CAE 465/526 Building Energy Conservation Technologies Fall 2022

August 31, 2022

Building energy consumption patterns and performance analysis

Built Environment Research @ IIT

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcement

• Assignment 1 is posted

INTRODUCTION

Introduction

- Understanding energy consumption patterns in:
 - Campus buildings
 - Residential/Commercial buildings
- Starting to look into calculating and predicting energy consumption patterns using building energy models

Classify Buildings

- Understand approaches to analyze building energy consumption patterns
- Use a classification procedure
- Characterize weather data
- Consider a building selection criteria
- Capture all energy consumption commodities
- Utilize different energy modeling methods

Understand Energy Use Pattern of Buildings

- Select buildings with different ages, shapes, and occupancy patterns
- Install sensors to track energy consumption of buildings and weather data
- Clean the monitored energy and weather data
- Establish a procedure to analyze and classify buildings based on their energy use pattern

CAMPUS BUILDINGS

Why Campus Buildings

- Campuses Typically:
 - Have sustainability programs that monitor energy consumption of buildings. Record energy commodities with different level of granularity such as 15 minutes, hourly, monthly
 - Open to share monitored energy consumption of buildings with the research community
 - Operate with different energy commodities such as electricity, natural gas, steam, and chilled water, enabling better disaggregation of enduses without sub-metering end-uses.
 - Spend close to \$2 billon each year on energy*
 - Endeavor to construct new buildings or renovate existing buildings to meet the requirements for energy efficient buildings

Campus Buildings Are Unique

- Campus buildings are unique due to the existence of:
 - Buildings with different ages with different HVAC systems (e.g., baseboards, VAV with reheat)
 - Buildings with different sizes and shapes
 - Buildings with different principal activity (e.g., offices, classrooms, laboratories), meaning buildings have different occupancy pattern.
 - Energy intense laboratories (e.g., laboratories with fume hoods, biosafety cabinet)

 This enables opportunities to retrofit buildings and save energy consumption of the buildings

• IIT monitoring system database:

• Stuart building energy data summary:

	Meter Number	Electric 1 (kWh) Summary	Steam 1 (lbs) 0 1DD2-1-P01	Chilled Water (kBTU) #1
51	Current Meter Reading		21,356,710 lbs	15,188,800 kBTU
	Yesterday's Meter		21,356,710 lbs	15,183,500 kBTU
51	Last Month's Meter		21,356,710 lbs	15,140,000 kBTU
	Last Hour's Consumption	47 kWh	0 lbs	900 kBTU
	Today's Consumption	461 kWh	0 lbs	5,300 kBTU
	Yesterday's Consumption	1,078 kWh	0 lbs	14,400 kBTU
Ē	Month Consumption	3,672 kWh	0 lbs	48,800 kBTU
	Last Month Consumption	30,431 kWh	0 lbs	424,600 kBTU
	kBTUs This Month	12,529 kBTU	0 kBTU	48,800 kBTU
	kBTUs Last Month	103,835 kBTU	0 kBTU	424,600 kBTU
51	Cost this Month (\$)	302.43	0.00	835.29
51	Cost Last Month (\$)	2,506.30	0.00	7,267.74
Ī	Totals			
	Total Building Cost (\$) 1,137.72	kBTUs/Sq. Ft this Mo	nth 0.77
	Last Month Cost (\$)	9,774.03	Total Building kBTU	Js 61,329

• Stuart building chilled water energy pattern

Stuart building electric energy pattern

Some campuses are more open to share the data to public

DIVISION OF ADMINISTRATION UTILITIES & ENERGY MANAGEMENT

Energy Use Index (EUI) Monthly Report Card By Cost For the Period Ending February 28, 2012

Buildings >= 2,000 gsf # Building GSF EUI Annual Cost aquaculture research teaching facility 4,333 \$9,344 Monthly Annualized

Annualized —Current Year —Previous Year

#	Building	GSF	EUI	Annual Cost
0040	field lab and office bldg	2,275	134	\$7,548

University of Maryland Energy Dashboard •

Reckord

EUI: 8 kBtu/ft2

McKeldin Library
 Reckord Armory
 Mitchell Building

الماليا با

McKeldin Library Reckord Armory Mitchell Building

Reckord Armory Mitchell Building

Electricity

Steam

Armory

the line is

Mitchell

Building

EUI: 65 kBtu/ft2

المار

Cornell University Energy Dashboard

Summa	ary / Last 12 months		Electricity / Last 12 mo	nths								
*	Total cooling 338.67m kBTU		Electricity	100r	1		200)m			300m	
+	Total electricity 444.96m kWh		Residence Hall/Dormitor	y								
3 2	Total heating 21.61b kBTU		Science Facility 69.56m kWh									
9	Total steam 4.8m kBTU		Academic 38.83m kWh									
*	Total photovoltaic 90.884 kWh		Community Center 2.21m kWh	Electricity:	426,087 kWh							
	·		Administrative 426,087 kWh									
			Retail Store 394,202 kWh									
			Electricity Use, 100 build	ings / Last 12 m	onths							
			Electricity									
			80m 60m									
			40m the action of the action o									
			Sep Oct	Nov	Dec Jan Min	Feb	Mar	Apr	May Max	Jun	Jul	Aug
			444 96m kWh		10.55	m kWh (Sep)			96.51mk	Wh (Nov)		
Welcome	Trends Energy Smackdown Renewables	Energy & Utili <u>ties</u>	Residential Human Eco	logy Vet School	A-Z Index	Admin	О ААР	A&S	Business	CALS	Engineerin	g ILR
buildi	buildingOS Cornell University											

