CAE 465/526 Building Energy Conservation Technologies Fall 2023

September 28, 2023

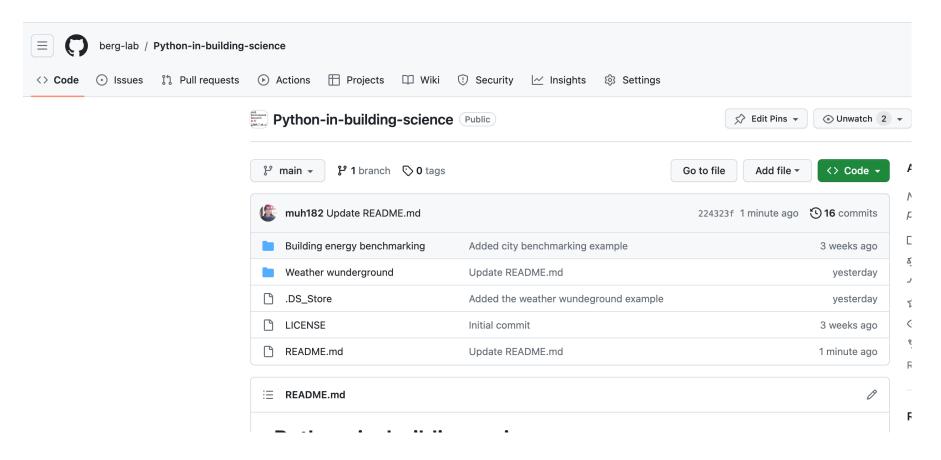
Model Calibration and Uncertainty Analysis

Built Environment Research @ III] 😒 🚓 🍌 🛹

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

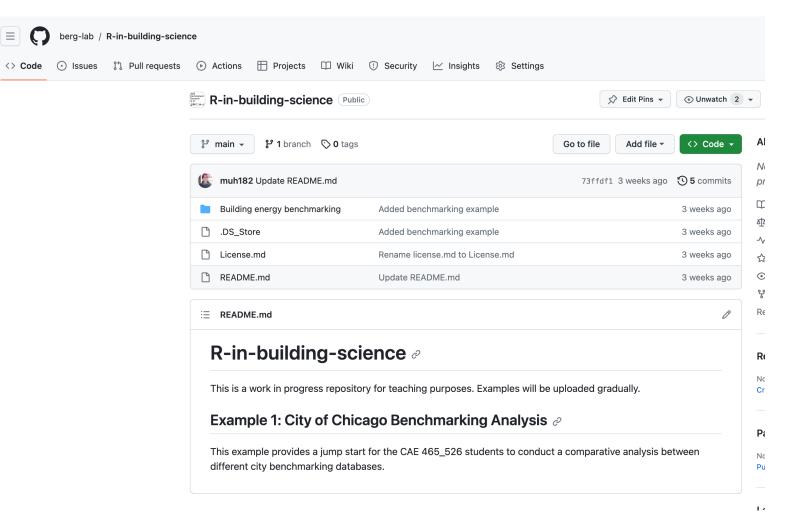
Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu


ANNOUNCEMENT

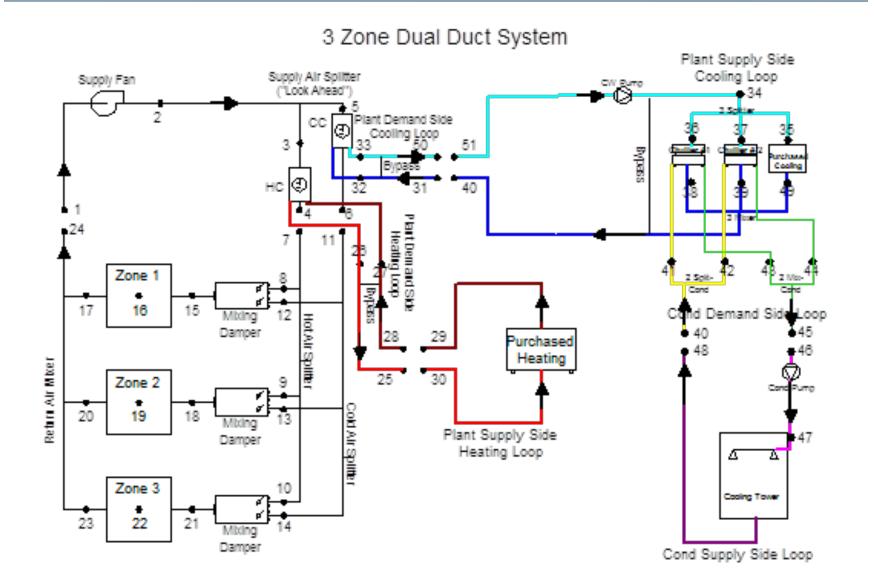
Announcement

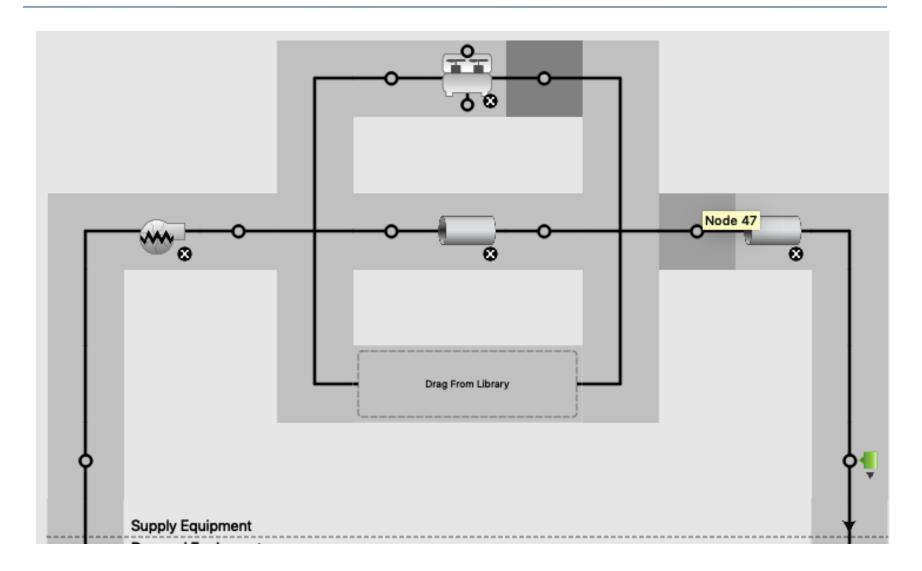
- Assignment 3 is due tomorrow night
- Assignment 4 is due next Friday
- How was the career fair?

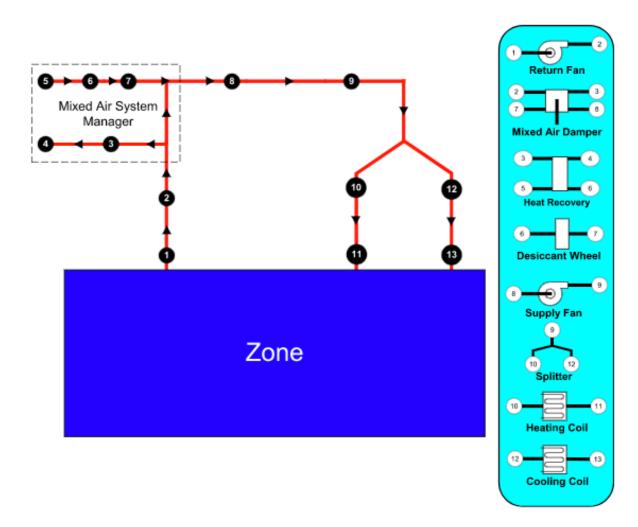
Announcement


Check out the GitHub repositories:

https://github.com/berg-lab/Python-in-building-science/tree/main

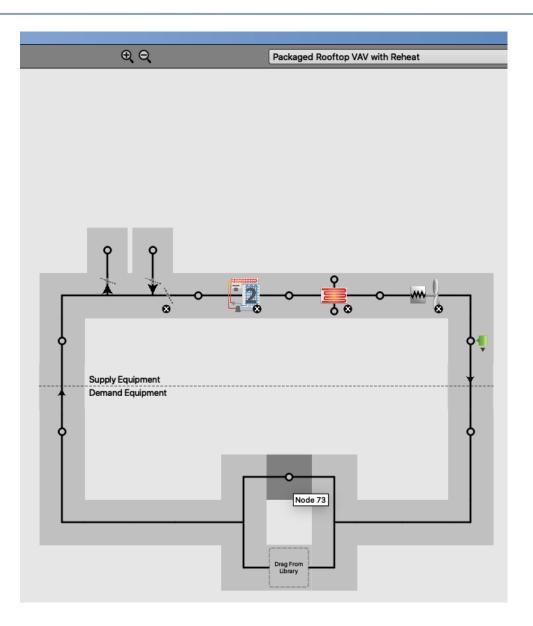

Announcement


Check out the GitHub repositories:



https://github.com/berg-lab/R-in-building-science

ENERGYPLUS / OPENSTUDIO (NODES)



<u>https://www.energyplus.net/sites/default/files/docs/site_v8.3.0/InputOutputRef</u> <u>erence/01b-InputOutputReference/index.html</u>

 $\uparrow \uparrow$... CUIVE OULPUL AL LALEA CONVELTONS - 0.700 Severe ** Node NODE 73 connects to no component ** ** Occurs in Supply Air Path=PACKAGED ROOFTOP VAV WITH REHEAT NODE 71 SUPPLY PATH ** $\sim \sim \sim$ ****** Check the connection to a ZoneHVAC:EquipmentConnections object $\sim \sim \sim$ ** ** Check if this component is missing from the Supply Air Path $\sim \sim \sim$ ** ** Severe ** An outlet node in AirLoopHVAC="PACKAGED ROOFTOP VAV WITH REHEAT" is not connected to any zone ** Could not match ZoneEquipGroup Inlet Node="NODE 71" to any Supply Air Path or controlled zone ** $\sim \sim \sim$ Fatal ****** Preceding errors cause termination ... Summary of Errors that led to program termination: Reference severe error count=2 Last severe error=An outlet node in AirLoopHVAC="PACKAGED ROOFTOP VAV WITH REHEAT" is not connected to any zone ************** Warning: Node connection errors not checked - most system input has not been read (see previous warning). *********************** Fatal error -- final processing. Program exited before simulations began. See previous error messages. ******

