# CAE 465/526 Building Energy Conservation Technologies Fall 2022

# November 09, 2022

# Building Retrofit and Energy Efficiency Measures (EEMs) – Part 2

Built Environment Research @ IIT ] 🗫 🚓 🛧 千

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu



# PROJECT

# HOW TO EDIT OPENSTUDIO TEMPLATES

# **OPENSTUDIO TIPS FOR PART 2 AND 3 SUBMISSIONS**

### **Add OpenStudio Results**



# **External Lights**

|   | Facility Building Stories | Shading Exterior Ec        | uipment           |                   |                   |                     |
|---|---------------------------|----------------------------|-------------------|-------------------|-------------------|---------------------|
|   | Drop<br>Exterior Lights   | Exterior Lights Custor     | n                 |                   |                   |                     |
|   | Exterior Lights Name All  | Exterior Lights Definition | Schedule          | Control Option    | Multiplier        | End Use Subcategory |
|   | Exterior Lights 1         | Apply to Selected          | Apply to Selected | Apply to Selected | Apply to Selected | Apply to Selected   |
| B |                           |                            |                   |                   | 1.00000           | General             |
|   |                           |                            |                   |                   |                   |                     |
|   |                           |                            |                   |                   |                   |                     |
|   |                           |                            |                   |                   |                   |                     |

#### **External Lights**

#### How to find out more information about the inputs

#### CHAPTER 1. INPUT-OUTPUT REFERENCE

#### 1.16.1 Exterior:Lights

1.16.1.1 Inputs

634

#### 1.16.1.1.1 Field: Name

This descriptive name allows the values of exterior lights consumption to appear in the "normal" output variable list as well as the meters. It cannot be blank nor can it be duplicated by other Exterior:Lights statements.

#### 1.16.1.1.2 Field: Schedule Name

A schedule will allow the exterior lights consumption to be operationally different, hour to hour as well as seasonally. Fractional values in the basic schedule will be applied to the design level field below.

#### 1.16.1.1.3 Field: Design Level

This field (in Watts) is typically used to represent the maximum electrical input to exterior lighting fixtures that is then multiplied by a schedule fraction (see previous field). In EnergyPlus, this is slightly more flexible in that the lighting design level could be a "diversity factor" applied to a schedule of real numbers. Note that while the schedule value can vary from hour to hour and seasonally, the design level field is constant for all simulation environments.

#### 1.16.1.1.4 Field: Control Option

This field is used to determine how the exterior lights are controlled. There are currently two options, 'ScheduleNameOnly' and 'AstronomicalClock.' If this field is omitted or left blank then the program will default to Schedule Name Only mode. The 'ScheduleNameOnly' mode dictates that the exterior lights always follow the schedule named in the field above. The 'AstronomicalClock' mode dictates that despite what the schedule indicates, the exterior lights will not run when the sun is up. Using the Astronomical Clock mode makes it simple to model exterior lights that are controlled by a photocell or other controller that ensures that outdoor lights will not run during the daytime. However, the Astronomical Clock control works off of the position of the sun and therefore does not operate exactly like a photocell. During the night, the schedule values are still applied in the usual way.

#### https://energyplus.net/assets/nrel\_custom/pdfs/pdfs\_v9.6.0/InputOutputReference.pdf

# **System Availability**

| HVAC<br>Systems Par | Cooling<br>Sizing<br>rameter | Heat<br>Sizi<br>s Param | ng Custom<br>eters |                    |                                |                                |                                  |   | Maximum Flow Fraction During Rehe                      |
|---------------------|------------------------------|-------------------------|--------------------|--------------------|--------------------------------|--------------------------------|----------------------------------|---|--------------------------------------------------------|
| Name                | All                          | Turn On<br>Ideal        | Air Loop Name      | Zone Equipment     | Cooling Thermostat<br>Schedule | Heating Thermostat<br>Schedule | Humidifying Setpoint<br>Schedule | C | Autosized Autosize                                     |
|                     |                              | Air Loads               |                    | Apply to Selected  | Apply to Selected              | Apply to Selected              | Apply to Selected                |   | Maximum Reheat Air Temperature<br>94.99999999999999929 |
| Thermal Zone 1      |                              |                         | VAV with Reheat    | Duct VAV Reheat 11 | Cooling Sch                    | Heating Sch                    |                                  |   | Control For Outdoor Air                                |
| Thermal Zone 10     |                              |                         | VAV with Reheat    | Duct VAV Reheat 22 | Cooling Sch                    | Heating Sch                    | []]]                             |   | OS:Coil:Heating:Water                                  |
| Thermal Zone 11     |                              |                         | VAV with Reheat    | Duct VAV Reheat 9  | Cooling Sch                    | Heating Sch                    | (1113)                           | : | Name<br>Coil Heating Water 23                          |
| Thermal Zone 12     |                              |                         | VAV with Reheat    | Duct VAV Reheat 6  | Cooling Sch                    | Heating Sch                    | C)                               | I | Availability Schedule Name<br>Always On Discrete       |
| Thermal Zone 13     |                              |                         | VAV with Reheat    | Duct VAV Reheat 14 | Cooling Sch                    | Heating Sch                    | CIII)                            |   | U Fester Times Area Value Hard Sized                   |
|                     |                              |                         |                    |                    |                                |                                |                                  |   | Autosized Autosize                                     |

