CAE 465/526 Building Energy Conservation Technologies Fall 2023

August 31, 2023

Building energy consumption patterns and performance analysis

Built Environment Research @ III] 🗫 🚓 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcement

• Assignment 1 is posted

INTRODUCTION

Introduction

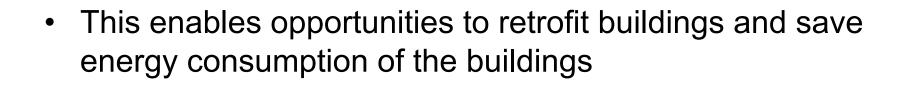
- Understanding energy consumption patterns in:
 - Campus buildings
 - Residential/Commercial buildings
- Starting to look into calculating and predicting energy consumption patterns using building energy models

Classify Buildings

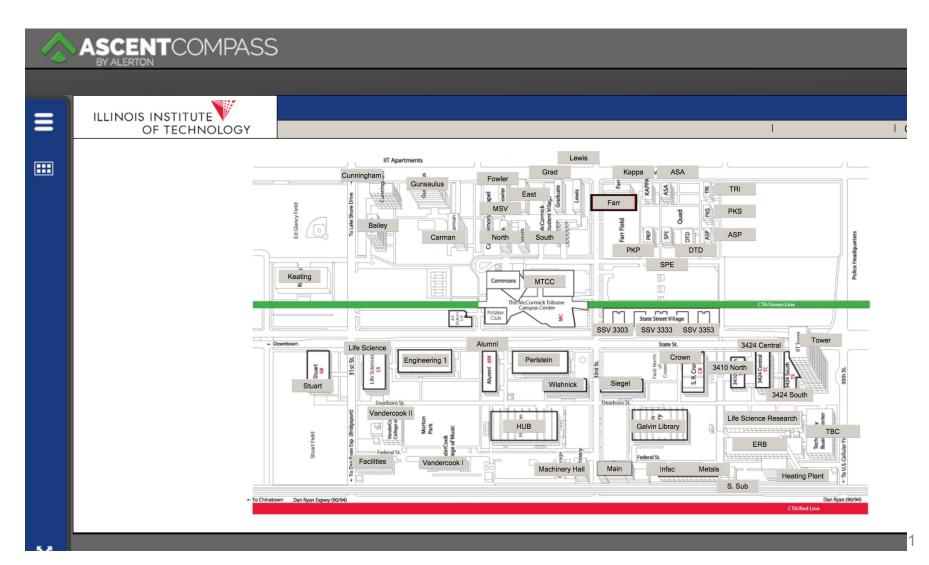
- Understand approaches to analyze building energy consumption patterns
- Use a classification procedure
- Characterize weather data
- Consider a building selection criteria
- Capture all energy consumption commodities
- Utilize different energy modeling methods

Understand Energy Use Pattern of Buildings

- Select buildings with different ages, shapes, and occupancy patterns
- Install sensors to track energy consumption of buildings and weather data
- Clean the monitored energy and weather data
- Establish a procedure to analyze and classify buildings based on their energy use pattern


CAMPUS BUILDINGS

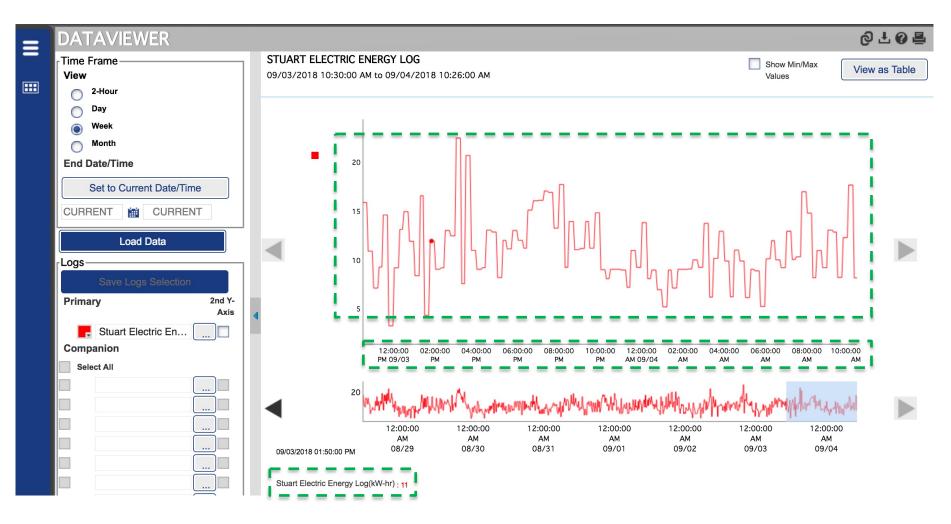
Why Campus Buildings


- Campuses Typically:
 - Have sustainability programs that monitor energy consumption of buildings. Record energy commodities with different level of granularity such as 15 minutes, hourly, monthly
 - Open to share monitored energy consumption of buildings with the research community
 - Operate with different energy commodities such as electricity, natural gas, steam, and chilled water, enabling better disaggregation of enduses without sub-metering end-uses.
 - Spend close to \$2 billon each year on energy*
 - Endeavor to construct new buildings or renovate existing buildings to meet the requirements for energy efficient buildings

Campus Buildings Are Unique

- Campus buildings are unique due to the existence of:
 - Buildings with different ages with different HVAC systems (e.g., baseboards, VAV with reheat)
 - Buildings with different sizes and shapes
 - Buildings with different principal activity (e.g., offices, classrooms, laboratories), meaning buildings have different occupancy pattern.
 - Energy intense laboratories (e.g., laboratories with fume hoods, biosafety cabinet)

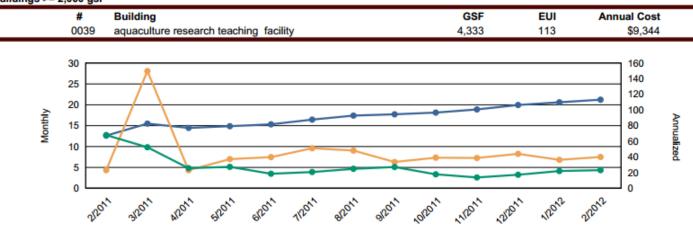
• IIT monitoring system database:


• Stuart building energy data summary:

Meter Number	Electric 1 (kWh) Summary	Steam 1 (lbs) Cl 1DD2-1-P01	hilled Water (kBTU) #1
Current Meter Reading		21,356,710 lbs	15,188,800 kBTU
Yesterday's Meter		21,356,710 lbs	15,183,500 kBTU
Last Month's Meter		21,356,710 lbs	15,140,000 kBTU
Last Hour's Consumption	47 kWh	0 lbs	900 kBTU
Today's Consumption	461 kWh	0 lbs	5,300 kBTU
Yesterday's Consumption	1,078 kWh	0 lbs	14,400 kBTU
Month Consumption	3,672 kWh	0 lbs	48,800 kBTU
Last Month Consumption	30,431 kWh	0 lbs	424,600 kBTU
kBTUs This Month	12,529 kBTU	0 kBTU	48,800 kBTU
kBTUs Last Month	103,835 kBTU	0 kBTU	424,600 kBTU
Cost this Month (\$)	302.43	0.00	835.29
Cost Last Month (\$)	2,506.30	0.00	7,267.74
Totals			
Total Building Cost	(\$) 1,137.72	kBTUs/Sq. Ft this Mor	nth 0.77
Last Month Cost (\$) 9,774.03	Total Building kBTU	s 61,329

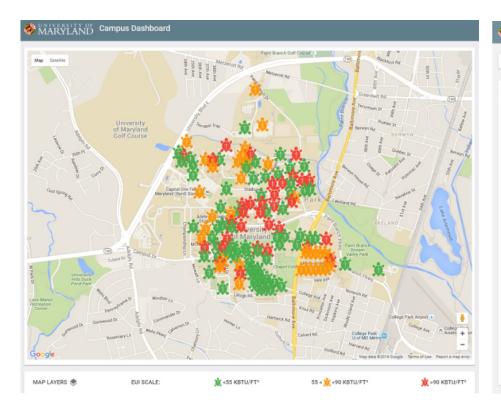
Stuart building chilled water energy pattern •