Cornell University Energy Dashboard

• UC Berkeley Energy Dashboard

UC Berkeley Energy Dashboard

Classification Procedure: Campus Buildings

- Common variables:
 - Dry bulb temperature
 - Dew point temperature
 - Cooling Degree Days (CDD)
 - Heating Degree Days (HDD)

 Degree Days (DD): is the difference in temperature between the outdoor mean temperature over a 24-hour period and a given base temperature. For the purposes of determining building envelope requirements*

$$HDD(balance) = 1 \, day \times \sum_{number \ of \ days} (T_{outdoor} - T_{balance})^+$$

$$CDD(balance) = 1 \, day \times \sum_{number \ of \ days} (T_{outdoor} - T_{balance})$$

- CDD base 50°F, CDD50, or 10°C, CDD10:
 - When the mean temperature is more than 50°F or 10°C, temperature difference between the mean temperature for the day and 50°F or 10°C
 - Annual CDDs are the sum of the degree-days over a calendar year *

 Example: What's the CDD for a day with mean day outdoor air temperature of 68°F (20°C)?

- HDD base 65°F, HDD65, or 18°C, HDD18:
 - When the mean temperature is less than 65°F or 18°C, temperature difference between the mean temperature for the day and 65°F or 18°C *.
 - Annual HDDs are the sum of the degree-days over a calendar year.
 - An example:
- Example: What's is the HDD for a mean day outdoor air temperature of 32°F (0°C)?

CLASS ACTIVITY

Class Activity

 Example: Calculate heating and cooling degree days for Chicago in using a TMY3 file?

• Additional notes:

- Download files from here: <u>http://climate.onebuilding.org/WMO_Region_4_North_and_Central_America/USA_United_States_of_America/index.html</u>
- □ Unzip the folder
- □ Change the extension to CSV from EPW.
- Understand the columns: <u>https://bigladdersoftware.com/epx/docs/8-2/auxiliary-programs/epw-csv-format-inout.html#:~:text=EPW%20CSV%20Format%20to%20the,shown%20and%20then%20the%20data.</u>

ASHRAE Climate Zones

What's our climate zone?

ASHRAE Climate Zones

Zana Number	Nama	Thermal Criteria					
Zone Number	Name	I-P Units	SI Units				
1	Very Hot – Humid (1A), Dry (1B)	9000 < CDD50°F	5000 < CDD10°C				
2	Hot – Humid (2A), Dry (2B)	$6300 < CDD50^{\circ}F \le 9000$	$3500 < CDD10^{\circ}C \le 5000$				
3A and 3B	Warm – Humid (3A), Dry (3B)	$4500 < CDD50^{\circ}F \le 6300$	$2500 < CDD10^{\circ}C \le 3500$				
3C	Warm – Marine	CDD50°F \leq 4500 and HDD65°F \leq 3600	CDD10°C ≤ 2500 and HDD18°C ≤ 2000				
4A and 4B	Mixed – Humid (4A), Dry (4B)	$CDD50^{\circ}F \le 4500 \text{ and}$ $3600 < HDD65^{\circ}F \le 5400$	CDD10°C ≤ 2500 and HDD18°C ≤ 3000				
4C	Mixed – Marine	$3600 < HDD65^{\circ}F \le 5400$	$2000 < \mathrm{HDD18^{o}C} \leq 3000$				
5A, 5B and 5C	Cool–Humid (5A), Dry (5B), Marine (5C)	$5400 < HDD65^{\circ}F \le 7200$	$3000 < HDD18^{\circ}C \le 4000$				
6A and 6B	Cold – Humid (6A), Dry (6B)	$7200 < HDD65^{\circ}F \le 9000$	$4000 < HDD18^{\circ}C \le 5000$				
7	Very Cold	$9000 < HDD65^{\circ}F \le 12600$	$5000 < \mathrm{HDD18^{o}C} \leq 7000$				
8	Subarctic	12600 < HDD65°F	$7000 < HDD18^{\circ}C$				

• Online tools:

	Latitude	Longitude			CDD50	Heating Design	Cooling Design Temperature		Number of Hours
State/City			Elev., ft	HDD65		Temperature	Dry-Bulb	Wet-Bulb	8 a.m.–4 p.m.
						99.6%	1.0%	1.0%	$55 < T_{db} < 69$
Illinois (IL)									
Aurora	41.75 N	88.35 W	644	6699	2880	NA	NA	NA	NA
Belleville/Scott AFB	38.55 N	89.85 W	453	4878	4146	3	93	77	NA
Carbondale Sewage Plt	37.73 N	89.17 W	390	4865	3934	NA	NA	NA	NA
Champaign	40.03 N	88.28 W	755	5689	3697	NA	NA	NA	NA
Chicago Midway AP	41.73 N	87.77 W	620	6176	3251	NA	NA	NA	NA
Chicago O'Hare WSO AP	41.98 N	87.90 W	674	6536	2941	-6	88	73	613
Chicago University	41.78 N	87.60 W	594	5753	3391	NA	NA	NA	NA

TABLE D-1 U.S. and U.S. Territory Climatic Data (Continued)

• An example from the Penn State and Harvard campus study.