READ TIME SERIES AND MONTHLY DATA

Meter Elec	
Meter Ext L	Reporting
Add Hourly Meters	▼ QAQC
Add SWH Loop	BCL Add Hourly Meters
	BCL Add Meter
	BCL Add Output Variable
	BCL ExportMetertoCSV
	BCL ExportVariabletoCSV

Table of Contents

Top

Annual Building Utility Performance Summary Input Verification and Results Summary Demand End Use Components Summary Source Energy End Use Components Summary Component Sizing Summary Surface Shadowing Summary Adaptive Comfort Summary **Initialization Summary** Annual Heat Emissions Summary Annual Thermal Resilience Summary **Climatic Data Summary** Envelope Summary Shading Summary **Lighting Summary** Equipment Summary **HVAC Sizing Summary Coil Sizing Details** System Summary **Outdoor Air Summary Outdoor Air Details Object Count Summary** Energy Meters Sensible Heat Gain Summary Standard 62.1 Summary LEED Summary Annual CO2 Resilience Summary Annual Visual Resilience Summary

ile <u>P</u>	references Components & Measures Help			
	Measures			Library Edit
	🔻 🗊 OpenStudio Measures			Name
	Add Meter	8	44	Add Meter
		ω		Description
	Drop Measure From Library to Create a New Always Run Measure			This measure adds an meter at the requested reporting frequency.
\sim	🔻 🥐 EnergyPlus Measures			requested reporting requercy.
1.1				Modeler Description
Đ.	Prop Measure From Library to Create a New Always Run Measure			The measure just passes in the
	Reporting Measures			string and does not validate that it is a proper meter name. It is
Ed				up to the user to know this or to
A.	OpenStudio Results	0	++	Inputs
-	Drop Measure From Library to Create a New Always Run Measure			Enter Meter Name
				Electricity:Facility
				Reporting Frequency
				hourly
				(louity
x				
ġ.				
I.				
5				
D				
		Sync Project Measures wit	h Library	
		.,,	,	

•••	eplusout.rdd	
88 < >	e epiusout.rdd	₹ ≣0 ⊕
🗉 eplusou	ut.rdd) No Selection	
1	! Program Version,EnergyPlus, Version 23.1.0-87ed9199d4, YMD=2023.09.24 19:10,	
2	! Output:Variable Objects (applicable to this run)	
3	Output:Variable,*,Site Outdoor Air Drybulb Temperature,hourly; !- Zone Average [C]	
4	Output:Variable,*,Site Outdoor Air Dewpoint Temperature,hourly; !- Zone Average [C]	
5	Output:Variable,*,Site Outdoor Air Wetbulb Temperature,hourly; !- Zone Average [C]	
6	Output:Variable,*,Site Outdoor Air Humidity Ratio,hourly; !- Zone Average [kgWater/kgDryAir]	
7	Output:Variable,*,Site Outdoor Air Relative Humidity,hourly; !- Zone Average [%]	
8	Output:Variable,*,Site Outdoor Air Barometric Pressure,hourly; !- Zone Average [Pa]	
9	Output:Variable,*,Site Wind Speed,hourly; !- Zone Average [m/s]	
10	Output:Variable,*,Site Wind Direction,hourly; !- Zone Average [deg]	
11	Output:Variable,*,Site Sky Temperature,hourly; !- Zone Average [C]	
12	Output:Variable,*,Site Horizontal Infrared Radiation Rate per Area,hourly; !- Zone Average [W/m2]	
13	Output:Variable,*,Site Diffuse Solar Radiation Rate per Area,hourly; !- Zone Average [W/m2]	
14	Output:Variable,*,Site Direct Solar Radiation Rate per Area,hourly; !- Zone Average [W/m2]	
15	Output:Variable,*,Liquid Precipitation Depth,hourly; !- Zone Sum [m]	
16	Output:Variable,*,Site Precipitation Rate,hourly; !- Zone Average [m/s]	
17	Output:Variable,*,Site Precipitation Depth,hourly; !- Zone Sum [m]	
18	Output:Variable,*,Site Ground Reflected Solar Radiation Rate per Area,hourly; !- Zone Average [W/m2]	
19	Output:Variable,*,Site Ground Temperature,hourly; !- Zone Average [C]	
20	Output:Variable,*,Site Surface Ground Temperature,hourly; !- Zone Average [C]	
21	Output:Variable,*,Site Deep Ground Temperature,hourly; !- Zone Average [C]	
22	Output:Variable,*,Site Simple Factor Model Ground Temperature,hourly; !- Zone Average [C]	
23	Output:Variable,*,Site Total Sky Cover,hourly; !- Zone Average []	
24	Output:Variable,*,Site Opaque Sky Cover,hourly; !- Zone Average []	
25	Output:Variable,*,Site Outdoor Air Enthalpy,hourly; !- Zone Average [J/kg]	
26	Output:Variable,*,Site Outdoor Air Density,hourly; !- Zone Average [kg/m3]	
27	Output:Variable,*,Site Solar Azimuth Angle,hourly; !- Zone Average [deg]	
28	Output:Variable,*,Site Solar Altitude Angle,hourly; !- Zone Average [deg]	
29	Output:Variable,*,Site Solar Hour Angle,hourly; !- Zone Average [deg]	
30	Output:Variable,*,Site Rain Status,hourly; !- Zone Average []	
31	Output:Variable,*,Site Snow on Ground Status,hourly; !- Zone Average []	
-	Lin	ne: 1 Col: 1 🛛 🗖

timestep

EnergyPlus timeseries visualization software

EnergyPlus has rich support for hourly and sub-hourly reporting, but as a model becomes larger and more complex, the simulation output size can become unwieldy for many existing tools. This can result in prohibitively long load-times just to view your simulation results.

Timestep attempts to be a better solution, offering a clean, user-friendly and near-instanteous querying interface, as well as modern data visualization capabilities. It accomplishes this by using the EnergyPlus SQLite Output reporting, and can load and visualize very large simulation output files in seconds, rather than minutes.

Current Timestep features:

- Native support and install packages for MacOS and Windows.
- Heatmap, Multi-Line, Scatter Plot, Histogram, and Statistical Summary outputs
- CSV and clipboard export
- · Saved sessions and multiple views within a session
- · Support for multiple simulation files
- Auto-detection and parsing of BND files for more contextual IP units conversion.

Planned Timestep features:

- Support for ESO files as well as SQLite Outputs
- · Support for platform-agnostic CSV files
- Support for tabular data (similar to eplusout.html reports)
- · Additional chart types like 2D hexbins, scatter matrices, and box/violin distribution plots

Install and Setup

- 1. Download the current build for Mac or PC.
- 2. (Optional): Download the sample SQL file.
- 3. Unzip the file and place it in its own directory.
- 4. Double-click "timestep" (timestep.exe on Windows)
- 5. If experiencing issues running the program on Windows, select "More Info" at the "Windows Protected Your PC" at the pop-up and then select "Run Away."
- 6. If experiencing issues running the program on Mac, check out this link to open packages from unidentified developers.
- 7. Ensure that any desired EnergyPlus simulations have been run with the following command in the IDF file: "Output:SQLite, SimpleAndTabular"
- 8. Click the "Load Files button", or drag a valid SQL file (or multiple SQL files) over the load files button.
- 9. Start exploring your model results!

https://michaelsweeney.github.io/timestep/

LIST OF INFLUENTIAL

- How do we consider the values in the model?
- How do we make sure the model is accurate?

System Inputs

1. Systems Variables

- Required power and associated part load curves (e.g., Supply fan, pumps, motors, boiler)
- □ Efficiency of the systems (e.g., fans, pumps, COP of HVAC systems)
- □ Maximum supply air flow rate
- □ Minimum outside air flow rate
- □ HVAC system types
- □ Size of the HVAC equipment (Hard sizing vs. autosizing)
- □ Pressure rise
- Garage fans
- □ Electric Vehicle (EV) stations
- □ Exterior lights
- Outdoor air fraction

Internal Inputs

2. Internal Loads

- □ Lighting power density
- Equipment power density
- Process/Miscellaneous power density
- Occupancy density
- Metabolic activity of occupants and clothing
- □ Service Hot Water (SHW)

3. Internal Load Schedules

- □ Lighting schedule
- □ Equipment schedule
- Process/Miscellaneous schedule
- Occupancy schedule and associated occupancy behavior

Internal Inputs

4. Systems Schedules

- □ Interior fans schedule
- □ Space heating and cooling temperature setpoints and setbacks
- Days of operation
- □ Outside fresh air schedule
- Economizer
- Mechanical outdoor air controller schedule

External Inputs

- 5. Building Geometry
 - □ GFA (Gross Floor Area) and building Conditioned Floor Area (CFA)
 - Building space types
 - □ Number of floors
 - □ Age of the building and equipment (contribute to other variables)
 - □ Building surface to volume ratio
 - □ Building leakage area (contribute to the infiltration)

External Inputs

- 6. Real Time Weather File
 - □ Dry bulb temperature
 - Relative humidity
 - Dew point temperature
 - □ Wind speed/direction
 - □ Atmospheric pressure
 - □ Diffuse/direct normal radiation
 - □ Snow and liquid precipitation depth

External Inputs

- 7. Thermal Characteristics of Building Envelope
 - □ Window shading coefficient (SGHC)
 - □ Window U-value
 - □ Wall U-value
 - □ Floor U-value
 - □ Wall to Window Ratio (WWR)
 - □ Infiltration throughout the building envelope
 - Roof type (conventional roof, green roof, and other roofing solutions)