# **System Availability**



https://unmethours.com/question/10018/availability-schedule-name-always-on-discrete/

### **Economizer or Demand Control Ventilation**

|                | HVAC Systems                                                          |
|----------------|-----------------------------------------------------------------------|
|                | 🕞 💯 😧 Layout Control Grid 🔍 🔍 VAV with Reheat                         |
|                | VAV with Reheat                                                       |
|                | Cooling Type: Chilled Water Heating Type: Hot Water                   |
|                | Time of Operation                                                     |
|                | HVAC Operation Schedule                                               |
|                | Always On<br>Discrete                                                 |
|                | Use Night Cycle                                                       |
|                | Follow the HVAC Operation Schedule                                    |
|                | Supply Air Temperature                                                |
| Ê.             | Supply air temperature is controlled by a scheduled setpoint manager. |
|                | Supply Air Temperature Schedule                                       |
| <u>ال</u> ركار | Deck_Temperati                                                        |
|                | Mechanical Ventilation                                                |
| 2              | Economizer No Economizer                                              |
| Ø              | Demand Controlled Ventilation off                                     |
|                | Availability Managers                                                 |
|                | Availability Managers from highest precedence to lowest               |
|                | Drag From Library                                                     |

# **SERVICE HOT WATER**





• Add a water heater tank to a plant loop:



• Add service hot water plant loop:



• Add a fixture:





• Add service hot water definition

|   | Loads                              |                                               | My Model Library Edit                      |
|---|------------------------------------|-----------------------------------------------|--------------------------------------------|
|   | People Definitions                 | Name:                                         | Ruleset Schedules 🛛 🚿                      |
|   | Lights Definitions                 | Water Fixture Definition End Use Subcategory: | Compact Schedules                          |
|   | Luminaire Definitions 🛛 🚿          | General Peak Flow Rate:                       | Constant Schedules                         |
|   | Electric Equipment                 | 1.000155 gal/min                              | Year Schedules 🛛 ┥                         |
| B | Gas Equipment<br>Definitions       | Target Temperature Schedule:                  | Fixed Interval Schedules 🛛 ┥               |
|   | Steam Equipment                    | Drag From Library                             | Variable Interval Schedules 🛛 ┥            |
|   | Other Equipment<br>Definitions     | Sensible Fraction Schedule:                   | Constructions                              |
|   | Internal Mass Definitions 🖪        | Drag From Library                             | Internal Source Constructions              |
| X | Water Use Equipment<br>Definitions | Latent Eraction Schedule:                     | C-factor Underground Wall<br>Constructions |
|   | Water Fixture Definition           |                                               | F-factor Ground Floor<br>Constructions     |
| 6 | •                                  | Drag From Library                             | Window Data File Constructions 🛛 🚿         |
|   | Drag From Library                  |                                               |                                            |