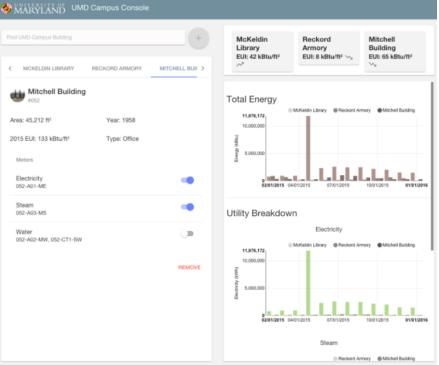
Stuart building electric energy pattern


Some campuses are more open to share the data to public

DIVISION OF ADMINISTRATION UTILITIES & ENERGY MANAGEMENT

Energy Use Index (EUI) Monthly Report Card By Cost For the Period Ending February 28, 2012

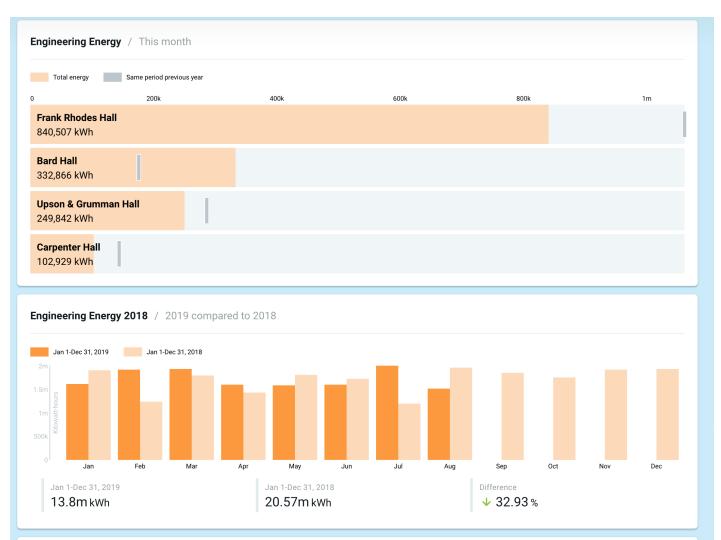

Buildings >= 2,000 gsf

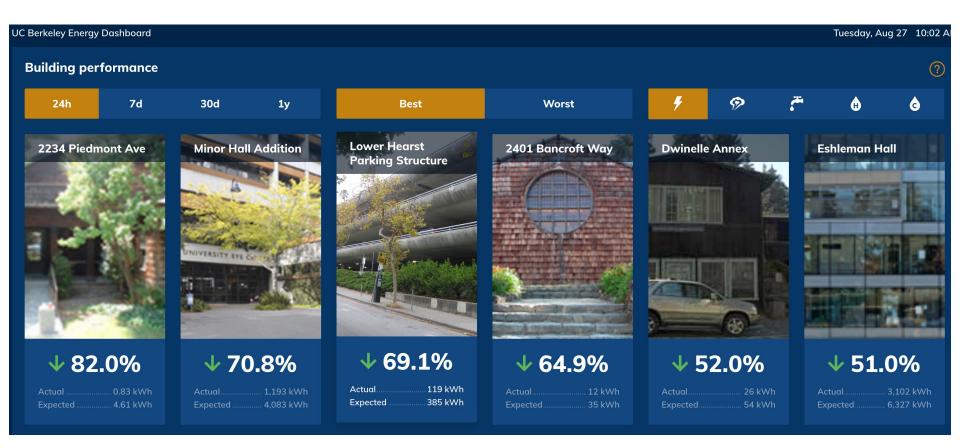


-Annualized --Current Year -Previous Year

#	Building	GSF	EUI	Annual Cost
0040	field lab and office bldg	2,275	134	\$7,548

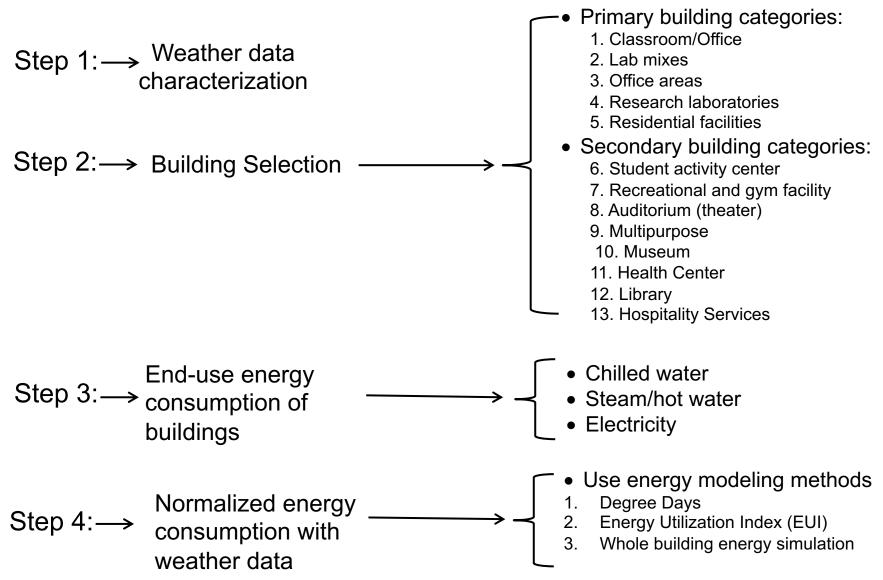
• University of Maryland Energy Dashboard




Cornell University Energy Dashboard

Summa	ary / Last 12 months	Electricity / Last 12 months							
*	Total cooling 338.67m kBTU	Electricity	100m		200m			300m	
+	Total electricity 444.96m kWh	Residence Hall/Dormitory 333.54m kWh							
8	Total heating 21.61b kBTU	Science Facility 69.56m kWh							
9	Total steam 4.8m kBTU	Academic 38.83m kWh							
<u>*</u>	Total photovoltaic 90,884 kWh	Community Center 2.21m kWh	Electricity: 426,087 kWh						
	5,00+xm	Administrative 426,087 kWh							
		Retail Store 394,202 kWh							
		Electricity Use, 100 buildings	/ Last 12 months						
		Electricity 80m							
		60m 40m		_	_				
		20m 0 Sep Oct	Nov Dec Ji	an Feb	Mar Apr	May	Jun	Jul Au	ig in the second se
		Total 444 96m kWh	Min	5m kWh (Sen)		Max 96.51m kW			-
9	😑 😚 🙆 子	•••	•••						e
'elcome	Trends Energy Smackdown Renewables Energy & Utili	ies Residential Human Ecology	Vet School A-Z Index	Admin AAP	A&S	Business	CALS	Engineering	ILR
buildi	ngOS_						F	Cornell Univ	versity

Cornell University Energy Dashboard


• UC Berkeley Energy Dashboard

• UC Berkeley Energy Dashboard

Minor Hall		ted 1978			@ <mark>※</mark>
24h	7d	30d	1у	y	୭ <u>୮</u>
Electricity demand	l - Last 30 days				
280 260 240 220 200 180 160 160 100 80 60 40 20 101 11 101 11	Aug 1 Aug 4	Aug 7 Aug 10		Aug 19	Expected Actual
24 hrs		7 days	30 days		1 year
↓ 70.8% Actual Expected	1,193 kWh Actual 4,083 kWh Expected	73.2% 8,451 kWh 31,523 kWh	↓ 70.49 Actual Expected		↓ 65.3% tual468 MWh pected1,348 MWh

Classification Procedure: Campus Buildings

- Common variables:
 - Dry bulb temperature
 - Dew point temperature
 - Cooling Degree Days (CDD)
 - Heating Degree Days (HDD)

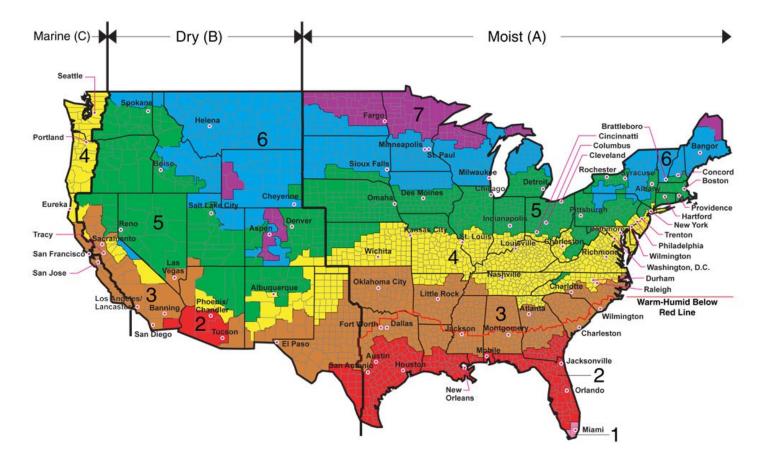
 Degree Days (DD): is the difference in temperature between the outdoor mean temperature over a 24-hour period and a given base temperature. For the purposes of determining building envelope requirements*

$$HDD(balance) = 1 \, day \times \sum_{number \ of \ days} (T_{outdoor} - T_{balance})^+$$

$$CDD(balance) = 1 \, day \times \sum_{number \, of \, days} (T_{outdoor} - T_{balance})$$

- CDD base 50°F, CDD50, or 10°C, CDD10:
 - When the mean temperature is more than 50°F or 10°C, temperature difference between the mean temperature for the day and 50°F or 10°C
 - Annual CDDs are the sum of the degree-days over a calendar year *

• Example: What's the CDD for a day with mean day outdoor air temperature of 68°F (20°C)?