Average daily temperature for five years

• An example from the Penn State's campus.

• Dew point and sol-air as well as different base point temperature can be used to calculate CDDs

Weather Data

https://www.nrel.gov/docs/fy08osti/43156.pdf

Weather Stations in Chicago

IIT Weather Station

IIT Weather Station

Daily Observations

Time Temperature **Dew Point** Humidity Wind Wind Speed Wind Gust Pressure Precip. Precip Accum Condition 1:39 PM 76 ° F 72 ° F 87 % ESE 10 mph 29.2 in 0.0 in 0.0 in Cloudy 0 mph 76 ° F 66 ° F 12:53 AM 71 % ESE 29.3 in 0.0 in 0.0 in Cloudy 8 mph 0 mph 2:53 AM 74 ° F 65 ° F 73 % SE 29.3 in 0.0 in 0.0 in Cloudy 8 mph 0 mph 73 ° F 64 ° F ESE 0.0 in Mostly Cloudy 3:53 AM 73 % 9 mph 0 mph 29.3 in 0.0 in 4:53 AM 72 ° F 64 ° F 76 % ESE 10 mph 0 mph 29.3 in 0.0 in 0.0 in Mostly Cloudy 72 ° F 64 ° F 76 % ESE 29.3 in 0.0 in 0.0 in Mostly Cloudy 5:53 AM 9 mph 0 mph 6:53 AM 72 ° F 64 ° F 76 % ESE 29.3 in 0.0 in 0.0 in Mostly Cloudy 9 mph 0 mph 64 ° F SE 7:53 AM 73 ° F 73 % 10 mph 0 mph 29.3 in 0.0 in 0.0 in Cloudy 8:53 AM 74 ° F 64 ° F 71 % ESE 13 mph 0 mph 29.3 in 0.0 in 0.0 in Cloudy 9:53 AM 76 ° F 65 ° F 69 % Е 12 mph 0 mph 29.2 in 0.0 in 0.0 in Cloudy 10:53 AM 78 ° F 67 ° F 68 % ESE 15 mph 0 mph 29.2 in 0.0 in 0.0 in Cloudy 11:53 AM 77 ° F 69 ° F 76 % Е 10 mph 0 mph 29.2 in 0.0 in 0.0 in Light Rain 12:37 PM 74 ° F 71 ° F ESE Light Rain 91 % 8 mph 0 mph 29.2 in 0.1 in 0.0 in 75 ° F 12:53 PM 72 ° F 90 % Е 8 mph 0 mph 29.2 in 0.2 in 0.0 in Rain 65 ° F 1:53 AM 75 ° F 71 % SE 10 mph 0 mph 29.3 in 0.0 in 0.0 in Cloudy 1:53 PM 76 ° F 72 ° F 87 % ESE 17 mph 23 mph 29.2 in 0.0 in 0.0 in Cloudy 2:14 PM 77 ° F 73 ° F Е 29.2 in 0.0 in 0.0 in Mostly Cloudy 88 % 20 mph 0 mph 73 ° F 77 ° F Е 2:53 PM 88 % 14 mph 23 mph 29.2 in 0.0 in 0.0 in Cloudy 3:00 PM 76 ° F 72 ° F 87 % Е 14 mph 29.1 in 0.0 in 0.0 in Cloudy 0 mph 3:53 PM 77 ° F 72 ° F 84 % ESE 29.1 in 0.0 in Cloudy 14 mph 0 mph 0.0 in 78 ° F 73 ° F 84 % ESE 0.0 in Cloudy 4:53 PM 13 mph 0 mph 29.1 in 0.0 in 79 ° F 71 ° F ESE 0.0 in Mostly Cloudy 5:53 PM 77 % 17 mph 22 mph 29.1 in 0.0 in

.

Close to IIT Weather Station

Weather Station Calibration

Description

Historical Hourly Weather Data

Who amongst us doesn't small talk about the weather every once in a while? The goal of this dataset is to elevate this small talk to medium talk.

Just kidding, I actually originally decided to collect this dataset in order to demonstrate basic signal processing concepts, such as filtering, Fourier transform, auto-correlation, cross-correlation, etc..., (for a data analysis course I'm currently preparing). I wanted to demonstrate these concepts on signals that we all have intimate familiarity with and hope that this way these concepts will be better understood than with just made up signals.

The weather is excellent for demonstrating these kinds of concepts as it contains periodic temporal structure with two very different

 \sim

Building Selection

• Do you recall the CBECS building data types?