• DOE Reference Buildings

#### □ Section 5.1.6 Service Water Heater Demand

|                                | Use   | Rate  | Temp. at<br>Fixture |    |                                   |
|--------------------------------|-------|-------|---------------------|----|-----------------------------------|
| Space Type                     | gal/h | L/h   | ۴                   | °C | Data Sources                      |
| Guest room (small hotel)       | 1.75  | 6.6   | 110                 | 43 | Jiang et al. 2008, ASHRAE 2007    |
| Guest room (large hotel)       | 1.25  | 4.7   | 110                 | 43 | Jiang et al. 2008, ASHRAE 2007    |
| Laundry (small hotel)          | 67.5  | 255.5 | 140                 | 60 | Jiang et al. 2008, ASHRAE 2007    |
| Laundry (large hotel)          | 156.6 | 592.8 | 140                 | 60 | Jiang et al. 2008, ASHRAE 2007    |
| Restrooms (primary school)     | 56.5  | 214.0 | 110                 | 43 | ASHRAE 2007                       |
| Restrooms (secondary school)   | 104.4 | 395.0 | 110                 | 43 | ASHRAE 2007                       |
| Gym (secondary school)         | 189.5 | 717.2 | 110                 | 43 | ASHRAE 2007                       |
| Small office                   | 3.0   | 11.4  | 110                 | 43 | Jarnagin et al. 2006, ASHRAE 2007 |
| Medium office (per floor)      | 9.9   | 37.5  | 110                 | 43 | Jarnagin et al. 2006, ASHRAE 2007 |
| Large office (per floor)       | 21.3  | 80.6  | 110                 | 43 | Jarnagin et al. 2006, ASHRAE 2007 |
| Apartment                      | 3.5   | 13.2  | 110                 | 43 | Gowri et al. 2007                 |
| Outpatient healthcare          | 30.0  | 113.5 | 110                 | 43 | Doebber et al. 2009               |
| Hospital                       |       |       |                     |    |                                   |
| ER waiting room                | 1.0   | 3.8   | 120                 | 49 | Engineering judgment              |
| Operating/surgical cystoscopic | 2.0   | 7.6   | 120                 | 49 | Engineering judgment              |
| Laboratory                     | 2.0   | 7.6   | 120                 | 49 | Engineering judgment              |
| Patient room                   | 1.0   | 3.8   | 120                 | 49 | Engineering judgment              |

#### Table 11 Peak Service Hot Water Demand and Data Sources

- Make reasonable assumptions for the water heater temperature:
  - Most households require about 120 °F
  - Some manufacturers set water heater thermostats at 140 °F, which also slows mineral buildup and corrosion in your water heater and pipes
  - Water heated at 140 °F also poses a safety hazard (scalding)

- Make reasonable assumptions for the flow rates and sizes. For example, for residential units:
  - Small size: A 50 to 60-gallon storage tank is usually sufficient for 1 to 3 people
  - Medium size: A 80-gallon storage tank works well for 3 to 4 people
  - Large size: A large tank is appropriate for four to six people

• Service Hot Water



 Service Hot Water GE® Electric Water Heater Model #: SE50T12TAH Photo Not Available About This Product Related Products CAPACITY **Unit Capacity** 50 Gallons **FEATURES Fuel Type** Electric **Height Description** Tall

| POWER / RATINGS                   |            |  |  |  |  |  |  |
|-----------------------------------|------------|--|--|--|--|--|--|
| First Hour Delivery GPH           | 67.0 gal/h |  |  |  |  |  |  |
| Heating - Electric - Heater Watts | 5500       |  |  |  |  |  |  |
| Integrated Energy Factor          | 0.94       |  |  |  |  |  |  |
| Voltage (MAX)                     | 240.0 V    |  |  |  |  |  |  |

Spec

• You can use the OpenStudio measures:

|                                                                         | Online BCL                                                                                           |    |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----|
| 0                                                                       | Check                                                                                                | AI |
| Categories                                                              | Service Water Heating                                                                                | 8  |
| Equipment     People     HVAC                                           | Name: Set Water Heater Efficiency, Heat Loss, and Peak Water Flow Rate<br>Measure Type: ModelMeasure |    |
| Refrigeration     Service Water Heating     Water Use     Water Heating | Name: Set Site Water Mains Temperature<br>Measure Type: ModelMeasure                                 | Г  |
| Distribution     Onsite Power Generation     Whole Building             | Name: AedgK12Swh<br>Measure Type: ModelMeasure                                                       |    |
| <ul> <li>Economics</li> <li>              € Reporting      </li> </ul>  | Name: AedgOfficeSwh<br>Measure Type: ModelMeasure                                                    | V  |
|                                                                         | Name: ZEDG K12 SWH<br>Measure Type: ModelMeasure                                                     | V  |
|                                                                         | Name: Add SWH Loop<br>Measure Type: ModelMeasure                                                     |    |
|                                                                         | Name: Water Heater Mixed Multiplier<br>Measure Type: ModelMeasure                                    | Ξ. |
|                                                                         | Name: Water Heater Mixed Percent Change<br>Measure Type: ModelMeasure                                | Ξ. |
|                                                                         |                                                                                                      |    |
|                                                                         |                                                                                                      |    |