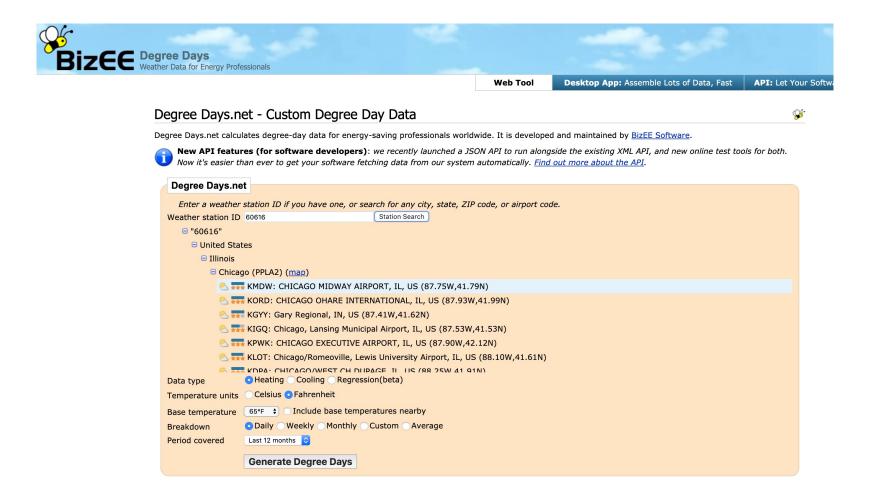

- HDD base 65°F, HDD65, or 18°C, HDD18:
 - When the mean temperature is less than 65°F or 18°C, temperature difference between the mean temperature for the day and 65°F or 18°C *.
 - Annual HDDs are the sum of the degree-days over a calendar year.
 - An example:
- Example: What's is the HDD for a mean day outdoor air temperature of 32°F (0°C)?

CLASS ACTIVITY

Class Activity

- Example: Calculate heating and cooling degree days for Chicago in using a TMY3 file?
- Additional notes:
 - Download files from here: <u>http://climate.onebuilding.org/WMO_Region_4_North_and_Central_America/USA_United_States_of_America/index.html</u>
 - Unzip the folder
 - □ Change the extension to CSV from EPW.
 - Understand the columns: <u>https://bigladdersoftware.com/epx/docs/8-2/auxiliary-programs/epw-csv-format-inout.html#:~:text=EPW%20CSV%20Format%20to%20the,shown%20and%20then%20the%20data</u>.

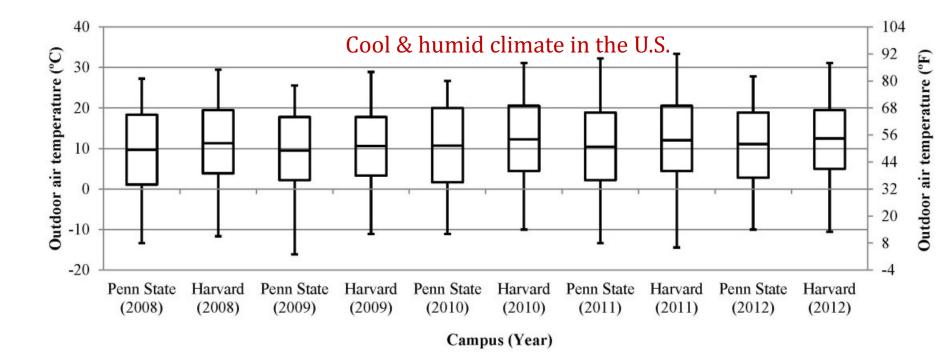
ASHRAE Climate Zones



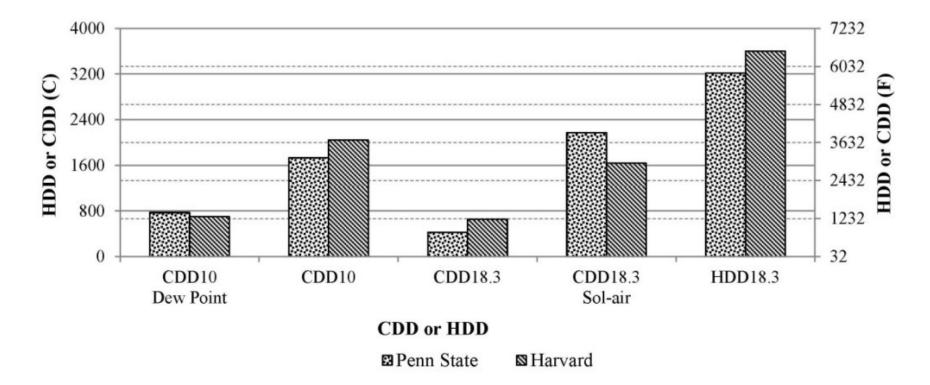
What's our climate zone?

ASHRAE Climate Zones

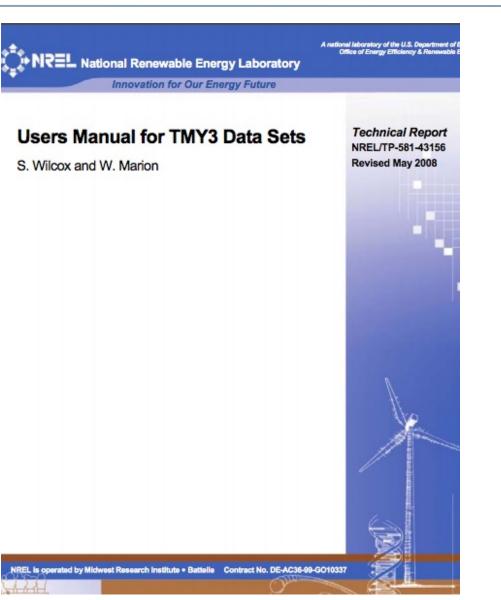
	N	Thermal Criteria				
Zone Number	Name	I-P Units	SI Units			
1	Very Hot – Humid (1A), Dry (1B)	9000 < CDD50°F	5000 < CDD10°C			
2	Hot – Humid (2A), Dry (2B)	$6300 < CDD50^{\circ}F \leq 9000$	$3500 < CDD10^{\circ}C \le 5000$			
3A and 3B	Warm – Humid (3A), Dry (3B)	$4500 < \text{CDD50°F} \le 6300$	$2500 < CDD10^{\circ}C \le 3500$			
3C	Warm – Marine	CDD50°F \leq 4500 and HDD65°F \leq 3600	CDD10°C ≤ 2500 and HDD18°C ≤ 2000			
4A and 4B	Mixed – Humid (4A), Dry (4B)	$CDD50^{\circ}F \le 4500 \text{ and}$ $3600 < HDD65^{\circ}F \le 5400$	CDD10°C ≤ 2500 and HDD18°C ≤ 3000			
4C	Mixed – Marine	$3600 < HDD65^{\circ}F \leq 5400$	$2000 < HDD18^{\circ}C \leq 3000$			
5A, 5B and 5C	Cool–Humid (5A), Dry (5B), Marine (5C)	5400 < HDD65°F ≤ 7200	$3000 < HDD18^{\circ}C \le 4000$			
6A and 6B	Cold – Humid (6A), Dry (6B)	$7200 < HDD65^{\circ}F \le 9000$	$4000 < HDD18^{\circ}C \le 5000$			
7	Very Cold	$9000 < HDD65^{\circ}F \le 12600$	$5000 < HDD18^{\circ}C \le 7000$			
8	Subarctic	12600 < HDD65°F	7000 < HDD18°C			


Online tools:

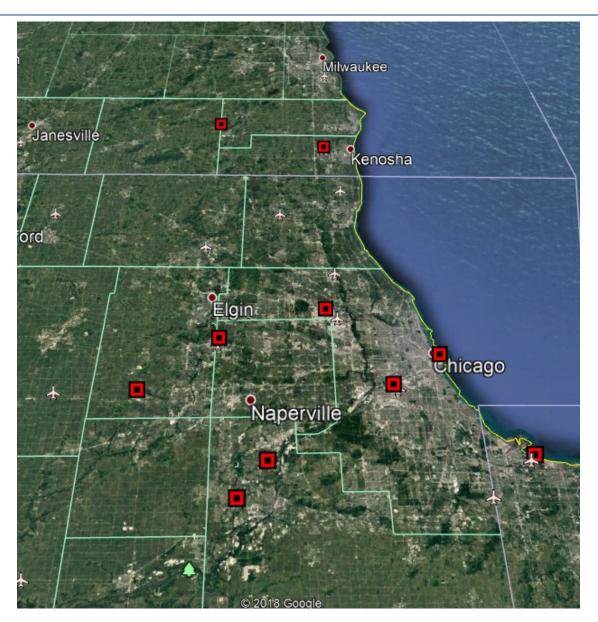
State/City	Latitude Long		Longitude Elev., ft		CDD50	Heating Design	Cooling Desig	n Temperature	Number of Hours
		Longitude		HDD65		Temperature	Dry-Bulb	Wet-Bulb	8 a.m.–4 p.m.
						99.6%	1.0%	1.0%	$55 < T_{db} < 69$
Illinois (IL)									
Aurora	41.75 N	88.35 W	644	6699	2880	NA	NA	NA	NA
Belleville/Scott AFB	38.55 N	89.85 W	453	4878	4146	3	93	77	NA
Carbondale Sewage Plt	37.73 N	89.17 W	390	4865	3934	NA	NA	NA	NA
Champaign	40.03 N	88.28 W	755	5689	3697	NA	NA	NA	NA
Chicago Midway AP	41.73 N	87.77 W	620	6176	3251	NA	NA	NA	NA
Chicago O'Hare WSO AP	41.98 N	87.90 W	674	6536	2941	6	88	73	613
Chicago University	41.78 N	87.60 W	594	5753	3391	NA	NA	NA	NA


TABLE D-1 U.S. and U.S. Territory Climatic Data (Continued)

• An example from the Penn State and Harvard campus study.


Average daily temperature for five years

• An example from the Penn State's campus.



• Dew point and sol-air as well as different base point temperature can be used to calculate CDDs

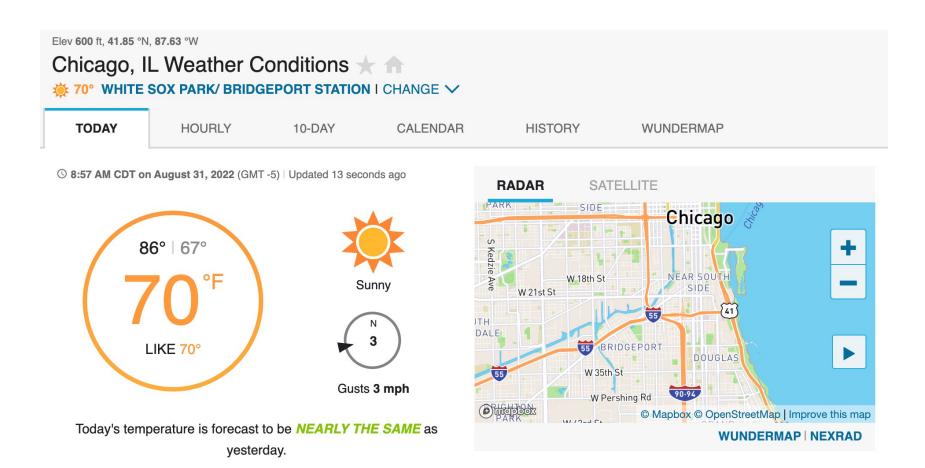
Weather Data


Weather Stations in Chicago

IIT Weather Station

Elev 597ft 41.83 °N, 87.63 °W

Chicago, IL ★ 🖻


IIT Weather Station

Daily Observations

.....

Time	Temperature	Dew Point	Humidity	Wind	Wind Speed	Wind Gust	Pressure	Precip.	Precip Accum	Condition
1:39 PM	76 ° F	72 ° F	87 %	ESE	10 mph	0 mph	29.2 in	0.0 in	0.0 in	Cloudy
12:53 AM	76 ° F	66 ° F	71 %	ESE	8 mph	0 mph	29.3 in	0.0 in	0.0 in	Cloudy
2:53 AM	74 ° F	65 ° F	73 %	SE	8 mph	0 mph	29.3 in	0.0 in	0.0 in	Cloudy
3:53 AM	73 ° F	64 ° F	73 %	ESE	9 mph	0 mph	29.3 in	0.0 in	0.0 in	Mostly Cloudy
4:53 AM	72 ° F	64 ° F	76 %	ESE	10 mph	0 mph	29.3 in	0.0 in	0.0 in	Mostly Cloudy
5:53 AM	72 ° F	64 ° F	76 %	ESE	9 mph	0 mph	29.3 in	0.0 in	0.0 in	Mostly Cloudy
6:53 AM	72 ° F	64 ° F	76 %	ESE	9 mph	0 mph	29.3 in	0.0 in	0.0 in	Mostly Cloudy
7:53 AM	73 ° F	64 ° F	73 %	SE	10 mph	0 mph	29.3 in	0.0 in	0.0 in	Cloudy
8:53 AM	74 ° F	64 ° F	71 %	ESE	13 mph	0 mph	29.3 in	0.0 in	0.0 in	Cloudy
9:53 AM	76 ° F	65 ° F	69 %	E	12 mph	0 mph	29.2 in	0.0 in	0.0 in	Cloudy
10:53 AM	78 ° F	67 ° F	68 %	ESE	15 mph	0 mph	29.2 in	0.0 in	0.0 in	Cloudy
11:53 AM	77 ° F	69 ° F	76 %	Е	10 mph	0 mph	29.2 in	0.0 in	0.0 in	Light Rain
12:37 PM	74 ° F	71 ° F	91 %	ESE	8 mph	0 mph	29.2 in	0.1 in	0.0 in	Light Rain
12:53 PM	75 ° F	72 ° F	90 %	E	8 mph	0 mph	29.2 in	0.2 in	0.0 in	Rain
1:53 AM	75 ° F	65 ° F	71 %	SE	10 mph	0 mph	29.3 in	0.0 in	0.0 in	Cloudy
1:53 PM	76 ° F	72 ° F	87 %	ESE	17 mph	23 mph	29.2 in	0.0 in	0.0 in	Cloudy
2:14 PM	77 ° F	73 ° F	88 %	Е	20 mph	0 mph	29.2 in	0.0 in	0.0 in	Mostly Cloudy
2:53 PM	77 ° F	73 ° F	88 %	Е	14 mph	23 mph	29.2 in	0.0 in	0.0 in	Cloudy
3:00 PM	76 ° F	72 ° F	87 %	Е	14 mph	0 mph	29.1 in	0.0 in	0.0 in	Cloudy
3:53 PM	77 ° F	72 ° F	84 %	ESE	14 mph	0 mph	29.1 in	0.0 in	0.0 in	Cloudy
4:53 PM	78 ° F	73 ° F	84 %	ESE	13 mph	0 mph	29.1 in	0.0 in	0.0 in	Cloudy
5:53 PM	79 ° F	71 ° F	77 %	ESE	17 mph	22 mph	29.1 in	0.0 in	0.0 in	Mostly Cloudy

Close to IIT Weather Station

Weather Station Calibration

Description

Historical Hourly Weather Data

Who amongst us doesn't small talk about the weather every once in a while? The goal of this dataset is to elevate this small talk to medium talk.

Just kidding, I actually originally decided to collect this dataset in order to demonstrate basic signal processing concepts, such as filtering, Fourier transform, auto-correlation, cross-correlation, etc..., (for a data analysis course I'm currently preparing). I wanted to demonstrate these concepts on signals that we all have intimate familiarity with and hope that this way these concepts will be better understood than with just made up signals.

The weather is excellent for demonstrating these kinds of concepts as it contains periodic temporal structure with two very different

Building Selection

• Do you recall the CBECS building data types?