External Inputs

8. Urban Environment Influence

- □ Local outdoor Convective Heat Transfer Coefficients (CHTCs)
- Urban environment density (e.g., urban plan area density and frontal urban density)
- □ Land coverage (e.g., vegetated surfaces vs. ground)
- Local outdoor solar irradiance distribution due to the urban environment density

CALIBRATION

- Building energy modeling approaches typically require hours or days of intensive data gathering and tuning the building energy model, a process known as *calibration*.
- Calibration is the process of (i) validate and (2) verify the *"results of a building energy model with the metered energy data"*.
- The calibration process is critical for:
 - Establishing quality control of modeling
 - Creating reliable energy modeling results
 - Designing and retrofitting buildings

- ASHRAE Guideline 14-2014 has two calibration metrics:
 - Coefficient of variation of the root mean square error (CVRMSE)
 - 2. Normalized Mean Biased Error (NMBE)
- CVRMSE shows how well the model match some months much better than others
- NMBE indicates how well the model tend to over or underestimate actual use?

$$CVRMSE = 100 * \frac{1}{\bar{y}} [\sum (y_i - \hat{y}_i)^2 / (n - p)]^{1/2}$$

$$NMBE = \frac{\sum^{n} (y_i - \hat{y}_i)}{(n-p) * \bar{y}} * 100$$

n= number of data periods (at least 12 months \rightarrow n=12) p = number of parameters in baseline model (p=1) y_i = meter energy data for period i \bar{y} = mean of meter energy data \hat{y}_i = simulation-predicted energy data for period i

• Calibration requirements:

Statistic	Monthly	Hourly
CV(RMSE)	15%	30%
NMBE	5%	10%

• If possible, we would like to calibrate for all end-uses, similar to the following case study:

	CVRSME	NMBE	Months
All Electricity	6.1%	-0.6%	All
Plug Loads	5.9%	-2.1%	All
Lighting	4.9%	2.6%	All
Fans	9.3%	-1.2%	Omit December
Cooling	12.6%	3.6%	Omit December
All Gas	12.0%	2.3%	Omit December
Heating	12.6%	1.7%	Omit December
Service Hot Water	9.5%	2.3%	Omit April and May

CLASS ACTIVITY

Class Activity

• Calculate the CVRMSE and NMBE for your HW3 model:

https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYI3cB5po RmNHMOfJb292LX-gPelbX1Yo/edit#gid=0

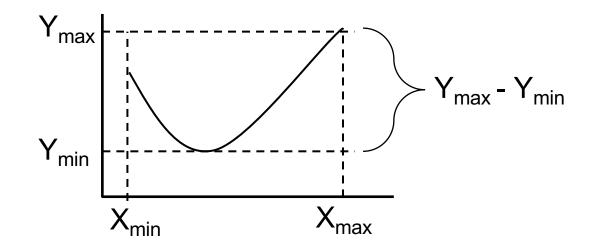
SENSITIVITY ANALYSIS

Sensitivity Analysis

1. One-factor-at-a-time (+/- 20%, +/- 1 standard deviation):

- It only considers the local variation and no interaction between parameters (Why this is an issue?)
- Using standard deviation is preferred but requires assuming a distribution (e.g., boiler efficiency 0.88 +- 20% can give an efficiency of 1.06!)

Sensitivity Analysis

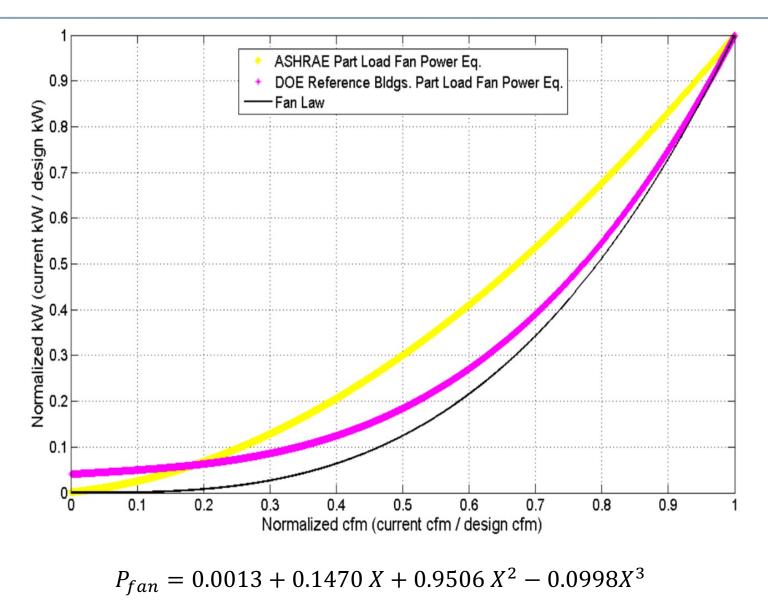

2. Partial Derivatives

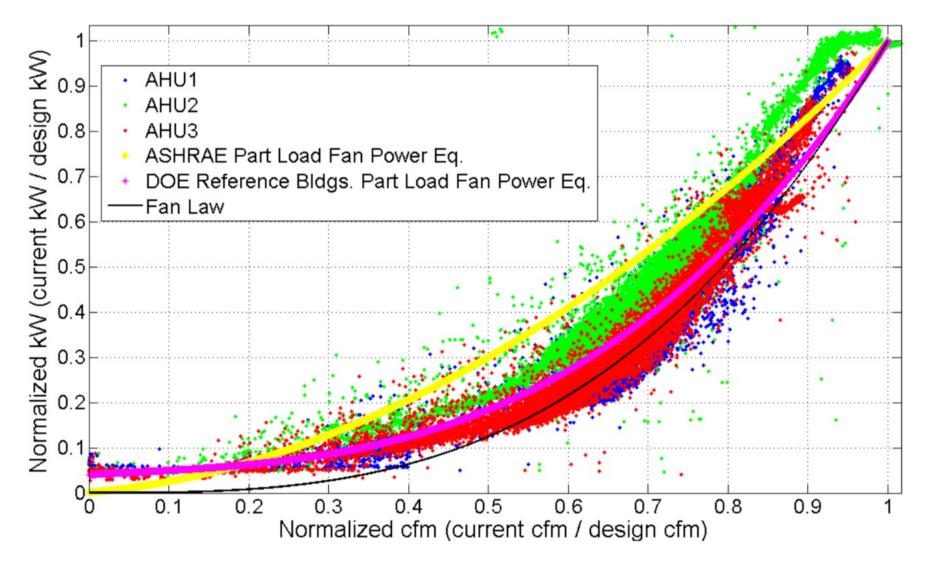
sensitivity
$$= \frac{\partial Y}{\partial X_i} = \frac{\Delta Y}{\Delta X_i}$$

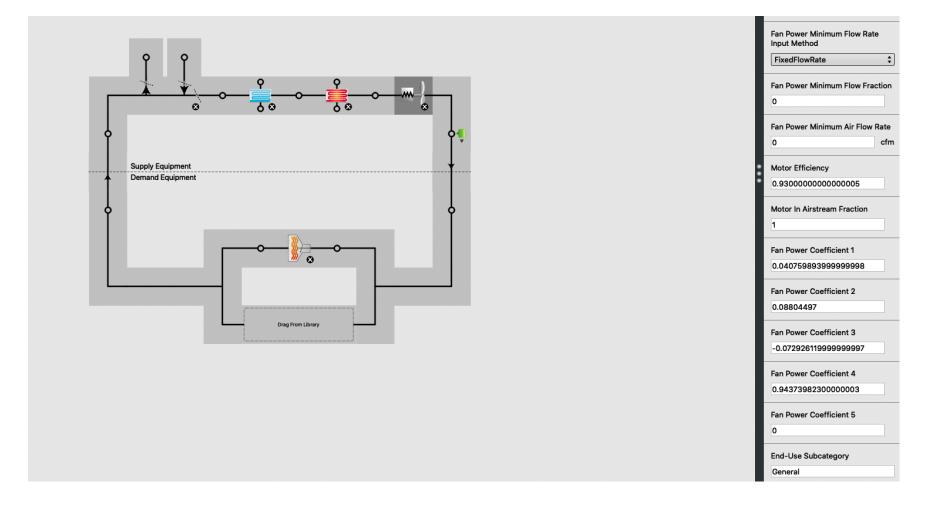
Sensitivity Analysis

3. Sensitivity Index (Hoffman & Gardener 1983):

$$sensitivity = \frac{Y_{max} - Y_{min}}{Y_{max}}$$


OPENSTUDIO UTILITY


OpenStudio Utility


• We will use the OpenStudio Utility Bills at some point:

•		Untitled*						
<u>File</u> Pr	references <u>C</u> omponents & M	erences Components & Measures Help Weather File & Design Days Life Cycle Costs Utility Bills My Model Library Edit						
	Site Weather File & Design	Days Life Cycle Costs Utility Bills	My Model Library Edit					
	Electric Utility Bill 🔻	Name						
	Utility Bill 1	Consumption Units Peak Demand Units Peak Demand Window Timesteps						
	Gas Utility Bill 🛛 🔳	kwh t) 1 Run Period 1						
	District Heating Utility Bill	Start Date 1/1/2020 End Date 12/31/2020						
	District Cooling Utility Bill	Billing Period Select the best match for you utility bill						
	Gasoline Utility Bill 🔌	Start Date and End Date Start Date and Number of Days in Billing Period						
	Diesel Utility Bill 🛛 🚿	C End Date and Number of Days in Billing Period						
	Fuel Oil #1 Utility Bill	Start Date End Date Energy Use (kWh) Peak (kW) Cost 1/1/20 • 1/30/20 • • •						
X	Fuel Oil #2 Utility Bill	1/31/20 ♦ 2/29/20 ♦ 3/1/20 ♦ 3/30/20 ♦						
[2] × ∞ ▲ ○ 1	Propane Utility Bill 🔌	Add New Billing Period						
6	Water Utility Bill 🛛 ┥							
	Steam Utility Bill 🛛 🖪							
	Energy Transfer Utility Bill							
	*							
	• 2 2 3 • 3 • 3 • 3							

FAN CURVES

Variable Speed Fan Model

The model for the variable speed fan is similar to the simple single-speed fan model except for a part load factor that multiplies the fan power consumption.

$$f_{flow} = \dot{m}/\dot{m}_{design}$$
 $f_{pl} = c_1 + c_2 \cdot f_{flow} + c_3 \cdot f_{flow}^2 + c_4 \cdot f_{flow}^3 + c_5 \cdot f_{flow}^4$
 $\dot{Q}_{tot} = f_{pl}\dot{m}_{design}\Delta P/\left(e_{tot}\rho_{air}
ight)$

The rest of the calculation is the same as for the simple fan.