- You can use the OpenStudio measures:
  - First, use "Add SHW Loop"

| ▶ People              | ▲ Name                                        |
|-----------------------|-----------------------------------------------|
| ► HVAC                | Add SWH Loop                                  |
| Pofrigoration         | Description                                   |
| Reingeration          | Simply adds a SWH loop based on usual inputs. |
| Service Water Heating | 4                                             |
| ▶ Water Use           | Madeleo Desertation                           |
| ▼ Water Heating       | 4                                             |
| BCL Add SWH Loop      |                                               |
| BCL AedgK12Swh        |                                               |
| BCL AedgOfficeSwh     | System Name.                                  |
| BCL ZEDG K12 SWH      |                                               |
| Distribution          | Space Type.                                   |

Second, use "ZEDG K12 SHW"

| ople                | Name                                                                                                              |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| AC                  | ZEDG K12 SWH                                                                                                      |
| frigeration         | Description                                                                                                       |
| rvice Water Heating | 4 Use 90% efficient natural gas-fired storage tank<br>water heater. Water use demand is caluclated pe<br>student. |
| Water Use           | Modeler Description                                                                                               |
| Nater Heating       | 4                                                                                                                 |
| BCL Add SWH Loop    |                                                                                                                   |
| BCL AedgK12Swh      | linuts                                                                                                            |
| BCL AedgOfficeSwh   | Total Cost for Kitchen System (\$).                                                                               |
| BCL ZEDG K12 SWH    | 0                                                                                                                 |
| Di-A-lbAl           | Total Number of Students.                                                                                         |

# BASEBOARD

### Baseboard

- Follow the hot water loop from the HVAC templates
- Add a district heating or a boiler to the empty plant loop



• Add the convector and assign it to a loop

| HVAC Cooli<br>Systems Parame | ng<br>g<br>ters | Heating<br>Sizing C<br>Parameters | Custom                        |               |                   |                                |                                |                                  |
|------------------------------|-----------------|-----------------------------------|-------------------------------|---------------|-------------------|--------------------------------|--------------------------------|----------------------------------|
| Name                         | All             |                                   |                               |               |                   |                                |                                |                                  |
|                              |                 | Rendering Color                   | Turn On<br>Ideal<br>Air Loads | Air Loop Name | Zone Equipment    | Cooling Thermostat<br>Schedule | Heating Thermostat<br>Schedule | Humidifying Setpoint<br>Schedule |
|                              |                 |                                   | Apply to Selected             |               | Apply to Selected | Apply to Selected              | Apply to Selected              | Apply to Selected                |
| Thermal Zone 1               |                 |                                   | L                             |               | HW Baseboard      | LargeHotel ClgSetp             | LargeHotel Corridor Hts        |                                  |

### Baseboard

- Make sure all the components are in the loop
- Review the error messages for feedback



# OPENSTUDIO (HVAC SIZING)

• What does autosizing and hard sizing mean?



• You can find the autosize fields in advance:

```
Fan:VariableVolume,
 Supply Fan 1,
                                       !- Name
                                      !- Availability Schedule Name
  FanAvailSched.
                                                !- Fan Efficiency
  0.7,
                                              !- Pressure Rise {Pa}
  600.0.
  autosize,
                                           !- Maximum Flow Rate {m3/s}
                                           !- Minimum Flow Rate {m3/s}
  autosize,
 0.9.
                                                !- Motor Efficiency
 1.0.
                                                !- Motor In Airstream Fraction
                                        !- Fan Coefficient 1
  0.35071223.
                                        !- Fan Coefficient 2
  0.30850535,
                                        !- Fan Coefficient 3
  -0.54137364,
                                        !- Fan Coefficient 4
  0.87198823,
                                              !- Fan Coefficient 5
  0.000,
 Main Heating Coil 1 Outlet Node, !- Air Inlet Node Name
 VAV Sys 1 Outlet Node; !- Air Outlet Node Name
 FanPerformance:NightVentilation,
 Supply Fan 1,
                                       !- Fan Name
                                                !- Fan Total Efficiency
  0.7,
 67.0,
                                               !- Pressure Rise {Pa}
  autosize,
                                           !- Maximum Flow Rate {m3/s}
 0.9,
                                                !- Motor Efficiency
```