Further Breakdown Source EUI Site EUI Reference Data Source -**Broad Category Primary Function** (where needed) (kBtu/ft²) (kBtu/ft²) Peer Group Comparison **Bank Branch*** CBECS - Bank/Financial 209.9 88.3 Banking/Financial Services **Financial Office*** CBECS - Office & Bank/Financial 116.4 52.9 Adult Education 110.4 52.4 CBECS - Education College/University CBECS - College/University 180.6 84.3 CBECS - Elementary/Middle K-12 School* 48.5 104.4 & High School Education 131.5 CBECS - Preschool Pre-school/Daycare 64.8 Vocational School 110.4 52.4 CBECS - Education Other - Education Convention Center CBECS - Social/Meeting 109.6 56.1 Movie Theater Museum 112.0 56.2 CBECS - Public Assembly Performing Arts Bowling Alley Entertainment/Public Fitness Center/Health Club/Gvm Assembly Ice/Curling Rink 112.0 **CBECS** - Recreation Recreation 50.8 Roller Rink Swimming Pool Other - Recreation 56.1 Social/Meeting Hall 109.6 CBECS - Social/Meeting

U.S. National Median Reference Values for All Portfolio Manager Property Types

	Primary categories
Classrooms / Offices	This category is a combination of classroom and office areas where none of the classroom or office areas occupies more than 60% of the total building area. This type of the building represents a building that comprises both Full Time Employee (FTE) and visor/transient occupants. While the visitor/transient occupants influence the energy consumption pattern and operation schedule of the classroom space type, FTEs in the office space type affect the building's energy consumption patterns.
Office Areas	It is a category that more than 80% of the building area is dedicated to the academic and administrative office areas. It is expected that the operational schedule for this type of space be shorter compared to the Classrooms/Offices space types.
Research Laboratories	This category contains buildings that exhibit high-intensity in terms of energy consumption and more than 40% of the building area is occupied by research laboratories.
Laboratory Mixes	Laboratory mixes category is the building area with a combination of classroom/office, office, and research laboratory areas. In this category more than 20% of the building area is used for research laboratories, and each of the categories occupy at least more than 15% of the building area.
Residential Facilities	This category includes students, staff, and faculty housing buildings.

Secondary categories						
Student Activity Centers	This category contains buildings where 40% of the building area is used for student activities.					
Health Facilities	Health facilities are buildings that provide patient care within university campuses.					
Sports & Gym Facilities	It is a category dedicated to indoor student recreational activities and fitness centers.					
Auditoriums & Theaters	This category is used for exhibition and performance buildings within university campuses.					
Residential Facility Mixes	This category is a combination of residential facilities and areas allocated for food and cooking purposes.					
Hospitality Services	Hospitality services category contains temporary accommodation facilities, such as university hotels within university campuses.					
Libraries	This category defines university libraries.					
Museums	This category includes museum buildings within university campuses.					

- An example from Penn State's and Harvard's campuses:
 - Building with different types, ages, and sizes are selected
 - For five main categories, six buildings are considered

Building Type	Range of bu (Yea	•••	Buildir	ng number(s)	Approximate Building Gross Area m² (ft²)		
Campus	Penn State	Harvard	Penn State	Harvard	Penn State	Harvard	
Classrooms / Offices	5 – 108	19 – 113	1P – 6P	1H – 6H	4,000 – 21,000 (43,055 – 129,167)	5,000 – 8,000 (53,820 – 86,111)	
Office areas	10 – 107	21 – 112	7P – 12P	7H – 13H	3,000 – 13,000 (32,292 – 139,931)	4,000 – 18,000 (43,056 – 193,750)	
Research laboratories	6 – 81	6 – 131	13P – 18P	14H – 19H	8,000 – 13,000 (86,111 - 139931)	5,000 – 20,000 (53,820 – 215,278)	
Laboratory mixes	8 – 91	5 – 112	19P – 24P	20H – 25H	7,000 – 17,000 (75,347 – 182,986)	6,000 – 50,000 (64,583 – 538,196)	
Residential facilities	47 – 87	5 – 124	25P – 35P	26H – 31H	3,000 – 20,000 (32,291 – 215,278)	6,000 - 23,000 (64,583 - 247,570)	

- An examples from Penn State's campus:
 - Nine secondary categories are considered

Building Type	Range of building ages (Years)	Building number(s)	Approximate Building Gross Area m² (ft²)
Campus		Penn State	
Student Activity Center	57	36P	23,000 (247,570)
Health Facilities	4	37P	6,000 (64,583)
Sports and Gym Facilities	45 – 83	38P – 39P	8,000 – 29,000 (86,111 – 312,153)
Auditoriums and Theatres	38 – 109	40P – 42P	2,000 – 10,000 (21,528 – 107,639)
Residential Facility Mixes	45 – 55	43P – 45P	2,000 - 7,000 (21,528 - 75,347)
Hospitality Services	81	46P	22,000 (236,806)
Library	72	47P	24,000 (258,334)
Museum	41	48P	5,000 (53,820)

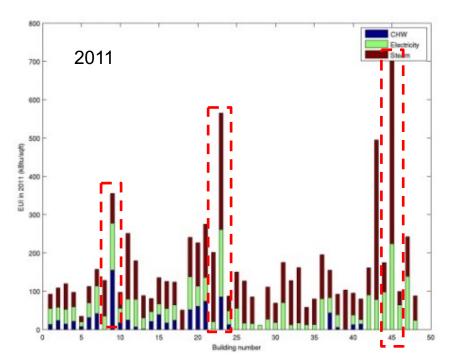
CLASS ACTIVITY

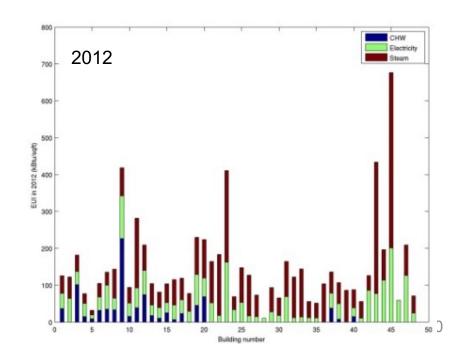
• Consider IIT Buildings:

Building Name	Building Name
Perlstein Hall	Engineering
Alumni Memorial Hall	Life Sciences
Wishnick Hall	Stuart
Siegel Hall	Keating Sports Center
Crown Hall	IIT Apartments
IIT Tower	The Commons
Paul Galvin	McCormick Tribune
Main	Residence Hall Complex
Machinery Hall	Farr Hall
Hermann Union	Quad

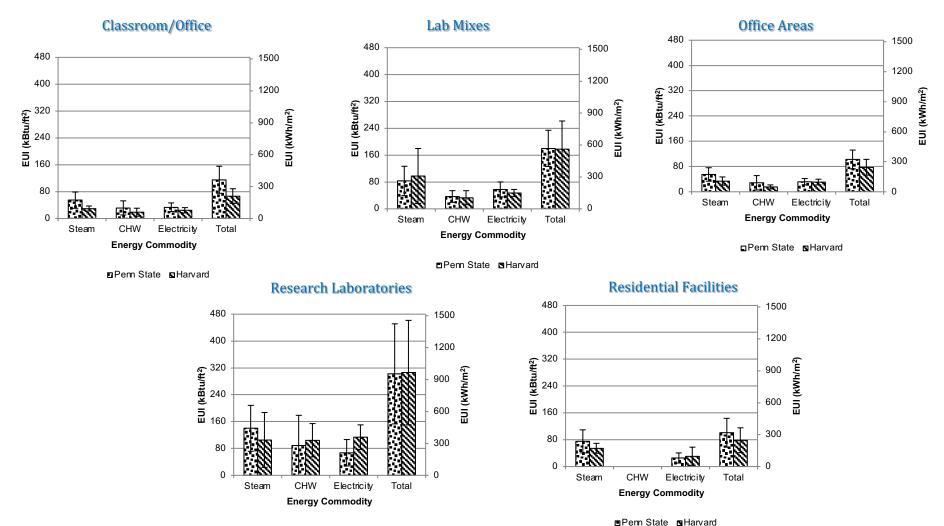
• Provide two examples for each type at the IIT campus:

Building Type	IIT Building
Classrooms/Offices	???
Office Areas	???
Research Laboratories	???
Laboratory Mixes	???
Residential Facilities	???


• Provide an example for each type at the IIT campus:


Building Type	IIT Building
Student Activity Center	???
Health Facilities	???
Sports and Gym Facilities	???
Auditoriums and Theatres	???
Residential Facility Mixes	???
Hospitality Services	???
Library	???
Museum	???