Broad Category	Primary Function	Further Breakdown (where needed)	Source EUI (kBtu/ft²)	Site EUI (kBtu/ft²)	Reference Data Source - Peer Group Comparison	
Banking/Financial	Bank Branch *		209.9	88.3	CBECS - Bank/Financial	
Services	Financial Office*	Financial Office*			CBECS - Office & Bank/Financial	
	Adult Education		110.4	52.4	CBECS - Education	
	College/University		180.6	84.3	CBECS - College/University	
Education	K-12 School*		104.4	48.5	CBECS - Elementary/Middle & High School	
	Pre-school/Daycare		131.5	64.8	CBECS - Preschool	
	Vocational School		110.4	52.4	CRECC Education	
	Other - Education				CBECS - Education	
	Convention Center	109.6	56.1	CBECS - Social/Meeting		
	Movie Theater	112.0	56.2	CBECS - Public Assembly		
	Museum					
	Performing Arts					
		Bowling Alley			07500 Barratian	
Entertainment/Public Assembly		Fitness Center/Health Club/Gym				
Assembly	Descretion	Ice/Curling Rink	442.0	50.0		
	Recreation	Roller Rink	112.0	50.8	CBECS - Recreation	
		Swimming Pool				
		Other - Recreation				
	Social/Meeting Hall	109.6	56.1	CBECS - Social/Meeting		

U.S. National Median Reference Values for All Portfolio Manager Property Types

Primary categories

Classrooms / Offices	This category is a combination of classroom and office areas where none of the classroom or office areas occupies more than 60% of the total building area. This type of the building represents a building that comprises both Full Time Employee (FTE) and visor/transient occupants. While the visitor/transient occupants influence the energy consumption pattern and operation schedule of the classroom space type, FTEs in the office space type affect the building's energy consumption patterns.
Office Areas	It is a category that more than 80% of the building area is dedicated to the academic and administrative office areas. It is expected that the operational schedule for this type of space be shorter compared to the Classrooms/Offices space types.
Research Laboratories	This category contains buildings that exhibit high-intensity in terms of energy consumption and more than 40% of the building area is occupied by research laboratories.
Laboratory Mixes	Laboratory mixes category is the building area with a combination of classroom/office, office, and research laboratory areas. In this category more than 20% of the building area is used for research laboratories, and each of the categories occupy at least more than 15% of the building area.
Residential Facilities	This category includes students, staff, and faculty housing buildings.

Secondary categories					
Student Activity Centers	This category contains buildings where 40% of the building area is used for student activities.				
Health Facilities	Health facilities are buildings that provide patient care within university campuses.				
Sports & Gym Facilities	It is a category dedicated to indoor student recreational activities and fitness centers.				
Auditoriums & Theaters	This category is used for exhibition and performance buildings within university campuses.				
Residential Facility Mixes	This category is a combination of residential facilities and areas allocated for food and cooking purposes.				
Hospitality Services	Hospitality services category contains temporary accommodation facilities, such as university hotels within university campuses.				
Libraries	This category defines university libraries.				
Museums	This category includes museum buildings within university campuses.				

- An example from Penn State's and Harvard's campuses:
 - Building with different types, ages, and sizes are selected
 - For five main categories, six buildings are considered

Building Type	Range of bu (Yea	Range of building ages (Years)		ng number(s)	Approximate Bui m ²	lding Gross Area (ft²)
Campus	Penn State	Harvard	Penn State	Harvard	Penn State	Harvard
Classrooms / Offices	5 – 108	19 – 113	1P – 6P	1H – 6H	4,000 – 21,000 (43,055 – 129,167)	5,000 – 8,000 (53,820 – 86,111)
Office areas	10 – 107	21 – 112	7P – 12P	7H – 13H	3,000 – 13,000 (32,292 – 139,931)	4,000 – 18,000 (43,056 – 193,750)
Research laboratories	6 – 81	6 – 131	13P – 18P	14H – 19H	8,000 – 13,000 (86,111 - 139931)	5,000 – 20,000 (53,820 – 215,278)
Laboratory mixes	8 – 91	5 – 112	19P – 24P	20H – 25H	7,000 – 17,000 (75,347 – 182,986)	6,000 – 50,000 (64,583 – 538,196)
Residential facilities	47 – 87	5 – 124	25P – 35P	26H – 31H	3,000 – 20,000 (32,291 – 215,278)	6,000 – 23,000 (64,583 – 247,570)

- An examples from Penn State's campus:
 - Nine secondary categories are considered

Building Type	Range of building ages (Years)	Building number(s)	Approximate Building Gross Area m² (ft²)
Campus		Penn State	
Student Activity Center	57	36P	23,000 (247,570)
Health Facilities	4	37P	6,000 (64,583)
Sports and Gym Facilities	45 – 83	38P – 39P	8,000 – 29,000 (86,111 – 312,153)
Auditoriums and Theatres	38 – 109	40P – 42P	2,000 – 10,000 (21,528 – 107,639)
Residential Facility Mixes	45 – 55	43P – 45P	2,000 – 7,000 (21,528 – 75,347)
Hospitality Services	81	46P	22,000 (236,806)
Library	72	47P	24,000 (258,334)
Museum	41	48P	5,000 (53,820)

CLASS ACTIVITY

• Consider IIT Buildings:

Building Name	Building Name
Perlstein Hall	Engineering
Alumni Memorial Hall	Life Sciences
Wishnick Hall	Stuart
Siegel Hall	Keating Sports Center
Crown Hall	IIT Apartments
IIT Tower	The Commons
Paul Galvin	McCormick Tribune
Main	Residence Hall Complex
Machinery Hall	Farr Hall
Hermann Union	Quad

• Provide two examples for each type at the IIT campus:

Building Type	IIT Building
Classrooms/Offices	???
Office Areas	???
Research Laboratories	???
Laboratory Mixes	???
Residential Facilities	???