1.0;

!- Motor in Airstream Fraction

Approach 1:
 □ Find from EnergyPlus results



**Results Summary** EnergyPlus Results Reports: Table of Contents Top Annual Building Utility Performance Summary Input Verification and Results Summary Demand End Use Components Summary Source Energy End Use Components Summary Component Sizing Summary Surface Shadowing Summary Adaptive Comfort Summary Initialization Summary Climatic Data Summary Envelope Summary Shading Summary Lighting Summary Equipment Summary HVAC Sizing Summary Coil Sizing Details System Summary Outdoor Air Summary Object Count Summary Energy Meters Sensible Heat Gain Summary Standard 62.1 Summary LEED Summary

- Approach 2:
  - Open the EIO extension file

| Today                                                                      | Today                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| files  files  measures  out.osw  reports  run  stderr  stdout workflow.osw | <ul> <li>data_point_out.json</li> <li>data_point.zip</li> <li>eplusout.audit</li> <li>eplusout.bnd</li> <li>eplusout.end</li> <li>eplusout.err</li> <li>eplusout.err</li> <li>eplusout.eso</li> <li>eplusout.mdd</li> <li>eplusout.mdd</li> <li>eplusout.mdd</li> <li>eplusout.mdd</li> <li>eplusout.shd</li> <li>eplusout.shd</li> <li>eplusout.sql</li> </ul> |
|                                                                            | epiusssz.csv                                                                                                                                                                                                                                                                                                                                                    |

- Approach 2:
  - Find the autosize values

| 875 | I <system information="" sizing="">, System Name, Load Type, Peak Load Kind, User Design Capacity, Calc Des Air Flow Rate [m3/s], User Design</system> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Air Flow Rate [m3/s], Design Day Name, Date/Time of Peak                                                                                               |

- 876 System Sizing Information, WW WITH REHEAT, Cooling, Sensible, 3874937.65, 145.49122, 145.49122, MD\_COLLEGE—PARK ANN CLG 0.4% CONDNS DB⇒HCwB, 7/21 00:00:00
- 877 System Sizing Information, VAY WITH REHEAT, Heating, Sensible, 1095941.11, 44.72717, 44.72717, MD\_COLLEGE-PARK ANN HTG 99.6% CONDNS DB, 1/21 08:00:00
- 878 | < Component Sizing Information>, Component Type, Component Name, Input Field Description, Value
- 879 Component Sizing Information, AirTerminal:SingleDuct:VAV:Reheat, AIR TERMINAL SINGLE DUCT VAV REHEAT 2, Design Size Maximum Air Flow Rate [m3/s], 0.36239
- 888 Component Sizing Information, AirTerminal:SingleDuct:VAV:Reheat, AIR TERMINAL SINGLE DUCT VAV REHEAT 2, Design Size Constant Minimum Air Flow Fraction, 8.33684E-002
- 881 Component Sizing Information, AirTerminal:SingleDuct:VAM:Reheat, AIR TERMINAL SINGLE DUCT VAM REHEAT 2, User-Specified Constant Minimum Air Flow Fraction, 0.30000
- 882 Component Sizing Information, AirTerminal:SingleDuct:VAV:Reheat, AIR TERMINAL SINGLE DUCT VAV REHEAT 2, Design Size Minimum Air Flow Rate [m3/s], 0.10872
- 883 Component Sizing Information, AirTerminal:SingleDuct:VAV:Reheat, AIR TERMINAL SINGLE DUCT VAV REHEAT 2, Design Size Maximum Flow per Zone Floor Area during Reheat [m3/s-m2], 2.74205E-003
- 884 Component Sizing Information, AirTerminal:SingleDuct:VAV:Reheat, AIR TERMINAL SINGLE DUCT VAV REHEAT 2, Design Size Maximum Flow Fraction during Reheat [], 0.30000
- 885 Component Sizing Information, AirTerminal:SingleDuct:VAV:Reheat, AIR TERMINAL SINGLE DUCT VAV REHEAT 2, Design Size Maximum Reheat Water Flow Rate [m3/s], 6.54338E-005