• From previous students:


	Area (ft ²)	Year Built	# of floors	Dimensions	WWR	Space Type	Shape
Perlstein Hall	124,800	1945	3	320'x130'	0.65	Office/Class/Lab	RECT
Alumni Hall	33,000	1945	3	225'x75'	0.425	Office/Class/Lab	RECT
Wishnick Hall	81,500	1945	4	91'x224'	0.68	Office/Class	RECT
Siegel Hall	75,840	1956	4	80'x237'	0.63	Office/Class	RECT
Crown Hall	52,800	1956	2	120'x220'	0.88	Class/Library	RECT
Common	52,800	1962	2	120'x220'	0.88	Dining	RECT
Material	339,329	1943	2	243'x500'	0.38	Office/Lab/Class	RECT
Main	78,698	1892	5	248.65'x63.3'	0.35	historic landmark	RECT
Machinery Hall	27,515	1901	5	88.9' x 61.92'	0.3	historic landmark	RECT

- An example from Penn State's study. Energy consumption commodities are:
 - Chilled water
 - Steam
 - Electricity
 - Service hot water

• An example for the five primary categories:

Penn State Harvard

1 MJ/m²=11.357 kBtu/ft²

CLASS ACTIVITY

 Let's calculate EUI (electricity, steam, and total EUI) for the uploaded file on BB.

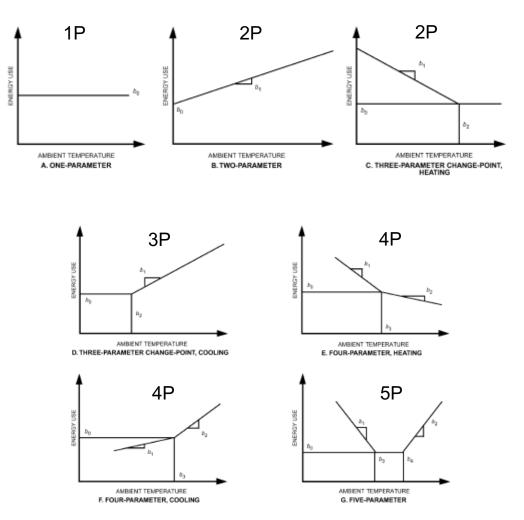
Common Energy Modeling Methods

- Six common methods to analyze energy consumption of campus buildings are listed below
- Methods 1-5 are simpler than Method 6
- Method 6 requires using simulation programs such as EnergyPlus

Method #	Energy modeling criteria name
1	Degree day calculations
2	Estimated savings based on the utility bills (disaggregation)
3	Temperature bin spreadsheet calculations
4	8760-hour spreadsheet calculations
5	Energy Utilization Index (EUI)
6	Whole building energy simulations

- Order of magnitude for the regression analysis determines three types of buildings in terms of the energy consumption in response to the outdoor weather conditions. These types are:
 - Externally-load dominated buildings
 - Internally-load dominated buildings
 - Mixed-load dominated buildings

 It is useful to determine whether internal, external or mixedloads dominate building energy use patterns in order to inform design, retrofit and energy simulation efforts


- Externally-load dominated buildings:
 - Have their energy consumption controlled by the outdoor weather conditions, ventilation systems, and heat loss/gain through the building envelope
 - Known as envelope-dominated or skin-load dominated buildings
 - Dominated buildings require additional focuses on the building envelop and ventilation systems
 - Space types such as single-family and warehouse buildings tend to be externally-load dominated
 - For campus buildings located in the Northeastern of the U.S., the steam consumption do follow the outdoor condition, suggesting opportunities to benefit from a better space heating management strategies

- Internally-load dominated buildings:
 - Outdoor conditions do not have significant influence on the energy consumption of these buildings
 - Internal loads such as receptacle, occupancy, lighting loads and their schedules are the main drivers to control the energy consumption of these buildings
 - Space types such as offices, hospitals, and research laboratories tend to be more internally-load dominated
 - The results of this study indicates that the research laboratories and laboratory mixes tend to be internally-load dominated.

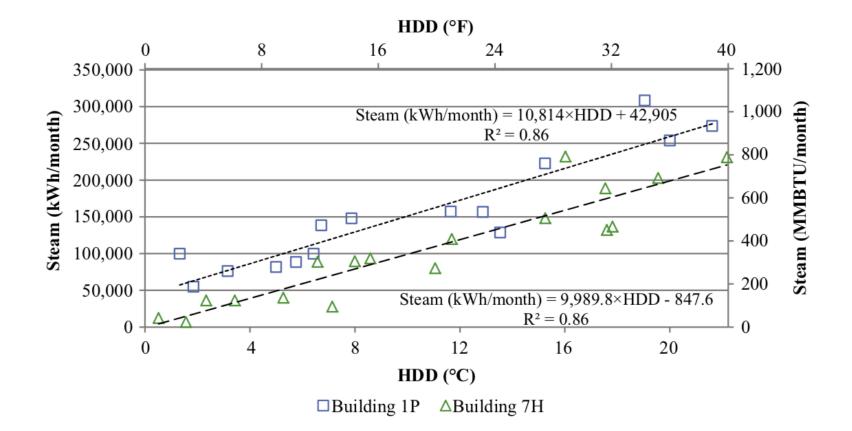
- Mixed-load dominated buildings:
 - In these buildings, external and internal thermal loads have the same order of magnitude
 - Energy use patterns for these types of buildings are a combination of external and internal loads
 - The complex interaction of the heat transfer processes render mixedload dominated buildings difficult to model
 - Modeling these buildings requires consideration of combined methodologies for externally-load and internally-load dominated building
 - Campus buildings with good management strategies usually are mixed-load dominated since the energy consumption during the peak time follows the outdoor condition while during off peak, e.g., nighttime, the building cooling does not follow the outdoor condition


Degree Days

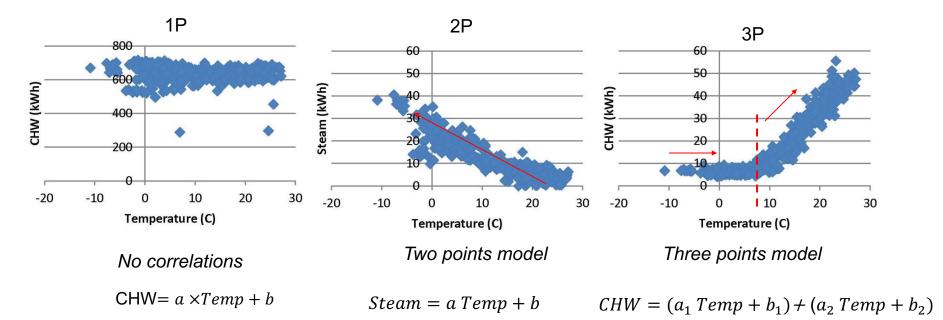
- Seven methods:
 - 1P: Non-weather dominated
 - 2P: Linear correlation with a fixed baseline
 - 3P: Linear correlation with a change point temperature constant baseline
 - 4P: Linear correlation with a change point temperature weather dependent baseline
 - 5P: Cooling and heating in the same plot

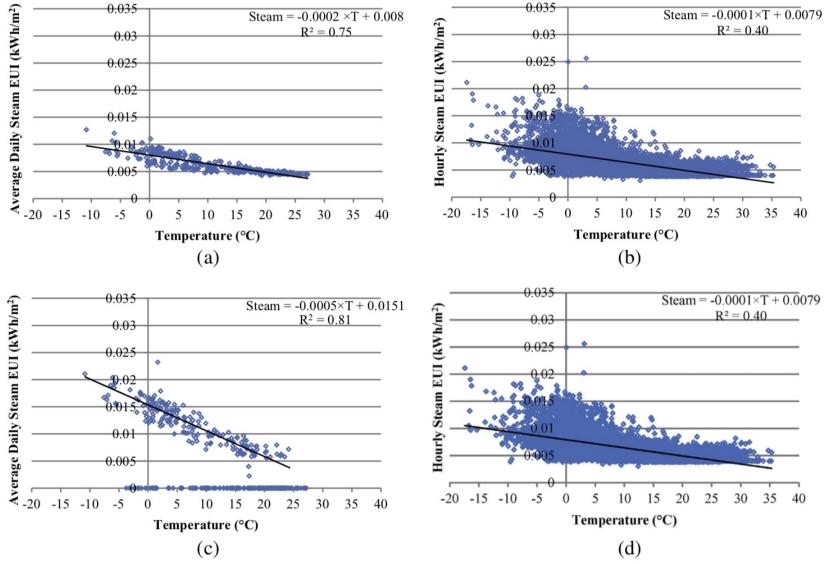
Provide and example for each method?