Nomenclature for Simple Models

 \dot{Q}_{tot} is the fan power in watts;

 \dot{m} is the air mass flow in kg/s;

 \dot{m}_{design} is the design (maximum) air flow in kg/s;

 ΔP is the fan design pressure increase in Pascals;

 e_{tot} is the fan total efficiency;

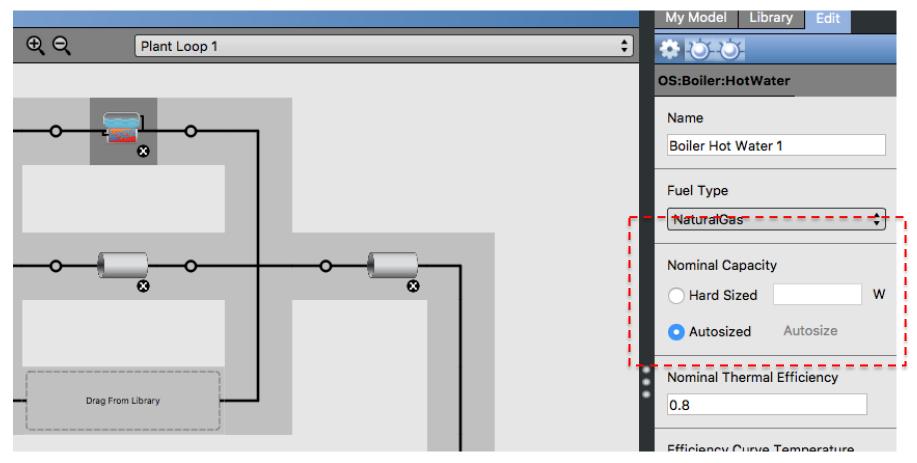
 ρ_{air} is the air density at standard conditions in kg/m³;

 e_{motor} is the motor efficiency;

 \dot{Q}_{shaft} is the fan shaft power in watts;

 \dot{Q}_{toair} is the power entering the air in watts;

N_{ratio} is the ratio of actual fan flow rate (or speed) to maximum fan flow rate (or speed)


 h_{in}, h_{out} are the inlet and outlet air stream specific enthalpies in J/kg;

 w_{in}, w_{out} are the inlet and outlet air stream humidity ratios;

 T_{out} is the outlet air temperature in degrees C;

AUTOSIZE

 EnergyPlus allows sizing the HVAC components based on the loads

Read EIO file to see the sizing values:

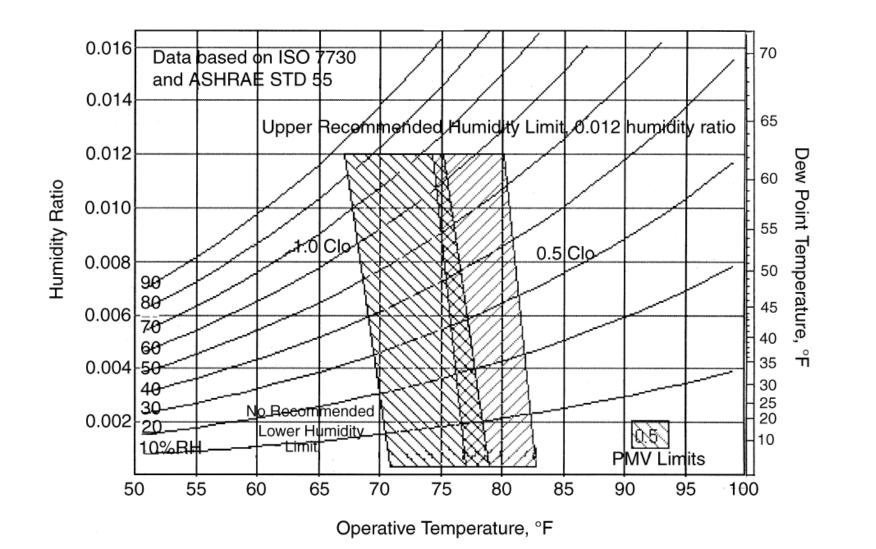
eplusout.eio 3.8200E-008.0.20 People Internal Gains Nominal, BB ONLY L116 LL-PD, LARGELAB OCC SCH, BB ONLY L116, 225, 48, 22, 4, 9, 929E-002, 10, 072, 0, 300, 0, 700, AutoCalculate, MEDIUM OFFICE ACTIVITY, No, 3.8200E-008, 0, 22 People Internal Gains Nominal, BB_ONLY_L119 LL-PD, LARGELAB OCC SCH. BB ONLY L119, 146.04, 14, 5, 14, 5, 9, 929E-002, 10, 072, 0. 300, 0. 700, AutoCalculate, MEDIUM OFFICE ACTIVITY, No, 3.8200E-008, 0, 14 People Internal Gains Nominal, BB_ONLY_L123 LL-PD, LARGELAB OCC SCH, BB_ONLY_L123, 42, 36, 4, 2, 4, 2, 9, 929E-002, 10.072, 0.300, 0.700, AutoCalculate, MEDIUM OFFICE ACTIVITY, No, 3.8200E-008,0,4 People Internal Gains Nominal, BB_ONLY_L221 LL-PD, LARGELAB OCC SCH, BB ONLY L221, 53, 51, 5, 3, 5, 3, 9, 929E-002, 10.072, 0.300, 0.700, AutoCalculate, MEDIUM OFFICE ACTIVITY, No, 3.8200E-008,0,5 People Internal Gains Nominal, PTAC_L119A LL-PD, LARGELAB OCC SCH, PTAC_L119A.21.18.2.1.2.1.9.929E-002.10.072.0.300,0.700, AutoCalculate, MEDIUM OFFICE ACTIVITY, No, 3.8200E-008.0.2 People Internal Gains Nominal, PTAC_L120 LL-PD, LARGELAB OCC SCH. PTAC_L120, 85, 84, 8, 5, 8, 5, 9, 929E-002, 10.072, 0.300, 0.700, AutoCalculate, MEDIUM OFFICE ACTIVITY, No, 3.8200E-008,0,9 ! <Lights Internal Gains Nominal>, Name, Schedule Name, Zone Name, Zone Floor Area {m2}, # Zone Occupants, Lighting Level {W}, Lights/Floor Area {W/m2}, Lights per person {W/ person}, Fraction Return Air, Fraction Radiant, Fraction Short Wave, Fraction Convected, Fraction Replaceable, End-Use Category, Nominal Minimum Lighting Level {W}, Nominal Maximum Lighting Level {W} Lights Internal Gains Nominal, C.O_C1 3, OFFICE_LIGHT_SCH_9-8, RTU1 1, 124.95, 2.1, 55.059, 0.441, 25.970, 0.000, 0.648, 0.200, 0.152, 1.000, General, 0.000, 55.059 Lights Internal Gains Nominal, C.O_C1 5,0FFICE_LIGHT_SCH_9-8,RTU1 1,124.95,2.1,55.059,0.441,25.970,0.000,0.648,0.200,0.152,1.000,General,0.000,55.059 Lights Internal Gains Nominal, C.O_C1 7, OFFICE_LIGHT_SCH_9-8, RTU1 1, 124.95, 2.1, 80.470, 0.644, 37.956, 0.000, 0.648, 0.200, 0.152, 1.000, General, 0.000, 80.470 Lights Internal Gains Nominal, C.O_C2 3,0FFICE_LIGHT_SCH_9-8,RTU1 1,124.95,2.1,100.000,0.800,47.168,0.000,0.648,0.200,0.152,1.000,General,0.000,100.000 Lights Internal Gains Nominal, COR-C1 6, BLDG LIGHT 24 HR, RTU1 1, 124.95, 2.1, 120.000, 0.960, 56.601, 0.000, 0.648, 0.200, 0.152, 1.000, General, 120.000, 120.000 Lights Internal Gains Nominal, C.O_R2 2,0FFICE_LIGHT_SCH_9-8,RTU2 1,101.45,2.7,81.000,0.798,30.264,0.000,0.333,0.200,0.467,1.000,General,0.000,81.000 Lights Internal Gains Nominal, C.O_R3 3,0FFICE_LIGHT_SCH_9-8,RTU2 1,101.45,2.7,162.000,1.597,60.527,0.000,0.333,0.200,0.467,1.000,General,0.000,162.000 Lights Internal Gains Nominal, C.O_R_3, OFFICE_LIGHT_SCH_9-8, RTU2 1, 101.45, 2.7, 54.000, 0.532, 20.176, 0.000, 0.333, 0.200, 0.467, 1.000, General, 0.000, 54.000 Lights Internal Gains Nominal, C.O_R2 1,0FFICE_LIGHT_SCH_9-8,RTU5 1,409.61,9.7,84.375.0.206.8.676.0.000.0.333.0.200.0.467.1.000.General,0.000,84.375 Lights Internal Gains Nominal, C.O_R3 1,0FFICE_LIGHT_SCH_9-8,RTU5 1,409.61,9.7,175.781,0.429,18.075,0.000,0.333,0.200,0.467,1.000,General,0.000,175.781 Lights Internal Gains Nominal, C.O_R3 2,0FFICE_LIGHT_SCH_9-8, RTU5 1,409.61,9.7,260.156,0.635,26.750,0.000,0.333,0.200,0.467,1.000,General,0.000,260.156 Lights Internal Gains Nominal, C.O.R 2,0FFICE LIGHT SCH 9-8, RTU5 1,409.61,9.7,48.316,0.118,4.968,0.000,0.333,0.200,0.467,1.000,General,0.000,48.316 Lights Internal Gains Nominal, COR-R1 2, BLDG LIGHT 24 HR, RTU5 1, 409.61, 9.7, 106.176, 0.259, 10.918, 0.000, 0.333, 0.200, 0.467, 1.000, General, 106.176, 106.176 Lights Internal Gains Nominal, LIGHTS 10,L117 LGT SCH 9-5,RTU5 1,409.61,9.7,515.061,1.257,52.961,0.000,0.648,0.200,0.152,1.000,General,0.000,515.061 Lights Internal Gains Nominal, LIGHTS 9, L117_LGT_SCH_9-5, RTU5 1, 409.61, 9.7, 432.824, 1.057, 44.505, 0.000, 0.648, 0.200, 0.152, 1.000, General, 0.000, 432.824 Lights Internal Gains Nominal, LIGHTS 11, BLDG LIGHT 24 HR, UNCON_BASE, 598.67, 0.0, 299.250, 0.500, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 299.250, 299.250 Lights Internal Gains Nominal, LIGHTS 12, BLDG LIGHT 24 HR, UNCON_BASE, 598.67, 0.0, 65.835, 0.110, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 65.835, 65.835 Lights Internal Gains Nominal, LIGHTS 13, BLDG LIGHT 24 HR, UNCON_BASE, 598.67, 0.0, 212.625, 0.355, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 212.625, 212.625 Lights Internal Gains Nominal, LIGHTS 14, BLDG LIGHT 24 HR, UNCON_BASE, 598.67, 0.0, 88.515, 0.148, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 88.515, 88.515 Lights Internal Gains Nominal, LIGHTS 15, BLDG LIGHT 24 HR, UNCON_BASE, 598.67, 0.0, 17.640, 2.947E-002, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 17.640, 17.640 Lights Internal Gains Nominal, LIGHTS 16, BLDG LIGHT 24 HR, UNCON BASE, 598.67, 0.0, 325.080, 0.543, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 325.080, 325.080 Lights Internal Gains Nominal, LIGHTS 17, BLDG LIGHT 24 HR, UNCON_BASE, 598.67, 0.0, 428.400, 0.716, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 428.400, 428.400 Lights Internal Gains Nominal, LIGHTS 18, BLDG LIGHT 24 HR, UNCON BASE, 598.67, 0.0, 133.875, 0.224, N/A, 0.000, 0.648, 0.200, 0.152, 1.000, General, 133.875, 133.875