• Hard size all components








| Thermal Zones  |          |     |                 |                   |                   |                           |                                |                                |                                  |                    | My Model Library Edit                   |  |
|----------------|----------|-----|-----------------|-------------------|-------------------|---------------------------|--------------------------------|--------------------------------|----------------------------------|--------------------|-----------------------------------------|--|
| HVAC           | Cooling  | I   | Heating         | Custom            |                   |                           |                                |                                |                                  | ^                  | * 🖦 🛛                                   |  |
| Systems        | Paramete | rs  | Parameters      | Custom            |                   |                           |                                |                                |                                  |                    | 05:AirTerminal:SingleDuct:VAV:Reheat    |  |
| Name           | 2        | All |                 |                   |                   |                           |                                |                                |                                  |                    | Name                                    |  |
|                |          |     | Rendering Color | Turn On<br>Ideal  | Air Loop Name     | Zone Equipment            | Cooling Thermostat<br>Schedule | Heating Thermostat<br>Schedule | Humidifying Setpoint<br>Schedule | Dehumidify<br>Sche | Air Terminal Single Duct VAV Reheat 60  |  |
|                |          |     |                 | Air Lodus         |                   | Apply to Selected         | Apply to Colocted              | Apply to Colocted              | Apply to Calacted                | Apply to           | Availability Schedule Name              |  |
|                |          |     |                 | Apply to selected |                   | Apply to selected         | Apply to selected              | Apply to selected              | Apply to selected                | Apply to           | Always On Discrete                      |  |
|                |          |     |                 |                   | VAV with Reheat 1 | HW Baseboard              | <b>.</b>                       |                                |                                  |                    | Air Inlet Node Name                     |  |
| Thermal Zone 1 |          |     |                 |                   |                   | Single Duct VAV Reheat 60 | edium Office ClgSetp           | Medium Office HtgSetp          | L                                |                    | {1ca7d805-4099-4d6b-877c-ced44a01dba    |  |
|                |          |     |                 |                   |                   | ()                        | **                             |                                |                                  |                    | Maximum Air Flow Rate                   |  |
|                |          |     |                 |                   | VAV with Reheat 1 | HW Baseboard 67           |                                |                                |                                  |                    | O Hard Sized                            |  |
| Thermal Zone 1 | .0       |     |                 |                   |                   | Single Duct VAV Reheat 61 | Medium Office ClgSetp          | [Medium Office HtgSetp]        | []                               | <u>_</u>           | Autosize                                |  |
|                |          |     |                 |                   |                   | []                        |                                |                                |                                  |                    | Zone Minimum Air Flow Input Method      |  |
|                |          |     |                 |                   |                   |                           |                                |                                |                                  |                    | Constant                                |  |
|                |          |     |                 |                   | VAV with Reheat 1 | HW Baseboard 54           |                                |                                |                                  | d                  | Constant Minimum Air Flow Fraction      |  |
| Thermal Zone 1 | .1       |     |                 |                   |                   | Single Duct VAV Reheat 62 | Medium Office Cigsetp ;        | Medium Office Htgsetp ;        |                                  |                    | Hard Sized     0.299999999999999999     |  |
|                |          |     |                 |                   |                   | L                         |                                |                                |                                  |                    | Autosize                                |  |
|                |          |     |                 |                   | VAV with Reheat 1 | HW Baseboard 57           |                                |                                |                                  |                    | Fixed Minimum Air Flow Rate             |  |
| Thermal Zone 1 | 2        |     |                 |                   |                   | Single Duct VAV Reheat 63 | Medium Office ClgSetp          | Medium Office HtgSetp          |                                  |                    | Autosized Autosize                      |  |
|                |          |     |                 |                   |                   |                           |                                |                                |                                  |                    | Minimum Air Flow Fraction Schedule Name |  |
|                |          |     |                 |                   | Max with Deback 4 | HW Baseboard 63           |                                |                                |                                  | · · · · ·          |                                         |  |
| Thermal Zone 1 | 3        |     |                 |                   | VAV with Reheat 1 | Single Duct VAV Reheat 64 | Medium Office ClqSetp          | Medium Office HtgSetp          | C)                               | C                  | Pahaat Coil Name                        |  |
|                |          |     |                 |                   |                   | ()                        | C                              | ,                              | C                                | C                  | Coil Heating Water 62                   |  |
|                |          |     |                 |                   |                   |                           |                                |                                |                                  | ~                  | Maximum Hat Water or Steam Flow B. 1    |  |
| <              |          | _   | _               | _                 |                   |                           | _                              | _                              |                                  | >                  | Hard Sized                              |  |
| 1 🕀 😣 🕻        | 3        |     |                 |                   |                   |                           |                                |                                |                                  | 3                  |                                         |  |