• Provide an example for each type at the IIT campus:

Building Type	IIT Building
Student Activity Center	???
Health Facilities	???
Sports and Gym Facilities	???
Auditoriums and Theatres	???
Residential Facility Mixes	???
Hospitality Services	???
Library	???
Museum	???

• From previous students:

	Area (ft²)	Year Built	# of floors	Dimensions	WWR	Space Type	Shape
Perlstein Hall	124,800	1945	3	320'x130'	0.65	Office/Class/Lab	RECT
Alumni Hall	33,000	1945	3	225'x75'	0.425	Office/Class/Lab	RECT
Wishnick Hall	81,500	1945	4	91'x224'	0.68	Office/Class	RECT
Siegel Hall	75,840	1956	4	80'x237'	0.63	Office/Class	RECT
Crown Hall	52,800	1956	2	120'x220'	0.88	Class/Library	RECT
Common	52,800	1962	2	120'x220'	0.88	Dining	RECT
Material	339,329	1943	2	243'x500'	0.38	Office/Lab/Class	RECT
Main	78,698	1892	5	248.65'x63.3'	0.35	historic landmark	RECT
Machinery Hall	27,515	1901	5	88.9' x 61.92'	0.3	historic landmark	RECT

- An example from Penn State's study. Energy consumption commodities are:
 - Chilled water
 - Steam
 - Electricity
 - Service hot water

• An example for the five primary categories:

1 MJ/m²=11.357 kBtu/ft²

■Penn State ■Harvard

Penn State Harvard

CLASS ACTIVITY

 Let's calculate EUI (electricity, steam, and total EUI) for the uploaded file on BB.

Common Energy Modeling Methods

- Six common methods to analyze energy consumption of campus buildings are listed below
- Methods 1-5 are simpler than Method 6
- Method 6 requires using simulation programs such as EnergyPlus

Method #	Energy modeling criteria name
1	Degree day calculations
2	Estimated savings based on the utility bills (disaggregation)
3	Temperature bin spreadsheet calculations
4	8760-hour spreadsheet calculations
5	Energy Utilization Index (EUI)
6	Whole building energy simulations

- Order of magnitude for the regression analysis determines three types of buildings in terms of the energy consumption in response to the outdoor weather conditions. These types are:
 - Externally-load dominated buildings
 - Internally-load dominated buildings
 - Mixed-load dominated buildings

 It is useful to determine whether internal, external or mixedloads dominate building energy use patterns in order to inform design, retrofit and energy simulation efforts

- Externally-load dominated buildings:
 - Have their energy consumption controlled by the outdoor weather conditions, ventilation systems, and heat loss/gain through the building envelope
 - Known as envelope-dominated or skin-load dominated buildings
 - Dominated buildings require additional focuses on the building envelop and ventilation systems
 - Space types such as single-family and warehouse buildings tend to be externally-load dominated
 - For campus buildings located in the Northeastern of the U.S., the steam consumption do follow the outdoor condition, suggesting opportunities to benefit from a better space heating management strategies

- Internally-load dominated buildings:
 - Outdoor conditions do not have significant influence on the energy consumption of these buildings
 - Internal loads such as receptacle, occupancy, lighting loads and their schedules are the main drivers to control the energy consumption of these buildings
 - Space types such as offices, hospitals, and research laboratories tend to be more internally-load dominated
 - The results of this study indicates that the research laboratories and laboratory mixes tend to be internally-load dominated.

- Mixed-load dominated buildings:
 - In these buildings, external and internal thermal loads have the same order of magnitude
 - Energy use patterns for these types of buildings are a combination of external and internal loads
 - The complex interaction of the heat transfer processes render mixedload dominated buildings difficult to model
 - Modeling these buildings requires consideration of combined methodologies for externally-load and internally-load dominated building
 - Campus buildings with good management strategies usually are mixed-load dominated since the energy consumption during the peak time follows the outdoor condition while during off peak, e.g., nighttime, the building cooling does not follow the outdoor condition

Degree Days

- Seven methods:
 - 1P: Non-weather dominated
 - 2P: Linear correlation with a fixed baseline
 - 3P: Linear correlation with a change point temperature constant baseline
 - 4P: Linear correlation with a change point temperature weather dependent baseline
 - 5P: Cooling and heating in the same plot

Provide and example for each method?

Degree Days

- Used two approaches:
 - 1. All year: works better for campus buildings due to simultaneous heating and cooling.

- 2. Cooling and heating seasons:
 - Cooling season: June August
 - Heating season: Jan –May & September December

This method fails for some of the buildings (especially for CHW)

 Normalized steam with HDD for one building at Penn State campus and one building at Harvard campus.

• Different pattern exists for the campus building:

64

• Sometimes for the same building, the occupancy and operation can change the patterns.