• Look for the "HVAC System Sizing":

	file:///Volumes/GoogleDrive/My%20Drive/Courses/cae526_f18/Project/P	0	1 0 +
Table of Contents			
	File:///Volumes/GoogleDrive/My%20Drive/Courses/cae526_f18/Project/P		
Con Sizing Details System Summary Outdoor Air Summary Object Count Summary Energy Meters Sensible Heat Gain Summary Standard 62.1 Summary			
<u>Standard 62.1 Summary</u> <u>LEED Summary</u>			

• What are the pro and cons of using the autosizing feature?

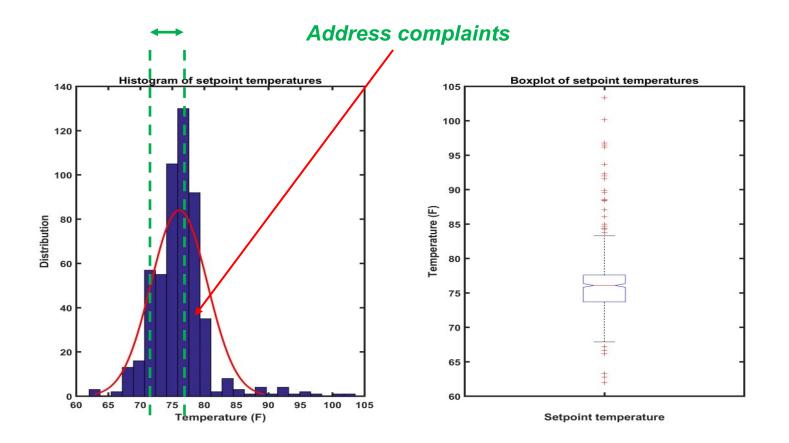
CLASS ACTIVITY

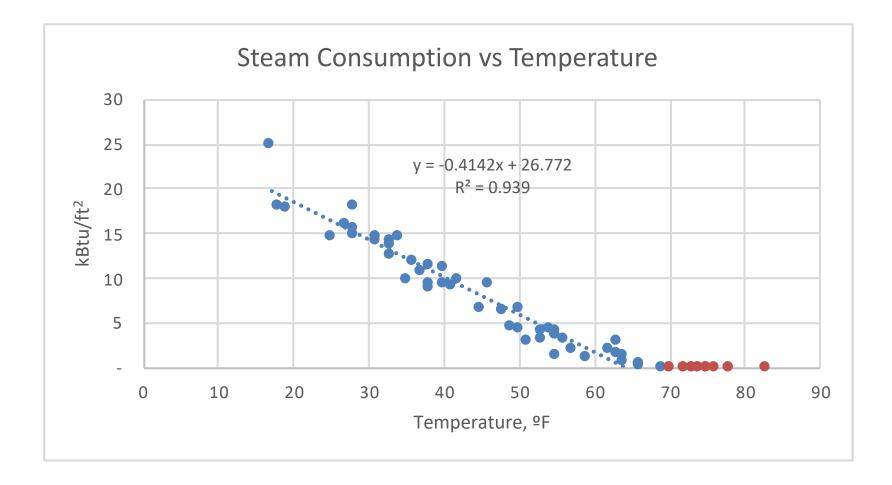

Class Activity

- Find six or seven autosize values and replace them in the model.
- Create a new model "save as" and increase or decreases the sizes and comment on the results

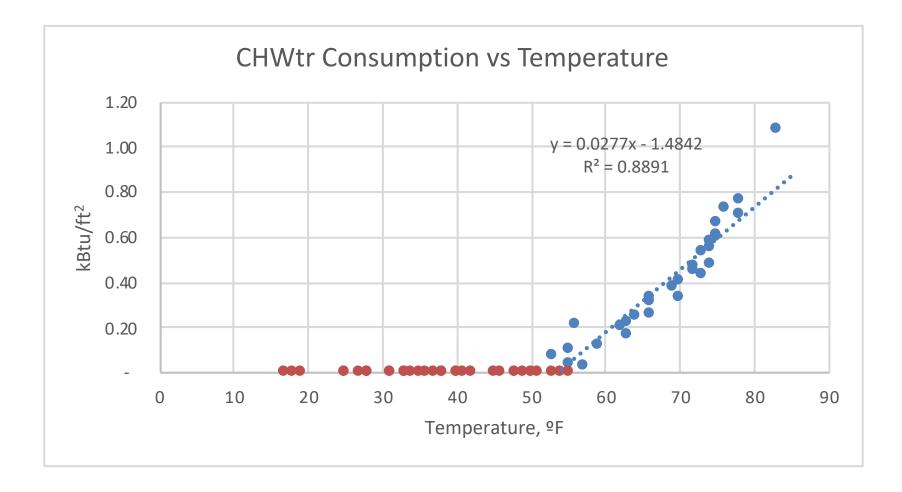
https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYl3cB5poRmNHMOf Jb292LX-gPelbX1Yo/edit#gid=1275549135

SETPOINTS

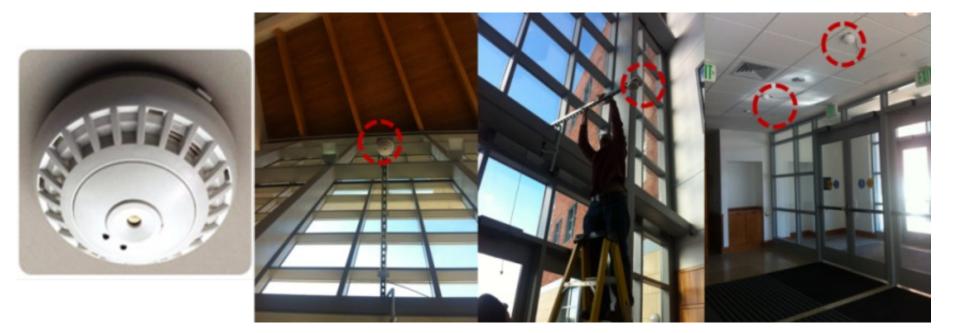

Setpoints


Setpoints

Poor management of temperature setpoints in the buildings


Thermal comfort range

• Wishnick Hall monthly data:


• Wishnick Hall monthly data:

OCCUPANCY

Occupancy

 Occupancy and utility data as a proxy to obtain receptacles and schedules

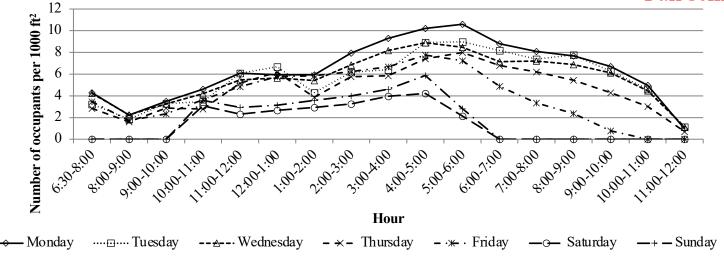
Occupancy

- Careful consideration for the campus buildings is associated with modeling occupancy rate of the buildings:
 - Combination of different space types, rendering the campus buildings unique in terms of the occupancy rate
 - Does not follow the typical occupancy rates recommended in the energy simulation programs

