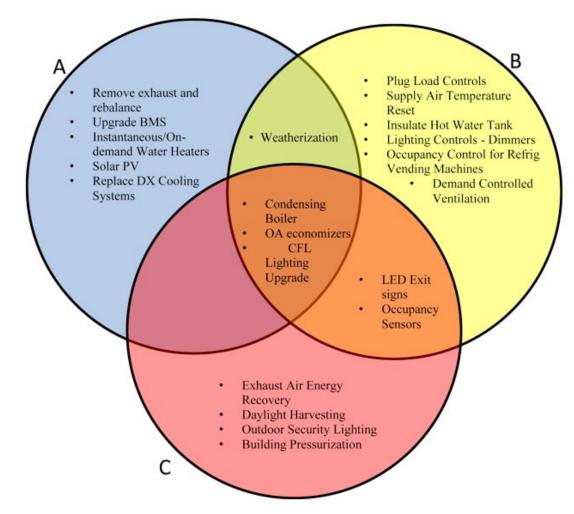
LIGHTING

- 1.51 Interior Lighting
- 1.52 Exterior Lighting
- 1.60 Plug Loads
- 1.70 Thermal Zoning

DOMESTIC HOT WATER

- 1.81 Equipment
- 1.82 Fixtures and Use

 ASHRAE Audit forms have different categories:


HVAC AND CONTROLS OPTIONS

- 2.0 Boilers
- 2.1 Chillers
- 2.2 Cooling Towers and Fluid Coolers
- 2.3 Pumps and Piping Systems
- 2.4 Air-Handling System Equipment
- 2.5 Air-Handling System Controls
- 2.6 Air System Terminal Units
- 2.7 Zone Heating Equipment
- 2.8 Fan-Coil Units
- 2.9 Exhaust/Return Fans
- 2.10 Packaged Units: DX, Heat Pumps
- 2.11 Condensing Unit and Condensers

SPECIALTY LOADS

- 3.0 Swimming Pools
- 3.1 Kitchen Equipment
- 3.2 Lab Equipment
- 3.3 Refrigeration Equipment
- 3.4 Data Centers/IT Rooms
- 3.5 Process Equipment

Can we assume all auditors suggest the same retrofit packages?

CLASS ACTIVITY

Class Activity

- Let's look at your project building
- Develop PEA and summarize the results in the file

https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYI3c B5poRmNHMOfJb292LX-gPelbX1Yo/edit#gid=1992687020

RETURN OF INVESTMENT

Return of Investment

- The simple payback period:
 - Considered as an easy metrics to save if a given energy efficiency retrofit project or technology is viable
 - □ It is simple and often allow selecting low-hanging fruits
 - □ A payback of 3 years or less is favorable

 $Simple \ Payback \ Period = \frac{(Cost \ of \ Implementation - Rebate)}{Annual \ Savings}$

Return of Investment

- Couple easy and important suggestions for using simple payback period
 - □ Making the case for funding
 - Rebates and incentives
 - Payback criteria
 - □ Using low- and no-cost measures
 - □ Evaluating performance contracting
 - □ The importance of measurement and verification

Simple Payback Period

- Setbacks with the simple payback methods:
 - Does not assess risk
 - Does not measure profit
 - Does not reflect the effects of interest
 - Does not consider government payback incentives
 - Does not consider inflation or fluctuation in energy prices
 - Does not account for budget verses actual performance

Return of Investment

• Anyone recall concepts in CAE 312 for net present value?

Year	Cost of Implementation (or Initial Investment) in \$	Energy Savings (\$)	Cumulative Cash Flow (\$)
0	-150,000	-	-150,000
1	-	15,000	
2			
3			
4			
5			
6			
7			
8			
9			
10			

Beyond Simple Payback Period

- What are the other options beyond simple payback period?
 - □ Net Present Value (NPV)
 - □ Internal Rate Return (IRR)
 - □ Lifecycle Cost Assessment (LCC)

CLASS ACTIVITY

Class Activity

- Form a group of two and three
- Download this building energy audit:
 - <u>http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRef</u> Id=%7B58254843-9043-4E02-8FBF-9704E4BEA7EC%7D
- Summarize the similarities and differences