- Granularity of the data: -
- Monthly

Daily

15 Minute / Hourly

Granularity Level		Description
Monthly	•	Exists for most of the buildings
	•	Works better for the steam consumptions than the CHW consumptions
Deily	•	Provides a better response than the monthly
	•	Enable reduce the sampling rate for the existing sub-metering sensors
Hourby / 15 Minuto	•	Provide detailed information about the building operation and schedules
Houriy / 15 Minute	•	Include noises associated with the data

CLASS ACTIVITY

 Plot electricity and steam vs. monthly average temperature plots for AM Hall building.

• Consider this building EUIs, which one is the accurate building EUI?

Year	Electricity EUI (kBtu/ft²)	Heating EUI (kBtu/ft ²)	Cooling EUI (kBtu/ft²)	Total EUI (kBtu/ft²)
2016	20	40	15	75
2017	19	49	11	79
2018	22	42	18	82

TABLE D-1 U.S. and U.S. Territory Climatic Data (Continued)

State/City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooling Design Temperature		Number of Hours
							Dry-Bulb	Wet-Bulb	8 a.m.–4 p.m.
						99.6%	1.0%	1.0%	$55 < T_{db} < 69$
Illinois (IL)									
Aurora	41.75 N	88.35 W	644	6699	2880	NA	NA	NA	NA
Belleville/Scott AFB	38.55 N	89.85 W	453	4878	4146	3	93	77	NA
Carbondale Sewage Plt	37.73 N	89.17 W	390	4865	3934	NA	NA	NA	NA
Champaign	40.03 N	88.28 W	755	5689	3697	NA	NA	NA	NA
Chicago Midway AP	41.73 N	87.77 W	620	6176	3251	NA	NA	NA	NA
Chicago O'Hare WSO AP	41.98 N	87.90 W	674	6536	2941	-6	88	73	613
Chicago University	41.78 N	87.60 W	594	5753	3391	NA	NA	NA	NA

Benefits and Limitations

- Benefits:
 - Provide rapid normalization results
 - Provide accurate results for most of the situations

- Limitations:
 - Assume steady-state conditions
 - Fail for cases where there is rapid changes in the building (internally-load dominated)

COMMERCIAL/RESIDENTIAL BUILDINGS
Hourly electricity use in residential and commercial buildings in 2018:

• Total and peak electricity end-uses in 2018:

• Residential cooling and heating hourly profile:

- See ResStock and ComStock:
 - <u>https://www.nrel.gov/buildings/comstock.html</u> (for viewing data: <u>https://comstock.nrel.gov/dataviewer</u>)
 - <u>https://www.nrel.gov/buildings/resstock.html</u> (for viewing data: <u>https://resstock.nrel.gov/dataviewer/</u>)

City of Chicago Benchmarking

Building Type	Building Subtype						
	Commercial	Municipal	Industrial	Multi 7+	Multi < 7	Single Family	Total
Residential Commercial Industrial Total	0 4864 0 4864	0 154 0 154	0 0 15 15	2192 1652 0 3844	19,213 4609 0 23,822	25,506 0 0 25,506	46,911 11,279 15 58,205

Building type, sub-type and their frequency in the dataset.

Building characteristics and occupancy features for the buildings in the dataset.

Variable	Observations	Mean	Standard Deviation	Min	Max
Building Height Building Size (Gross Floor Area)	58,205 58,205	1.87 35,820 (ft ²) 3328 (m ²)	2.20 116,948 (ft ²) 10,865 (m ²)	1 300 (ft ²) 28 (m ²)	110 6,143,038 (ft ²) 570,707 (m ²)
Year Built	58,205	1935.27	31.81463	1852	2014
Total Occupants	58,205	83.90	84.65	0	3000
Average Household Size	58,205	2.34	1.39	0	9
Occupied Unit Percentage	58,205	87%	13%	0%	100%

City of Chicago Benchmarking

Summary statistics of building site EUI used in the model.

Variable	Observations	Mean	Standard Deviation	Min	Max
Building site EUI	58,205	67.29 (kBtu/ft ²) 212.28 (kWh/m ²)	30.01 (kBtu/ft ²) 94.68 (kWh/m ²)	10.65 (kBtu/ft ²) 33.60 (kWh/m ²)	540.00 (kBtu/ft ²) 1703.48 (kWh/m ²)

City of Chicago Benchmarking

City of Chicago Benchmarking

New York City Benchmarking

New York City Benchmarking

New York City Benchmarking

U.S. National Median Reference Values for All Portfolio Manager Property Types

Broad Category	Primary Function	Further Breakdown (where needed)	Source EUI (kBtu/ft²)	Site EUI (kBtu/ft²)	Reference Data Source - Peer Group Comparison	
Banking/Financial	Bank Branch *	209.9	88.3	CBECS - Bank/Financial		
Services	Financial Office*	116.4	52.9	CBECS - Office & Bank/Financial		
Education	Adult Education	110.4	52.4	CBECS - Education		
	College/University		180.6	84.3	CBECS - College/University	
	K-12 School*	104.4	48.5	CBECS - Elementary/Middle & High School		
	Pre-school/Daycare	131.5	64.8	CBECS - Preschool		
	Vocational School	110.4	52.4	CBECS - Education		
	Other - Education					
Entertainment/Public Assembly	Convention Center	109.6	56.1	CBECS - Social/Meeting		
	Movie Theater		112.0	56.2		
	Museum	CBECS - Public Assembly				
	Performing Arts					
	Recreation	Bowling Alley		50.8	CBECS - Recreation	
		Fitness Center/Health Club/Gym				
		Ice/Curling Rink	112.0			
		Roller Rink				
		Swimming Pool				
		Other - Recreation				
	Social/Meeting Hall	109.6	56.1	CBECS - Social/Meeting		