Degree Days

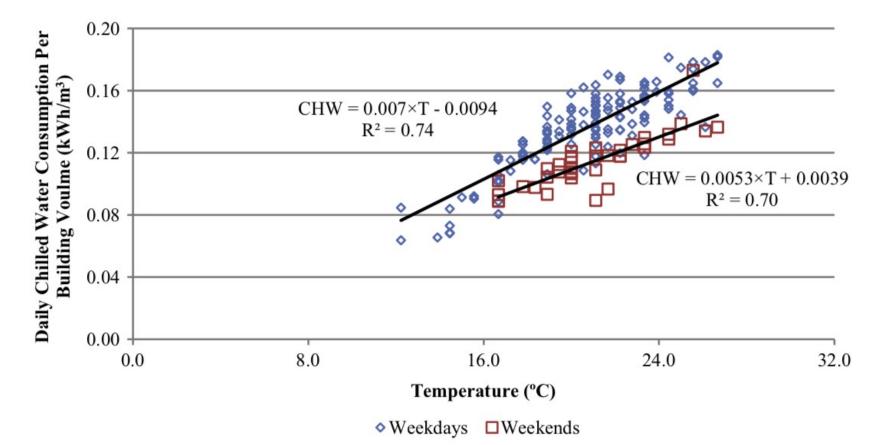


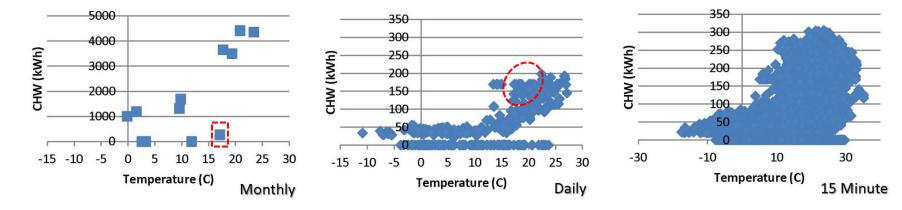
- Used two approaches:
 - 1. All year: works better for campus buildings due to simultaneous heating and cooling.


- 2. Cooling and heating seasons:
 - Cooling season: June August
 - Heating season: Jan –May & September December

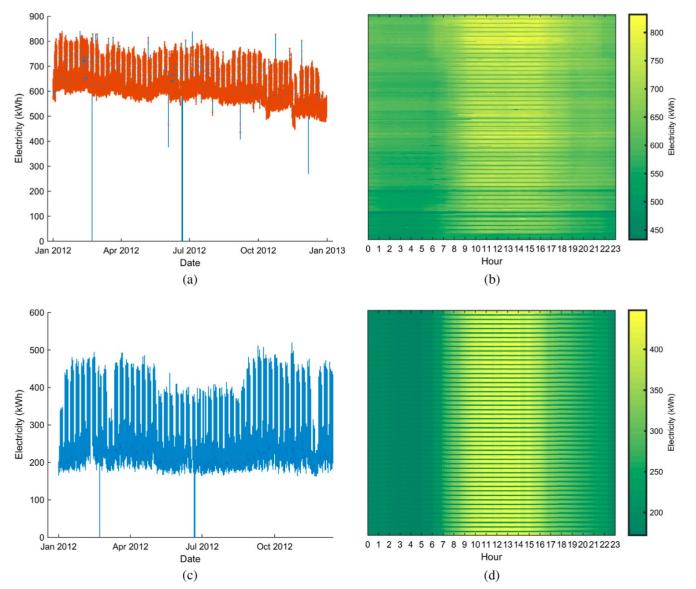

This method fails for some of the buildings (especially for CHW)

 Normalized steam with HDD for one building at Penn State campus and one building at Harvard campus.


• Different pattern exists for the campus building:



Heidarinejad et al. 2017


 Sometimes for the same building, the occupancy and operation can change the patterns.

- Granularity of the data: \prec •
- Monthly
 - Daily
- 15 Minute / Hourly

Granularity Level	Description
Monthly	Exists for most of the buildings
Monthly	 Works better for the steam consumptions than the CHW consumptions
	 Provides a better response than the monthly
Daily	 Enable reduce the sampling rate for the existing sub-metering sensors
Hermhy / 45 Minute	 Provide detailed information about the building operation and schedules
Hourly / 15 Minute	Include noises associated with the data

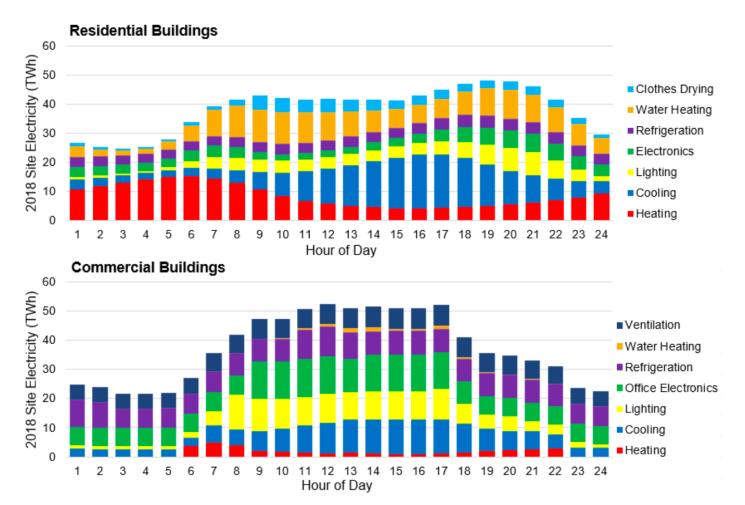
 Consider this building EUIs, which one is the accurate building EUI?

Year	Electricity EUI (kBtu/ft²)	Heating EUI (kBtu/ft ²)	Cooling EUI (kBtu/ft²)	Total EUI (kBtu/ft²)
2016	20	40	15	75
2017	19	49	11	79
2018	22	42	18	82

TABLE D-1 U.S. and U.S. Territory Climatic Data (Continued)

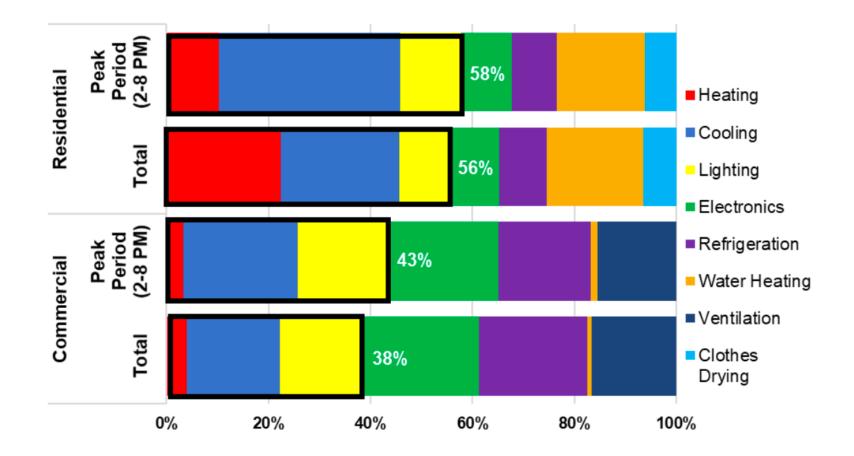
State/City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooling Design Temperature		Number of Hours
							Dry-Bulb	Wet-Bulb	8 a.m.–4 p.m.
						99.6%	1.0%	1.0%	$55 < T_{db} < 69$
Illinois (IL)									
Aurora	41.75 N	88.35 W	644	6699	2880	NA	NA	NA	NA
Belleville/Scott AFB	38.55 N	89.85 W	453	4878	4146	3	93	77	NA
Carbondale Sewage Plt	37.73 N	89.17 W	390	4865	3934	NA	NA	NA	NA
Champaign	40.03 N	88.28 W	755	5689	3697	NA	NA	NA	NA
Chicago Midway AP	41.73 N	87.77 W	620	6176	3251	NA	NA	NA	NA
Chicago O'Hare WSO AP	41.98 N	87.90 W	674	6536	2941	-6	88	73	613
Chicago University	41.78 N	87.60 W	594	5753	3391	NA	NA	NA	NA

Benefits and Limitations


- Benefits:
 - Provide rapid normalization results
 - Provide accurate results for most of the situations