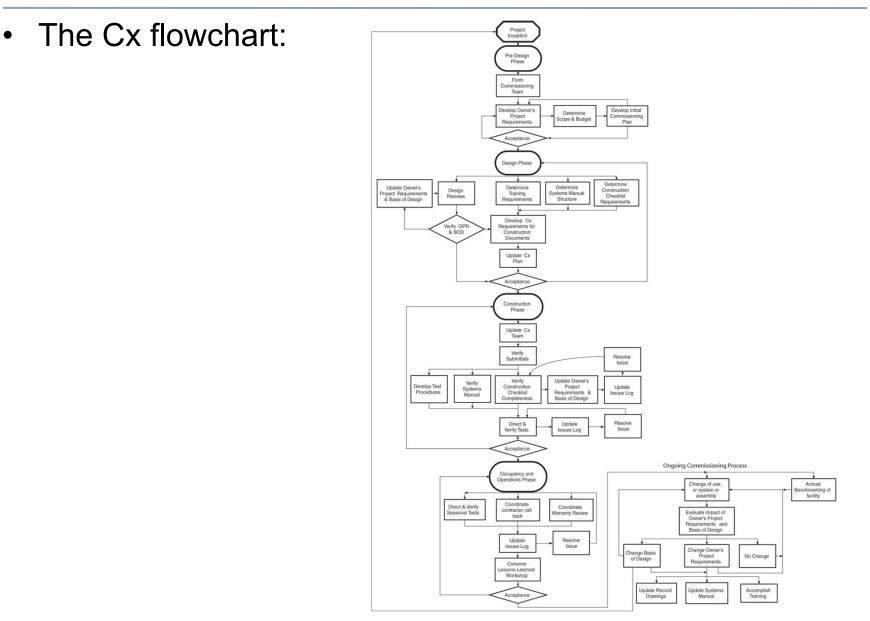
https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYI3cB5po RmNHMOfJb292LX-gPelbX1Yo/edit#gid=1108310639

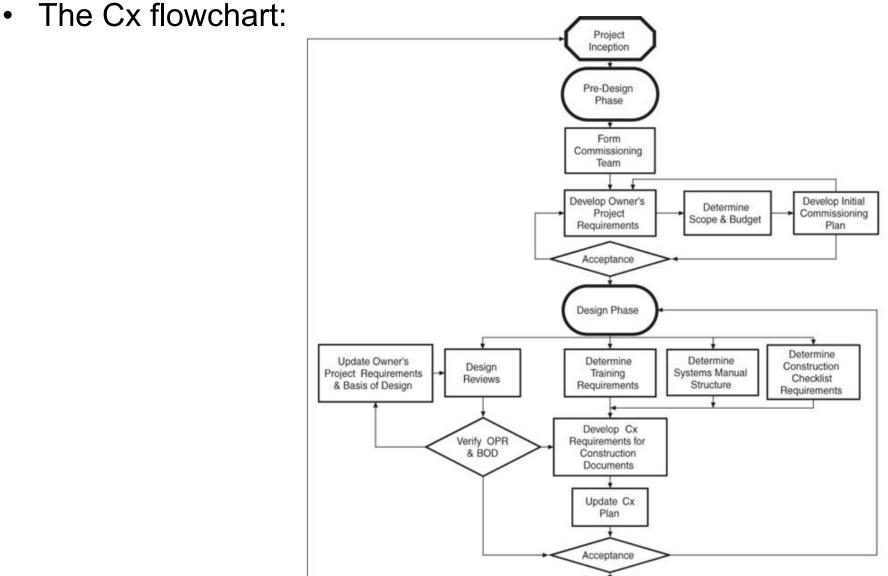
BUILDING COMMISSIONING

Reference: ASHRAE Guideline 0 - 2019

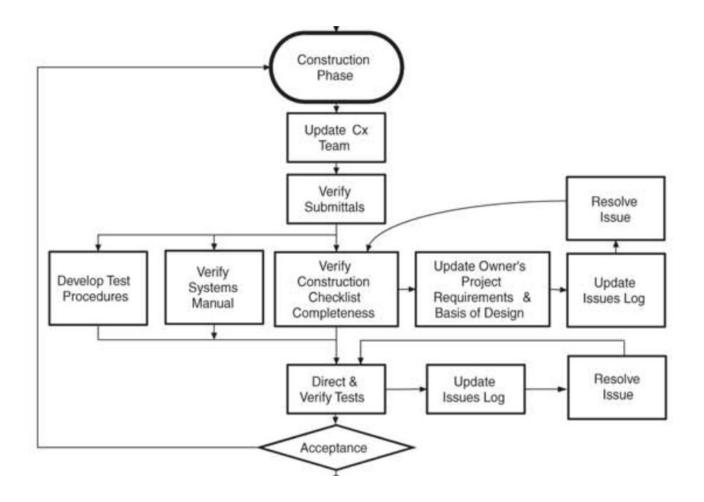
ASHRAE Guideline 0-2019 (Supersedes ASHRAE Guideline 0-2013) Includes ASHRAE addenda listed in Appendix Q