WHOLE BUILDING ENERGY MODELING

- Benefits:
 - Simulate accurate hourly simulation results with load calculations for each thermal zone
 - Enable modification of the energy model to predict future changes in the building

- Limitations:
 - Require an expert to create energy models
 - Require access to detailed mechanical drawings and detailed information to prepare the energy models
 - Require careful consideration for the campus buildings to meet the building energy use pattern

- Design requirements based on ASHRAE 90.1 requires a simulation software that is capable of
 - A minimum of 1400 hours per year
 - Hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation, defined separately for each day of the week and holidays
 - Thermal mass effects
 - Ten or more thermal zones
 - Part-load performance curves for mechanical equipment Capacity and efficiency correction curves for mechanical heating and cooling equipment Air-side and water-side economizers with integrated control

The budget building design characteristics specified in Section 11.4.5

- Examples of the energy simulation tools:
 - EnergyPlus (text-based energy simulation tools sponsored with DOE).
 - DesignBuilder (A commercial interface for EnergyPlus):

• OpenStudio (middleware of simulation tools including EnergyPlus):

• Complex building energy models

- Couple of key variables that are needed for a careful energy modeling:
 - Internal loads & Operation schedules: Most of the buildings are internally-load dominated or mixed-used buildings (e.g., lab-mixes or classroom/office)
 - Occupancy: Due to the mixed-used space type for a significant number of buildings, the occupancy patterns may not follow the typical occupancy schedules in the energy simulation tools
 - HVAC system and associated inputs: Because buildings may have different HVAC systems, it is important to have the correct HVAC system
 - Building Enclosure: It may require hand calculations before implementing the correct inputs into the energy models

0.016

0.014

0.012

of 0.010

Data based on ISO 7730 and ASHRAE STD 55

Ø.012

PMV 90

95 100

 Poor management of temperature setpoints in the buildings.

- Careful consideration for are needed to provide occupancy rate of the buildings:
 - Combination of different space types, rendering the campus buildings unique in terms of the occupancy rate
 - Does not follow the typical occupancy rates recommended in the energy simulation programs

• From the Penn State's campus study:

98

- Beyond installation of fairly expensive occupancy sensors at the entrance and exit of buildings is to benefit from the existing infrastructures at the buildings:
 - Appliance using WiFi or desktop computers connect to the network through their IP address
 - Swipe access card readers for a building or space
 - Class schedules and FTE operation hours
 - CO₂ sensors for the demand control systems

From the Penn State's campus study: •

> 2 0

6:308:00

£:009:00

0:0010:00

10:00-11:00

11:0012:00

12:001:00

1:002:00

5:00,3:00

Fall semester

Hour

A:005:00

5:006:00

6:007:00

7:008:00

^{5:00}9:09

9:00-10:00

3:004:00

10:00:11:00

11:00-12:00

 Plug load and electricity is linearly correlated with the building occupancy

BUILDING SHAPES

 Building geometry is an important part of the building energy modeling that may take a large portion of the building energy modeler's time. Typical building shapes are:

- # of buildings:
- UMd = 108
- Penn State = 48
- Harvard = 30
- Portland State = 52

Representative Typical Shapes

■ UMd ■ Penn State ■ Harvard ■ Portland State

• Combination of the shapes can cover most of the remaining buildings

Representative Typical Shapes

■UMd ■Penn State ■Harvard ■Portland State

Heidarinejad et al. 2017

stnemtredA doet sionilli

What is the percentage for our campus?

Floor Plan

- Consider Stuart building
- How do we calculate this in absence of the floorplans?

• One of the easiest options:

Floor Plan

• One of the easiest options:

WINDOW-TO-WALL RATIO

- A simple calculation of Window-to-Wall (WWR) ratio benefit from the following steps:
 - Identify the building on the search engine maps
 - View the building facades
 - Scale the sides and measure the distances

CLASS ACTIVITY

 Calculate WWR, building floor area, and height for the Willis Tower (or a similar commercial building in downtown)

• Building floor area for Willis Tower

• In calculation of WWR, consider windows

SPACES

- How to find out about the spaces in a building?
 - Use architectural and mechanical drawings
 - Utilize online resources (if possible)

Spaces

• How to find out about the spaces in a building?

THERMAL ZONING

• What's a thermal zone?

ASHRAE Standard 90.1: "HVAC Zones or Thermal Zone is space or group of spaces within a building with heating and cooling requirements that are sufficiently similar so that desired conditions (e.g., temperature) can be maintained throughout using a single sensor (e.g., thermostat or temperature sensor)"

Spaces that are being served by one thermostat

• Where do we find the standards?

https://www.ashrae.org/technicalresources/standards-and-guidelines

Preview ASHRAE Standards and Guidelines

You may preview the following ASHRAE Standards & Guidelines with the links be selection with the option to purchase your copy with the buy button. If you need to ashrae@iengineering.com.