# **BUILDING RETROFIT EEMS**

- Window replacement in AM Hall:
  - Remove the old windows
  - Build a temp wall within the spaces approximately 10-12 inch off the window/brick wall







• Window replacement in AM Hall:





• We looked at the new window installed on campus



• We looked at lighting EEMs

![](_page_45_Picture_2.jpeg)

You can find the datasheet

### **LED InstantFit Lamps**

#### 12T8/48-5000 IF 10/1

Philips LED T8 InstantFit Lamps are an ideal energy saving choice for existing linear fluorescent fixtures.

#### **Product data**

| General Information                  |                                  | Power Factor (Nom)  |
|--------------------------------------|----------------------------------|---------------------|
| Cap-Base                             | G13 [ Medium Bi-Pin Fluorescent] | Voltage (Nom)       |
| Main Application                     | Industrial                       |                     |
| Nominal Lifetime (Nom)               | 50000 h                          | Temperature         |
| Switching Cycle                      | 50000X                           | T-Ambient (Max)     |
| B50L70                               | 50000 h                          | T-Ambient (Min)     |
|                                      |                                  | T-Storage (Max)     |
| Light Technical                      |                                  | T-Storage (Min)     |
| Color Code                           | 850 [ CCT of 5000K]              | T-Case Maximum (N   |
| Beam Angle (Nom)                     | 160 °                            |                     |
| Luminous Flux (Nom)                  | 1650 lm                          | Controls and Dim    |
| Luminous Flux (Rated) (Nom)          | 1650 lm                          | Dimmable            |
| Rated Beam Angle                     | 160 °                            |                     |
| Correlated Color Temperature (Nom)   | 5000 K                           | Mechanical and H    |
| Color Consistency                    | <5                               | Product Length      |
| Color Rendering Index (Nom)          | 82                               |                     |
| LLMF At End Of Nominal Lifetime (Nor | n) 70 %                          | Approval and App    |
|                                      |                                  | Energy Saving Produ |
| Operating and Electrical             |                                  | Approval Marks      |
| Input Frequency                      | 50 to 60 Hz                      |                     |
| Power (Rated) (Nom)                  | 12 W                             | Energy Consumption  |
| Lamp Current (Max)                   | 150 mA                           |                     |
| Lamp Current (Min)                   | 60 mA                            | Product Data        |
| Starting Time (Nom)                  | 0.5 s                            | Order product name  |
| Warm Up Time to 60% Light (Nom)      | 0.1 s                            | EAN/UPC - Product   |
|                                      |                                  |                     |

| Power Factor (Nom)            | 0.9                                     |
|-------------------------------|-----------------------------------------|
| Voltage (Nom)                 | 120-277 V                               |
| Temperature                   |                                         |
| T-Ambient (Max)               | 45 °C                                   |
| T-Ambient (Min)               | -20 ℃                                   |
| T-Storage (Max)               | 65 ℃                                    |
| T-Storage (Min)               | -40 °C                                  |
| T-Case Maximum (Nom)          | 40 °C                                   |
| Controls and Dimming          |                                         |
| Dimmable                      | No                                      |
| Mechanical and Housing        |                                         |
| Product Length                | 1200 mm                                 |
| Approval and Application      |                                         |
| Energy Saving Product         | Yes                                     |
| Approval Marks                | UL certificate RoHS compliance KEMA Keu |
|                               | certificate DLC compliance              |
| Energy Consumption kWh/1000 h | 14.5 kWh                                |
| Product Data                  |                                         |
| Order product name            | 12T8/48-5000 IF 10/1                    |

046677453619

• You need to develop your building retrofit path:

![](_page_47_Figure_2.jpeg)

## **CLASS ACTIVITY**

### **Class Activity**

- Spend 30 to 40 minutes to propose a few EEMs
  - □ Enclosure
  - □ Window
  - □ Lighting
  - Plug load
- Complete this table:
  - https://docs.google.com/spreadsheets/d/14sF09IPNmiycBBCkLjfJTH g9MfXONQ8RqfUBOE0EaSE/edit#gid=1145246215

# ADVANCED ENERGY RETROFIT GUIDE

ENERGY.GOV

Office o **ENERGY EFFICIENCY & RENEWABLE** ENERGY

ABOUT

EERE

INITIATIVES

ENERGY RESOURCES EFFICIENCY

Newsroom

SUSTAINABLE

TRANSPORTATION

Q Search Energy.gov

BUILDINGS ×

### Advanced Energy Retrofit Guides

Buildings

#### Buildings » Commercial Buildings » Design & Decision Support Guides » Advanced Energy Retrofit Guides

The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process,

![](_page_51_Picture_13.jpeg)

Leadership Energy.gov Offices National Labs

RENEWABLE

ENERGY

The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy-efficiency upgrades in commercial buildings.