The Commissioning Process

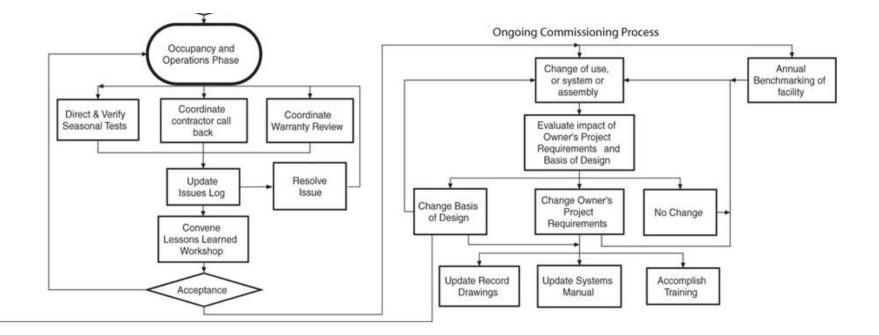

See Informative Appendix Q for ASHRAE approval dates.


This Guideline is under continuous maintenance by a Standing Guideline Project Committee (SGPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the Guideline. Instructions for how to submit a change can be found on the ASHRAE[®] website (https://www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Guideline may be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.


 Building commissioning is the professional practice to ensure buildings operation is according the owner's project requirements

- The goals are:
 - Deliver buildings that meet the owner's project requirements
 - Prevent/eliminate problems inexpensively through proactive approaches
 - □ Verify systems are installed and working correctly
 - Benchmark that correct operation of the systems
 - Lower overall first costs and life-cycle costs for the owner
 - Provide documentation and records on the design, construction, and testing to facilitate operation and maintenance of the facility
 - Implement trend logs, automated and semi-automated commissioning
 - □ Maintain facility performance for the building's entire life cycle

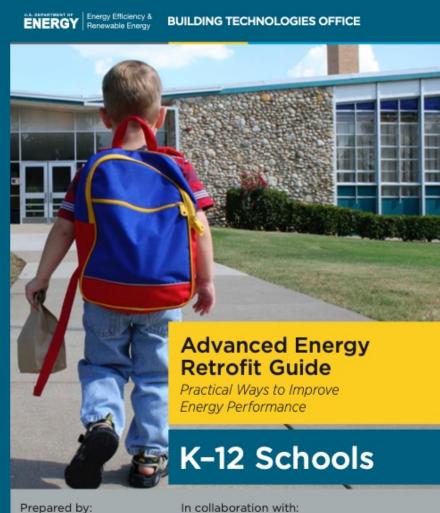


• The Cx flowchart:

• The Cx flowchart:

• Documentation matrix

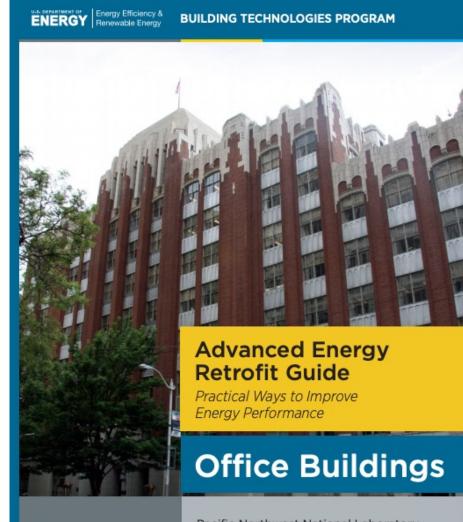
Phase	Document	Input By	Provided By	Reviewed/ Approved By	Used By	Notes
Predesign	OPR	O&M, users, capital projects, Design Team (?)	CxP or designer	Owner	CxP, Design Team	Design Team may not be hired yet.
	Cx Plan	Owner, Design Team (?), CxP	СхР	Owner	CxP, Owner, Design Team	Design Team may not be hired yet.
	Systems Manual outline	O&M, CxP	Owner or CxP	Owner	Design Team	May be included in OPR.
	Training Requirements outline	O&M, users, CxP, Design Team	Owner or CxP	Owner	Design Team	May be included in OPR.
	issues and resolution log	СхР	CxP	N/A	CxP, Design Team	May be only format at this phase.
	Issues report	CxP	CxP	Owner	Design Team, Owner	
	Predesign Phase Cx Report	СхР	CxP	Owner	Owner	Close of phase report
Design	OPR update	O&M, users, capital projects, Design Team	CxP or designer	Owner	CxP, Design Team	
	BoD	Design Team	Design Team	Owner, CxP	Design Team, CxP	
	Construction specifications for Cx	Design Team, CxP, Owner	Design Team or CxP	Owner	Contractors, CxP, Design Team	May also be provided by project manager or Owner's rep.
	Systems Manual outline (expanded)	Design Team, CxP, O&M, contractor (?)	Design Team or CxP	Owner, CxP	Design Team, contractor	Contractor may not be hired yet.
	Training requirements in specifications	O&M, users, CxP, Design Team	Owner or CxP	Owner	Design Team	Contractor may not be hired yet.
	Design review comments	СхР	СхР	Owner	Design Team	
	Issues and resolution log	CxP	CxP	N/A	CxP, Design Team	
	Issues report	CxP	CxP	Owner	Design Team, Owner	
	Design Phase Cx Report	СхР	СхР	Owner	Owner	Close of phase report
Construction	OPR update	O&M, users, capital projects, Design Team	CxP or designer	Owner	CxP, Design Team, contractors	
	BoD update	Design Team	Design Team	CxP, Owner	Design Team, CxP	


Notes:

a. The term "contractor" is understood to refer to any of several entities that provide construction services. Depending on the project, this could include, among others, the Owner's representative, construction manager, contractors, and subcontractors.

b. Abbreviations: BoD = Basis of Design; Cx = Commissioning Process; CxP = Cx Provider; O&M = operations and maintenance; OPR = Owner's Project Requirements.

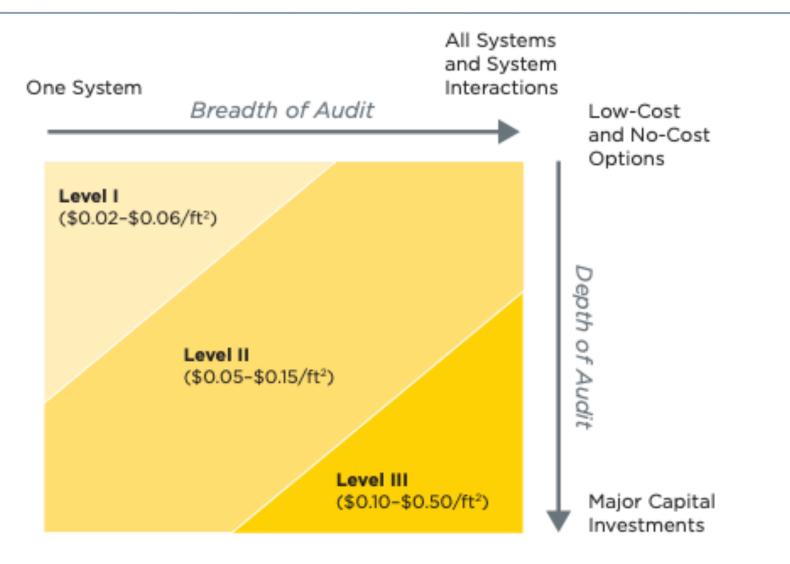
RETROFIT PATH DEVELOPMENT


- 50% of commercial buildings built before 1980 in the U.S.
 Comply with the old building codes
 Tend to have limited options for operational changes
- Retrofitting older buildings is one of the practical paths to reduce energy consumptions

National Renewable Energy Laboratory

E Source Rocky Mountain Institute National Association of Energy Service Companies