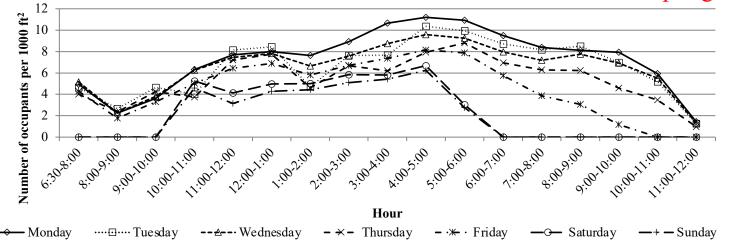
Davis III, J.A. and Nutter D.W. 2010. Occupancy diversity factors for common university building types, Energy and Buildings 42 (2010) 1543–1551

Class Activity

We can use different strategies including using the course schedules:


← → C ▲ Not Secure pop.weclarify.com/spring2019.html	🖈 🛛 🗖 🔂 🗌 🚺
Search for stuard Option	Ready to register? Check if these sections are full
BIOL 327: Introduction to Immunology	BIOL 327: Introduction to Immunology Class ~ Karina Tuz ~ in Stuart Building 204 (remove)
View in course catalog / View course evaluations (must login to MyIIT first) Covers general principles of innate and adaptive immunity including structure and function of immune system components, T and B cell development, responses of the immune system to infection, and consequences of immune system failure.	BIOL 402: Metabolic Biochemistry Class ~ Nicholas Menhart ~ in Stuart Building 107 Internet ~ Nicholas Menhart ~ in TBA (remove)
Eligible Pass/Fail Course, Standard Tuition Rate Spring 2019 4 seats avail. Lecture (Class) ~ Karina Tuz ~ TR from 11:25am to 12:40pm in Stuart Building 204 (add to cart)	BIOL 410: Medical Microbiology Class ~ Kathryn Spink ~ in Stuart Building 213 Class ~ Kathryn Spink ~ in TBA (remove)
BIOL 402: Metabolic Biochemistry	BIOL 451: Biological Literature Class ~ Andrew Howard ~ in Stuart Building 212 (remove)
View in course catalog / View course evaluations (must login to MyIIT first)	BIOL 510: Medical Microbiology Class ~ Kathryn Spink ~ in Stuart Building 213 (remove)
The second part of a one-year Biochemistry series. This semester deals with biochemistry of metabolism, focusing on: glycolysis, the citric acid cycle, gluconeogenesis, electron transport, and the synthesis and breakdown of biomolecules (amino acids, nucleic acids, lipids, and carbohydrates), blood chemistry, lipid transportation, and metabolic control.	Spring 2019 (101) 8am Sunday Monday Tuesday Wednesday Friday Saturday
Eligible Pass/Fail Course, Standard Tuition Rate	9am CSP 586
Spring 2019 15 seats avail. Lecture (Class) ~ Nicholas Menhart ~ TR from 1:50pm to 3:05pm in Stuart Building 107 (add to cart) 9 seats avail. Lecture (Internet) ~ Nicholas Menhart (add to cart)	10am
BIOL 410: Medical Microbiology View in course catalog / View course evaluations (must login to MyIIT first) Properties of pathogenic bacteria, fungi, viruses, and parasites and their mechanisms of pathogenesis with a focus on organisms that	12pm 12pm 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cause human disease. Eligible Pass/Fail Course, Standard Tuition Rate	3pm
Spring 2019 3 seats avail. Lecture (Class) ~ Kathryn Spink ~ TR from 10am to 11:15am in Stuart Building 213 (add to cart) 7 seats avail. Lecture (Class) ~ Kathryn Spink (add to cart)	5pm
BIOL 451: Biological Literature View in course catalog / View course evaluations (must login to MyIIT first)	7pm 2587 8pm 9pm
Library research on advanced topics in biology followed by oral presentations of this research.	

- Beyond installation of fairly expensive occupancy sensors at the entrance and exit of buildings is to benefit from the existing infrastructures at the buildings:
 - Appliance using WiFi or desktop computers connect to the network through their IP address
 - Swipe access card readers for a building or space
 - Class schedules and FTE operation hours
 - CO₂ sensors for the demand control systems


Occupancy

• From the Penn State's campus study:

Fall semester

DESIGN VENTILATION

Outdoor Air

- Minimum outdoor air fraction very important
- EnergyPlus options:
 - OA per person (default 20 cfm)
 - OA per floor area
 - OA per zone
 - OA air change per hour
 - Use ~0.1-0.2CFM/ft² (or 20% design flow rate)
 - Look at floor plans & ASHRAE 62.1

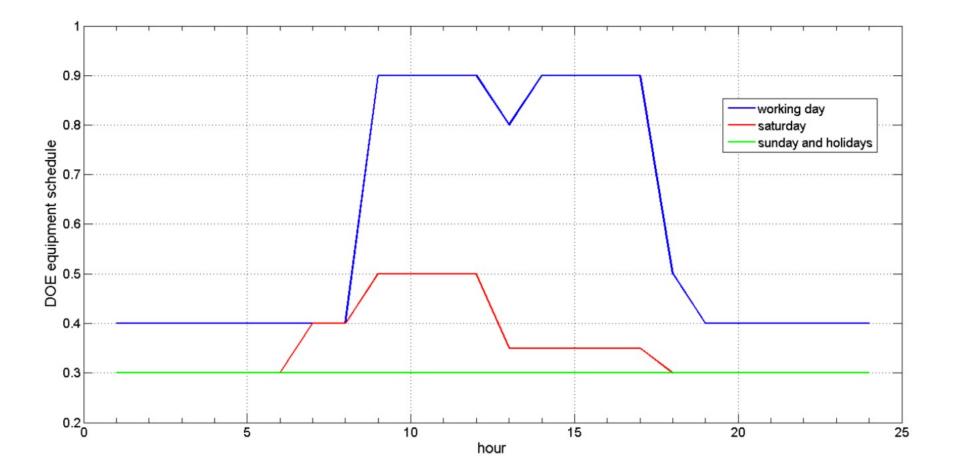
INFILTRATION

Infiltration

- Infiltration options in E+:
 - Design Flow Rate:

 $Infiltration = (I_{Design})(F_{Schedule})[A + B[T_{Zone} - T_{Out}] + C(Wind Speed) + D(Wind Speed)]$

• Effective Leakage Area:


Infiltration =
$$(F_{Schedule}) \frac{A_L}{1000} \sqrt{C_S \Delta T + C_W (Wind Speed)^2}$$

• Flow Coefficient

 $Infiltration = (F_{Schedule})\sqrt{(cC_{S}\Delta T^{n})^{2} + (cC_{W}(s \times Wind\ Speed)^{2n})^{2}}$

PLUG LOAD

Plug Load Schedule

Is this close to the reality?

Plug Load Schedule

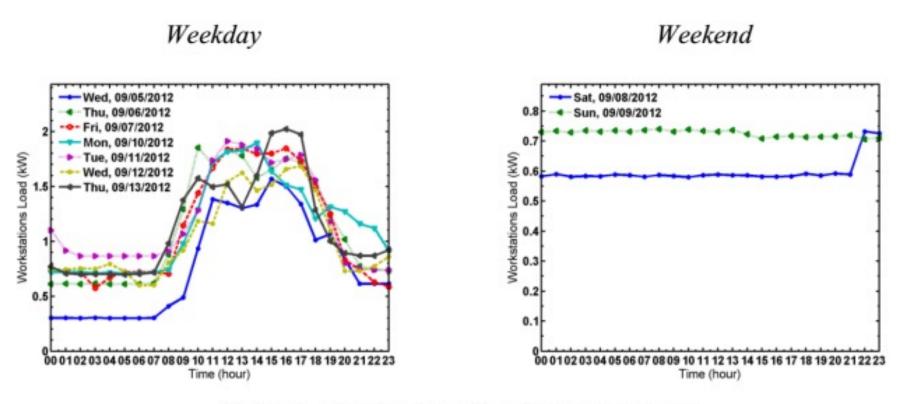


Figure 4. Plug load profiles for workstations.

LIGHTING

Lighting Load

f_{convected} = 1.0 – (Fraction Latent + Fraction Radiant + Fraction Lost)

Lighting Schedule

• Suggested DOE Reference building lighting schedule

Lighting Power Density

• Lighting Power Density (LPD)

Lighting Power Densities

TABLE 9.5.1

Using the Building Area Method		
Building Area Type ^a	LPD (W/ft ²)	
Automotive facility	0.82	
Convention center	1.08	
Courthouse	1.05	
Dining: bar lounge/leisure	0.99	
Dining: cafeteria/fast food	0.90	
Dining: family	0.89	
Dormitory	0.61	
Exercise center	0.88	
Fire station	0.71	
Gymnasium	1.00	
Health-care clinic	0.87	
Hospital	1.21	
Hotel	1.00	
Library	1.18	

Manufacturing facility	1.11
Motel	0.88
Motion picture theater	0.83
Multifamily	0.60
Museum	1.06
Office	0.90
Parking garage	0.25
Penitentiary	0.97
Performing arts theater	1.39
Police station	0.96
Post office	0.87
Religious building	1.05
Retail	1.40
School/university	0.99
Sports arena	0.78
Town hall	0.92
Transportation	0.77
Warehouse	0.66
Workshop	1.20

^a In cases where both a general building area type and a specific building area type are listed, the specific building area type shall apply.

Is this close to the reality?