Errata to guidelines and standards can be found here.

Guideline 1.4-2019 Guideline 11-2021 Guideline 12-2020 Guideline 28-2021 Guideline 29-2019 Guideline 36-2021 Standard 15-2019 Standard 34-2019 Standard 52.2-2017 Standard 55-2020 Standard 62.1-2019 Standard 62.2-2019 Standard 84-2020 Standard 90.1-2019 (I-P)

• ASHRAE 90.1-2019:

7. Thermal Blocks-HVAC Zones Designed

Where *HVAC zones* are defined on HVAC design drawings, each Same as *proposed design*. *HVAC zone* shall be modeled as a separate *thermal block*.

Exceptions: Different *HVAC zones* may be combined to create a single *thermal block* or identical *thermal blocks* to which multipliers are applied, provided that all of the following conditions are met:

- 1. The *space* use classification is the same throughout the *thermal block,* or all of the zones have peak internal loads that differ by less than 10 Btu/h·ft² from the average.
- 2. All *HVAC zones* in the *thermal block* that are adjacent to glazed *exterior walls* and glazed *semiexterior walls* face the same *orientation* or their orientations vary by less than 45 degrees.
- 3. All of the zones are served by the same *HVAC system* or by the same kind of *HVAC system*.
- 4. All of the zones have schedules that differ by 40 or less equivalent full-load hours per week.

• ASHRAE 90.1-2019:

No. Proposed Building Performance	Baseline Building Performance							
8. Thermal Blocks—HVAC Zones Not Designed								
Where the <i>HVAC zones</i> and <i>systems</i> have not yet been designed, <i>thermal blocks</i> shall be defined based on similar internal load densities, occupancy, lighting, thermal and <i>space</i> temperature schedules, and in combination with the following guidelines:	Same as <i>proposed design</i> .							
perimeter <i>spaces</i> . Interior <i>spaces</i> shall be those located greater than 15 ft from an <i>exterior wall</i> or <i>semiexterior wall</i> . Perimeter <i>spaces</i> shall be those located within 15 ft of an <i>exte- rior wall</i> or <i>semiexterior wall</i> . A separate thermal zone does not need to be modeled for areas adjacent to <i>semiexterior walls</i> that separate <i>semiheated space</i> from <i>conditioned space</i> .								
b. Separate thermal blocks shall be assumed for spaces adjacent to glazed exterior walls or glazed semiexterior walls; a separate zone shall be provided for each orientation, except that orientations that differ by less than 45 degrees may be considered to be the same orientation. Each zone shall include all floor area that is 15 ft or less from a glazed perimeter wall, except that floor area within 15 ft of glazed perimeter walls having more than one orientation shall be divided proportionately between zones.								
 c. Separate <i>thermal blocks</i> shall be assumed for <i>spaces</i> having <i>floors</i> that are in contact with the ground or exposed to ambient conditions from zones that do not share these features. d. Separate <i>thermal blocks</i> shall be assumed for <i>spaces</i> having exterior ceiling or <i>roof</i> assemblies from zones that do not share these features. 								
9. Thermal Blocks—Multifamily Residential Buildings								
<i>Residential spaces</i> shall be modeled using at least one <i>thermal block</i> per <i>dwelling unit</i> , except that those units facing the same orientations may be combined into one <i>thermal block</i> . Corner units and units with <i>roof</i> or <i>floor</i> loads shall only be combined with units sharing these features.	Same as <i>proposed design</i> .							

• Always consider looking at the mechanical drawings first:

Office				Classroom			Office	
Corridor								
Office	Storage	Au	ditorium	Restroom	Laboratory		Office	
Corridor								
Office				Classroom			Office	

• What's the simplest form of a thermal zone?

Office				Classroom			Office	
Corridor								
Office	Storage	Au	ditorium	Restroom	Laboratory		Office	
Corridor								
Office				Classroom			Office	

"Single Zone"

• Single zone

What's the simplest form of a thermal zone after a single zone mode?

"Core and Perimeter Zone"

• Core zone and perimeter

- What are the most important consideration for a detailed thermal zone modeling:
 - Orientation (e.g., East, West)
 - Daylight
 - Heat gain
 - Areas
 - Similar areas
 - Functionality
 - Similar internal loads and ventilation requirements
 - Proximity
 - Same floor
 - Same location in a floor but at different floors

• Consider adding thermal zone for this floor plan.

Do you think the following thermal zone is a good strategy?

• Let's look at different thermal zone modeling in the literature

• Let's look at different thermal zone modeling in the literature

Building Energy Modeling

• Our campus models

- Classroom
- Restroom
- Print/Mech-Elec/Print/IT rooms
- Cafeteria
- Closed office
- Lobby
- Storage
- Stairs

Building Energy Modeling

• In a real building, this is also visualized

Building Energy Modeling

• In a real building, this is also visualized

CLASS ACTIVITY

 Propose thermal zones in the provided floorplans on blackboard