The Abo Group Big Ladder Software The RMH Group Cumming

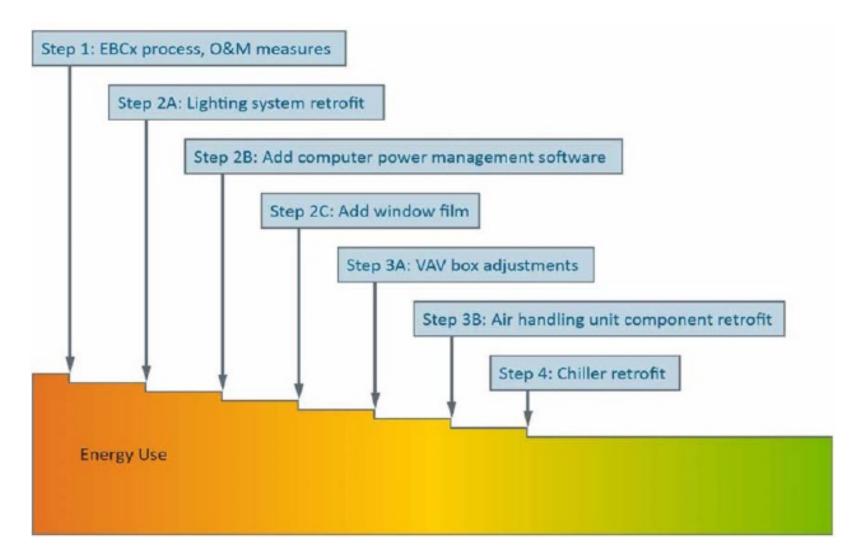


Prepared for the U.S. Department of Energy Pacific Northwest National Laboratory

PECI

U.S. Department of Energy

- Use benchmark plans to set the goals:
 - Best in class
 - Performance goal
 - Baseline
 - □ Above average
 - Commissioned performance level
 - □ National ratings



What would be the cost of auditing AM Hall building?

Table 2-6 Types of Energy Audits

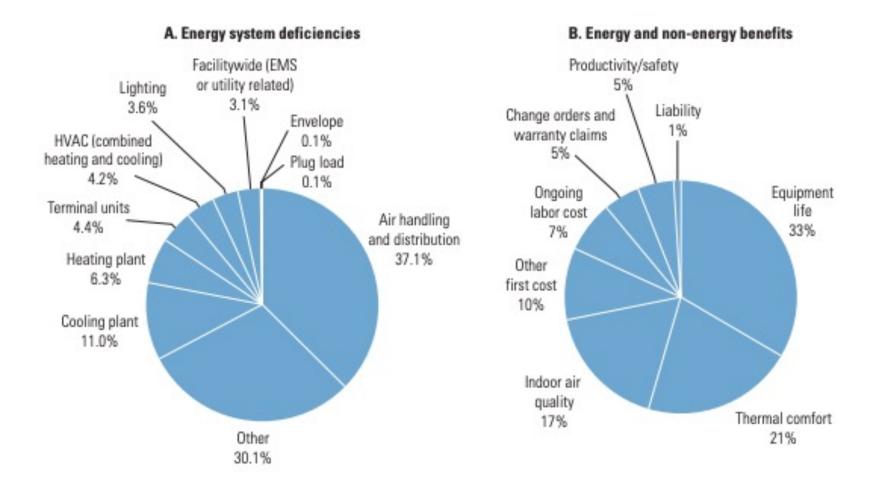
Audit Type	Accounts for Interactions?	Application Notes
Preliminary analysis	No	Indicates overall potential for improvement
Walk-through analysis	No	Identifies no-cost and low-cost EEMs
Single system/targeted audit	No	Considers single systems in detail
Investment-grade audit	Yes	Accounts for interactions between building systems

• Why do we consider this path?

• Common retrofit path options:

Low-cost and not Existing Building Commissioning (EBCx)

- Cost effective
- Options such as targeted tune-ups, comprehensive EBCx, monitoringbase/ongoing commissioning (MBCx)
- □ Whole-building comprehensive retrofits
 - Usually implement in a short span of time
 - Expensive


□ Staged retrofit

- Benefit from incremental savings
- Similar savings are achieved

□ Targeted retrofit

Focused on one or a few objectives

• A summary of common problems in buildings

CLASS ACTIVITY

Class Activity

Description	Your Building
Basic site information	
Owner/operator	
Expectation constraints	
Capital improvement (\$, budget)	
Operational/energy cost (\$)	
Building envelope (wall, window, roof)	
Exterior light (type/wattage)	
Interior light (type/wattage)	
Domestic hot water (fuel, flow rate, capacity)	
HVAC types (Boiler, chiller,)	
Energy end-use breakdowns (%)	
Suggested EEM (list ten EEMs)	

https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYl3c B5poRmNHMOfJb292LX-gPelbX1Yo/edit#gid=611824012