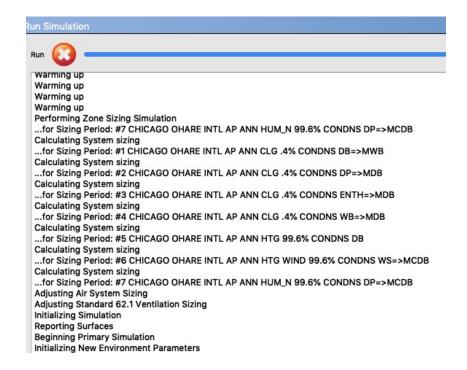
Lighting Power Use

• Lighting power use is equal to =

Diversity Factor \times LPD \times Area

CLASS ACTIVITY

Class Activity


 Calculate the LPD, occupancy, plug load, and associated schedules for this room:

https://docs.google.com/spreadsheets/d/1eUYbP00uv7EYl3cB5poRmNH MOfJb292LX-gPelbX1Yo/edit#gid=1480758816

SIMULATION

Convergence Tolerances

- Convergence tolerances during warm up days:
 - Design days or run periods repeat until the simulation reaches to the desired convergence tolerances
 - There will be a warning is the convergence is not met during the load calculations
 - □ It is possible to increase the number of warm up days

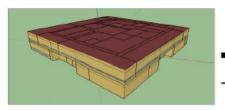
CALIBRATION EXAMPLES

Location	Baltimore, ASHRAE Climate Zone 4A
Building Parameters	735,300 ft ² Includes 17 Above-Grade Stories and a 1.5 Story Below-Grade Parking Garage; Late 1960s Construction
Space Use	Mainly Office Space for Government Agencies
Occupancy	1,200 People
HVAC System	Multiple VAV AHUs on Lower Three Levels, Two-Pipe FCUs at the Perimeter Zones in the Upper Levels, Dedicated Outside Air AHUs Provide Ventilation to the Entire Building
Lighting System	Mainly 4 ft T8 lamps with Electronic Ballasts
Chilled Water Source	Purchased at About \$0.30/ton·hr (2009) (Disabled On-Site Chilled Water Plant)
Hot Water Source	Purchased Steam at About \$21.50/thousand lbs (2009)
Cost of Electricity	\$0.121/kWh Blended Rate (2009)

• Calculate the lighting power:

Philips Model 479733 Internet #303811988 Store SO SKU #1001078187 32-Watt 4 ft. Cool White Linear T8 Fluorescent Light Bulb (30-Pack)

Compare to Discontinued Model


Includes 30 bulbs (\$1.79 /bulb)

Calculate people density

Known Values	Source	Approach	
HVAC Equipment Capacities, Efficiencies	As-Built Drawings, Verified On Site		
HVAC Operating Schedules	BAS, Conversations with Staff		
HW, CHW, AHU Setpoints	HW, CHW, AHU Setpoints BAS, Conversations with Staff		
Fan and Pump Peak kW	Fan and Pump Peak kW Calculated From amp Readings and Nameplates		
HVAC Functional Conditions	BAS, On-Site Functional Testing	Acceptable level of accuracy achieve with collected information. These	
Lighting Power Densities	As-Built Drawings, Verified On Site	values were fixed during model	
Lighting Controls	Conversations with Staff, Verified On Site	calibration.	
Building Geometry	Construction Documents, Verified On Site		
Window Geometry and Performance	Cut Sheets, Verified On Site		
Cost of CHW, Steam, and Electricity	Contracts with Utilities and Utility Bills		
Roughly Known Values	Source	Approach	
Ventilation Airflow Rates	BAS (Damper Positions) and MEP Schedules	Fixed Based on Best Estimate	
Wall and Roof R-Values	As-Built Drawings, Unverified	Fixed (Minor Impact on Results)	
Data Center Airflow Rates	CRAC Equipment Capacities, Site Observations	Fixed Based on Best Estimate	
Elevator Energy Use	Typical Values From Published Research	Fixed (Minor Energy Use)	
Weather	TMY2 File for Baltimore	See Sensitivity Analysis (Table 5)	
Unknown Values	Source for Range	Approach	
Plug Load Power and Schedules	Experience, Occupant Density, and Publications	Used for Electricity Calibration	
Kitchen Energy Use	Typical Values and Conversations with Staff	Fixed (Minor Energy Use)	
Building Infiltration	Typical Values for Similar Buildings	Used for CHW Calibration	
Parking Garage Infiltration	Parking Garage Infiltration Typical Values and Observations		
Steam Valve Leakage	Estimated Based on Observations	Calibration	

		Annual Error	Monthly Normalized Mean Biased Error	Coefficient of Variation Of the Root Mean Squared Error
ASHRAE G	uideline 14	-	±5%	15%
NREL Req	uirements	±10%	-	-
	Electricity	-1%	-1%	4%
Calibrated	Steam	0%	0%	33%
Model	Chilled Water	-12%	-13%	13%
	Energy Costs	-5%	-5%	12%

Measure Name	Description and Comments	Importance
Adjust Infiltra- tion	Adjust per-area infiltration. Adjust infiltration or outside air, not both. Use default unless building seems extra-leaky.	Primary
Adjust Outside Air	Adjust the mechanical ventilation provided to a space. Usu- ally listed correctly on newer buildings' drawings, but often uncertain in older buildings, or affected by damper faults.	Primary
Occupancy Sen- sor Savings	Adjust the savings associated with occupancy sensors in a certain space. Inspection of actual operation may justify a deviation from the ASHRAE default credit of 10%.	Secondary
Heating and Cooling Temper- ature Set Points	Adjust the thermal zone air temperature set point for the heating or cooling system. As an easily adjustable opera- tional variable, this may be uncertain.	Secondary
Supply Air Tem- perature	Adjust the supply air temperature, possibly in support of a seasonal reset strategy. Typically these are constant values, but in some cases the BAS shows a range.	Secondary
Chilled and Hot Water Tempera- ture Set Points	Adjust the temperature at which chilled water and hot water are supplied (typically to one or more air systems). These are typically constant, but certain conditions (inaccessible controls, BAS shows a range) may introduce uncertainty.	Secondary
Economizer Set Points	Adjust the economizer set points. May be uncertain if the control system is inaccessible.	Secondary
Fan and Pump	Adjust the fan or pump motor efficiency. This is likely to be	Secondary

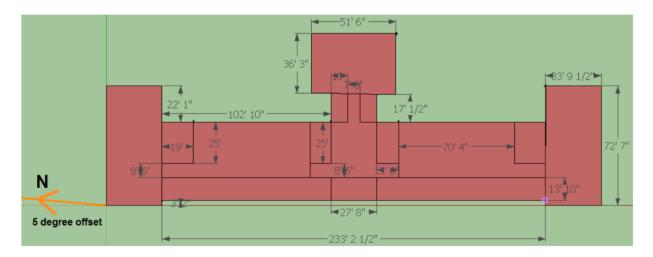
Change	Rationale
Raise site ground temperature from default of 18.0°C (64.4°F) to 19.9°C (67.82°F).	Apply rule of thumb that ground temperature is 2°C (3.6°F) lower than average indoor air temperature.
Increase cooling set point to 24.4°C (76°F)	Occupants report hot spots and modeled energy use was significantly higher than actual.
Adjust lighting and electric equipment schedules.	Simplified the schedule shapes, and brought the overall values in line with rules of thumb based on occupancy, nighttime lighting levels, and plug load types.
Reduce electric equipment loads by 40%	The diversity of plug loads all applied with the same schedule, and the disproportionate share of plug loads as compared to lighting loads.
Hard size fans to 1.00 cfm/ft^2 (0.00508 m ³ /s·m ²)	Autosized fan motors were undersized compared to actu- al, known values. 1 cfm/ft ² is a rule of thumb.
Increase the fan static pressure to 3.5 in. H ₂ O (870 Pa)	The fans motors were still too small after hardsizing to 1 cfm/ft^2 .
Reset the supply air temperature to 15.55°C (60°F) (from 12.77°C [55°F]) in winter	After the shoulder and summer season energy use was brought in line, the winter energy use was still too high. The end use breakdown showed considerable cooling plus reheat, and the controls on the chiller were not fully audited, leaving open the possibility of winter reset.

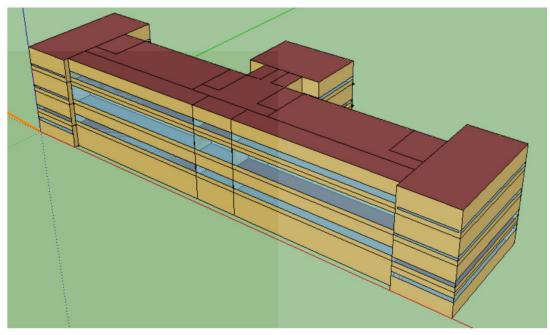
E. Hale et al.. Cloud-Based Model Calibration Using OpenStudio. eSim 2014, Ottawa Canada.

D. Macumber et al. A Graphical Tool For Cloud-Based Building Energy Simulation. 2014 ASHRAE/IBPSA-USA. Atlanta, GA.

Table 3 Final Parameter Values			
PARAMETER	MANUAL	AUTOMATED	
	CALIBRATION	CALIBRATION	
Ground	19.9	19.83	
temperature (°C)			
Cooling set point	24.4	26.19	
(°C)			
Reduce lighting	01	28.25	
power (%)			
Reduce	40	37.98	
equipment power			
(%)			
Fan statie	3.5	2.43	
pressure (in. H ₂ O)			
NMBE	-1.35%	0.09%	
CV(RMSE)	7.61%	8.43%	

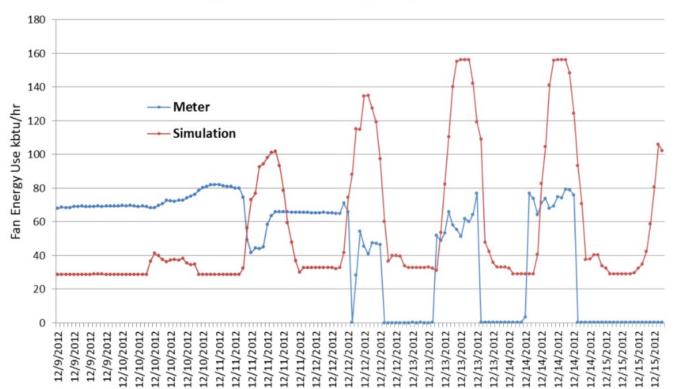
Table 1 Parameter Ranges


PARAMETER	INITIAL	MIN	MAX
Ground temperature (°C)	18	17	20
Cooling set point (°C)	22.2	22.2	26.2
Reduce lighting power (%)	0.0	0.0	40.0
Reduce equipment power (%)	0.0	0.0	40.0
Fan static pressure (in. H ₂ O)	2.0	2.0	4.0