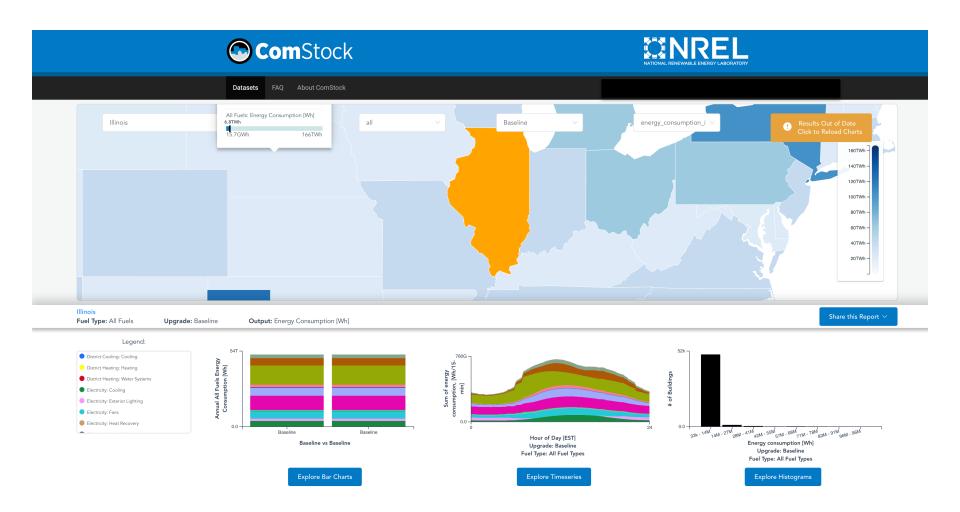
- Limitations:
 - Assume steady-state conditions
 - Fail for cases where there is rapid changes in the building (internally-load dominated)

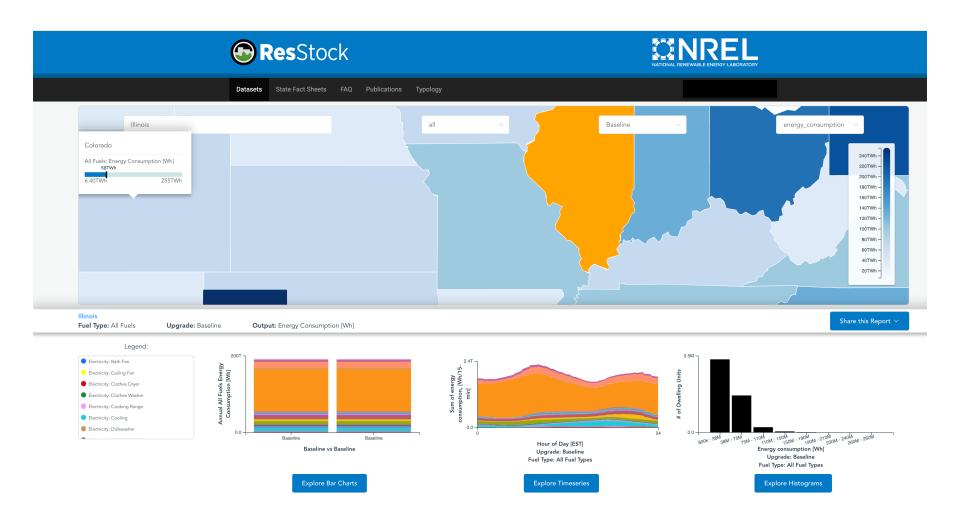
COMMERCIAL/RESIDENTIAL BUILDINGS


Commercial/Residential Buildings

 Hourly electricity use in residential and commercial buildings in 2018:

Commercial/Residential Buildings


• Total and peak electricity end-uses in 2018:



• Residential cooling and heating hourly profile:

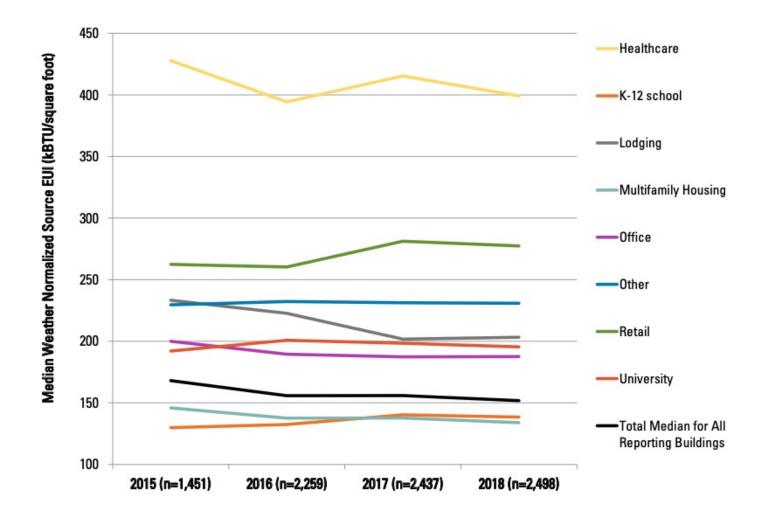
- See ResStock and ComStock:
 - <u>https://www.nrel.gov/buildings/comstock.html</u> (for viewing data: <u>https://comstock.nrel.gov/dataviewer</u>)
 - <u>https://www.nrel.gov/buildings/resstock.html</u> (for viewing data: <u>https://resstock.nrel.gov/dataviewer/</u>)

City of Chicago Benchmarking

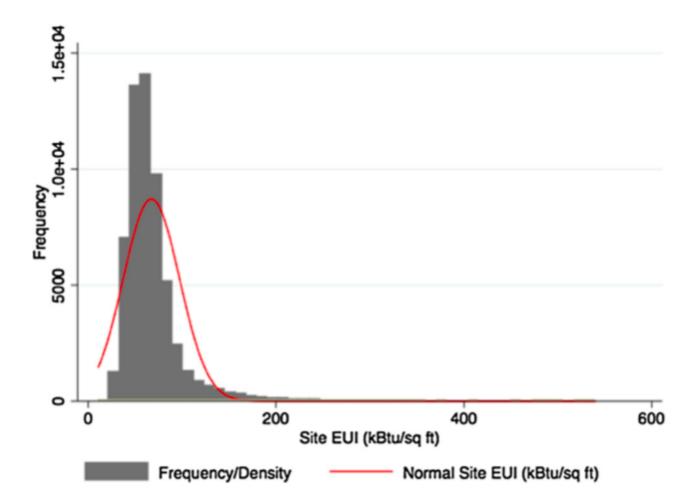
Building Type	Building Subtype							
	Commercial	Municipal	Industrial	Multi 7+	Multi < 7	Single Family	Total	
Residential	0	0	0	2192	19,213	25,506	46,911	
Commercial	4864	154	0	1652	4609	0	11,279	
Industrial	0	0	15	0	0	0	15	
Total	4864	154	15	3844	23,822	25,506	58,205	

Building type, sub-type and their frequency in the dataset.

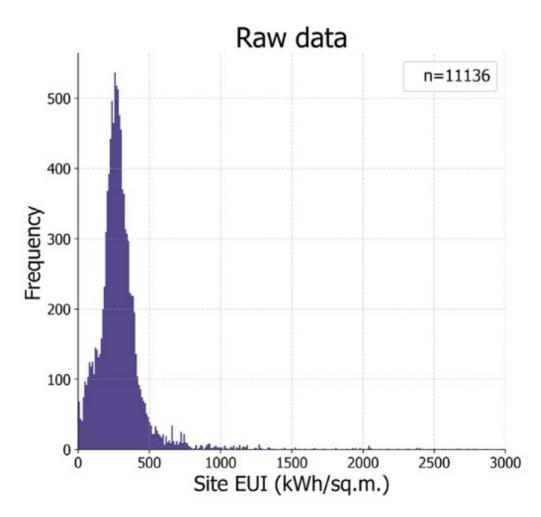
Building characteristics and occupancy features for the buildings in the dataset.


Variable	Observations	Mean	Standard Deviation	Min	Max
Building Height	58,205	1.87	2.20	1	110
Building Size (Gross Floor Area)	58,205	35,820 (ft ²) 3328 (m ²)	116,948 (ft ²) 10,865 (m ²)	300 (ft ²) 28 (m ²)	6,143,038 (ft ²) 570,707 (m ²)
Year Built	58,205	1935.27	31.81463	1852	2014
Total Occupants	58,205	83.90	84.65	0	3000
Average Household Size	58,205	2.34	1.39	0	9
Occupied Unit Percentage	58,205	87%	13%	0%	100%

City of Chicago Benchmarking


Summary statistics of building site EUI used in the model.

Variable	Observations	Mean	Standard Deviation	Min	Max
Building site EUI	58,205	67.29 (kBtu/ft ²) 212.28 (kWh/m ²)	30.01 (kBtu/ft ²) 94.68 (kWh/m ²)	10.65 (kBtu/ft ²) 33.60 (kWh/m ²)	540.00 (kBtu/ft ²) 1703.48 (kWh/m ²)


City of Chicago Benchmarking

City of Chicago Benchmarking

New York City Benchmarking

CLASS ACTIVITY

Class Activity

 Plot electricity and steam vs. monthly average temperature plots for AM Hall building.

CLASS ACTIVITY

Class Activity

- Let's aim at using Python or R to re-do the class activates
- Form a team of two
- Present in 20-30 minutes about your progress