E. Hale et al.. Cloud-Based Model Calibration Using OpenStudio. eSim 2014, Ottawa Canada.

D. Macumber et al. A Graphical Tool For Cloud-Based Building Energy Simulation. 2014 ASHRAE/IBPSA-USA. Atlanta, GA.

Space Types	Area (ft ²)
Office	39,812
Conference	2,632
Lobby	7,038
Bathroom	1,380
Stair	3,800
Unoccupied	8,905
MechRoom	4,500

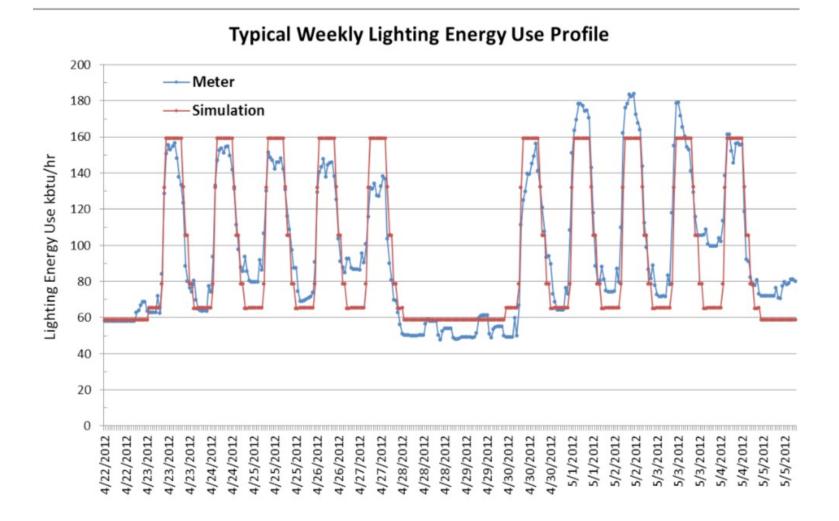


	CVRSME	NMBE	Months
All Electricity	6.12%	-0.60%	all
All Gas	12.0%	2.3%	omit Dec
Heating	12.55%	1.77%	omit Dec
Service Hot Water	9.51%	2.26%	omit Apr, May
Plug Loads	5.92%	-2.11%	all
Lighting	4.87%	2.57%	all
Fans	9.31%	-1.18%	omit Dec
Cooling	12.62%	3.63%	omit Dec

Building Component	Conductivity (Btu/ft-h-F)	Thickness (in)	R-value
Windows			
6mm Clear Glass	0.520	0.236	0.038
13mm Air	0.024	0.512	1.777
6mm Clear Glass	0.520	0.236	0.038
		Total	1.815
SHGC	0.764		
Visible Transmittance	0.812		
Exterior Wall			
Brick	0.333	18.000	4.500
		Total	4.500
Exterior Wall Below Ground			
Cast Concrete	0.346	22.000	5.299
		Total	5.299
Exterior Floor			
Cast Concrete	0.346	18.000	4.335
Wood Flooring	0.580	5.000	0.718
		Total	5.054
Roof			
Clay Roof Tile	0.580	1.000	0.144
Roof Felt	0.690	0.197	0.024
Roof Sheating	0.092	1.000	0.909
Glass Fibre Insulation	0.025	6.000	20.000
		Total	21.076

Window Face	Construction Name	Area (ft ²)	WWR
1st Front	A1, DR1, DR2, DR4	963.7	33%
2nd Front	P1	149.0	64%
3rd Front	C1	803.6	27%
1st FrontSide	Al	68.0	16%
2nd FrontSide	A2	38.3	9%
3rd FrontSide	A2A	36.7	7%
Bsmt FrontSide	D1	26.2	16%
BsmtSide	D1	91.7	25%
1st Side	A1	238.0	25%
2nd Side	A2	134.2	14%
3rd Side	A2A	128.3	12%
1st BackEnd	A2	76.7	12%
2nd BackEnd	E1	53.3	8%
3rd BackEnd	E2	47.8	7%
1st BackSide	A2	76.7	16%
2nd BackSide	E1	53.3	12%
3rd BackSide	A2	76.7	14%

		Space Type	Area	Design
Space Name	Thermal Zone	(AirFlow)	(ft ²)	CFM
Bsmt_Lobby_Mid	Lobby_Mid	Lobby	1284	0
Bsmt_Lobby_Mid2	Lobby_Mid	Unoccupied	383	0
Bsmt_Lobby_Mid_N	Lobby_Mid	Unoccupied	1421	0
Bsmt_Lobby_Mid_S	Lobby_Mid	Unoccupied	1422	0
Bsmt_LunchRoom_North	Bsmt_North	Lobby	1904	1200
Bsmt_MechRoom	Lobby_Mid	Unoccupied	1867	600
Bsmt_MechRoomAHU2_South	Bsmt_South	Unoccupied	338	100
Bsmt_MechRoom_AHU3_Nort				
h	Bsmt_North	Unoccupied	321	100
Bsmt_Mens_Mid	Lobby_Mid	Bathroom	173	350
Bsmt_Storage_NorthEnd	Bsmt_North	Unoccupied	2453	600
Bsmt_Office_SouthEnd	Bsmt_South	Office	2450	400
Bsmt_Office_South	Bsmt_South	Office	1881	1860
Bsmt_Stairway_North	Stair_North	Stair	475	0
Bsmt_Stairway_South	Stair_South	Stair	475	0
Bsmt_Womens_Mid	Lobby_Mid	Bathroom	173	350
1st_Lobby_Mid	Lobby_Mid	Lobby	1284	1200
1st_Lobby_Mid2	Lobby_Mid	Unoccupied	383	0


Fan Energy Calibration Divergence, December 2012

Equipment Power Density					
(Source: Delgoshaei et al., 2013)					
Space Type	EPD		Schedule		
Office	1.00	W/ft ²	Equipment Schedule		
Intensive Office	2.00	W/ft ²	Equipment Schedule		
Conference	1.00	W/ft^2	Equipment Schedule		
Lobby	1.00	W/ft ²	Always On		
Bathroom	0.00	W/ft ²	N/A		
Stair	0.00	W/ft ²	N/A		
Unoccupied	0.00	W/ft ²	N/A		
Fraction Latent	0	(default)			
Fraction Radiant	0.3	(default)			
Fraction Lost	0	(default)			

Occupancy	Schedule	Lighting S	Schedule	Equipment Schedule		
Weekday	Fraction	Weekday	Fraction	Weekday	Fraction	
6:00	0.00	7:00	0.20	8:00	0.60	
7:00	0.10	8:00	0.30	10:00	0.80	
8:00	0.20	9:00	0.70	17:00	0.90	
12:00	0.95	17:00	0.90	18:00	0.70	
13:00	0.50	18:00	0.70	24:00	0.60	
17:00	0.95	20:00	0.50	Weekend		
18:00	0.70	22:00	0.30	24:00	0.60	
20:00	0.40	24:00	0.20			
22:00	0.10	Weekend				

Building Energy Modeling

Lighting Power Density (Source: Lighting Drawings) Space Type LPD Schedule 1.15 W/ft² **Lighting Schedule** Office **Intensive Office** 1.15 W/ft² **Lighting Schedule** Conference 2.32 W/ft² **Lighting Schedule** 1.25 W/ft² Always On Lobby 1.15 W/ft² **Bathroom Lighting Schedule** Stair 0.59 W/ft² Always On Unoccupied 0.47 W/ft² Always Off **Fraction Radiant** 0.4 (default) **Fraction Visible** 0.2 (default) **Return Air Fraction** (default) 0

Boiler	Value	Units	Source
Boiler Input	2049000	btu/hr	nameplate
Boiler Nominal Capacity	1632000	btu/hr	nameplate
Nominal Thermal Efficiency	0.796		nameplate
Design Water Outlet	180	°F	drawings
Design Water Flow Rate	84	gpm	calculated

Fan Variable Volume	AHU1	AHU2	AHU3	Source
Fan Efficiency	0.668	0.69	0.689	AHU Details
Pressure Rise (inH ₂ O)	4.50	4.88	4.33	AHU Details
Maximum Flow Rate (cfm)	13639	24575	24823	AHU Details
Motor Efficiency	0.93	0.93	0.93	AHU Details
Design Flow Rate (cfm)	11340	21400	20500	AHU Details
Air Loop				
Maximum Outdoor Air Flow Rate (cfm)	13639	24575	24823	AHU Details
Minimum Outdoor Air Flow Rate (cfm)	1850	2300	2300	AHU Details
Design Outdoor Air Flow Rate (cfm)	1850	2300	2300	AHU Details
Minimum System Air Flow Ratio	0.293	0.350	0.346	AHU Details
Heating Coil				
Maximum Water Flow Rate (gpm)	5.0	5.4	5.4	AHU Details
Rated Capacity (btu/hr)	150107	205088	203861	AHU Details
Rated Inlet Water Temperature (°F)	180.0	180.0	180.0	AHU Details
Rated Inlet Air Temperature (°F)	42.0	53.0	53.0	AHU Details
Rated Outlet Water Temperature (°F)	120.0	104.0	104.5	AHU Details
Rated Outlet Air Temperature (°F)	53.8	62.0	62.3	AHU Details
Controller Convergence Tolerance ®	0.0018	0.0018	0.0018	simulation
Maximum Actuated Flow (cfm)	0.6674	0.7204	0.7204	simulation

Heating Setpoint Schedule			Cooling Setpoint Schedule			
01/01-04/05	71	°F	01/01-03/11	71.5	°F	
04/06-04/19	50	°F	03/12-05/17	73	°F	
04/20-04/29	71	°F	05/18-06/21	71	°F	
04/30-05/17	72.5	°F	06/22-07/24	72.5	°F	
05/18-09/26	68	°F	07/25-09/26	70.5	°F	
09/27-11/04	71.75	°F	09/27-11/04	72	°F	
11/05-12/04	71.25	°F	11/05-12/31	71.5	°F	
12/05-12/31	68	°F				