### https://www.energy.gov/eere/buildings/advanced-energy-retrofit-guides

• For example, for K-12:

|                                      | ()                | 命                  | School                           | 55 P                        | 1                           | Ś                            |
|--------------------------------------|-------------------|--------------------|----------------------------------|-----------------------------|-----------------------------|------------------------------|
|                                      | Energy<br>Manager | Custodial<br>Staff | Board or<br>Financial<br>Manager | Teachers<br>and<br>Students | Community<br>and<br>Parents | Utilities<br>and<br>Auditors |
| 1 Introduction                       |                   |                    |                                  |                             | •                           |                              |
| 2 Overview: Plan, Execute, Follow Up | ٠                 |                    | •                                |                             |                             |                              |
| 3 Existing Building Commissioning    | ٠                 | ٠                  |                                  | •                           |                             | ٠                            |
| 4 Building Retrofits                 | •                 |                    | •                                |                             |                             |                              |
| 5 Measurement and Verification       |                   |                    |                                  |                             |                             |                              |
| 6 Operations and Maintenance         | •                 | •                  |                                  |                             |                             |                              |
| 7 Conclusion                         | •                 | •                  | •                                |                             | •                           |                              |

• For example, for K-12:

![](_page_53_Figure_2.jpeg)

### • For example, for K-12:

#### Case Study 1: Vigo County School Corporation

#### **Quick Facts**

- Facility Name: Vigo County School Corporation
- Facility Type: K-12 Schools
- Location: Terre Haute, Indiana
- Number of Buildings: 29

#### **Project Description**

The Vigo County School Corporation (VCSC) in Terre Haute, Indiana, and under the leadership of Superintendent Daniel Tanoos, partnered with Energy Systems Group to develop and implement comprehensive energy savings performance contracts. VCSC is made up of 3 high schools, 2 alternative schools, 6 middle schools, and 18 elementary schools.

In 1999, VCSC decided to take control over rising operating costs with an assessment of its utility costs, which at the time averaged \$0.845/ft<sup>2</sup>. This was compared to other Indiana school facilities that had installed energy retrofits resulting in energy costs as low as \$0.65/ft<sup>2</sup>. Of the 19 VCSC schools surveyed, 9 were operating at more than \$0.90/ft<sup>2</sup>.

In 2000, VCSC and Energy Systems Group entered into an initial agreement to provide energy-related upgrades at 20 of its facilities. This initial project resulted in a

![](_page_54_Picture_12.jpeg)

guaranteed cost reduction of more than \$1 million per year over the term of the agreement. To date, Energy Systems Group has met its savings guarantee.

VCSC has implemented more than \$29 million in comprehensive energy improvements and renovation projects in six phases which are estimated to save close to \$35 million over the terms of the contracts.

#### **Environmental Benefits**

- Removes emissions equivalent to more than 5,200 passenger vehicles per year.
- Creates enough electricity to provide power for more than 3,800 homes per year.
- 3. Planting more than 6,500 acres of forests annually.

| • | For exa | imple, | for | K-12: |
|---|---------|--------|-----|-------|
|---|---------|--------|-----|-------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                        | Key I              | EEMs:                                     |                     |                                                     |                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------|--------------------|-------------------------------------------|---------------------|-----------------------------------------------------|-------------------------|--|
| <ul> <li>Comprehensive HVAC improvements and replacements</li> <li>Lighting systems redesigns and retrofits</li> <li>First school in Indiana to be 100% retrofitted with light-<br/>emitting diodes (LEDs)</li> <li>Electrical system upgrades</li> <li>District-wide EMS</li> <li>Window replacements</li> <li>Hot water pump replacements</li> <li>1.5-kW wind turbine with curriculum for science<br/>students</li> <li>High school pool improvements.</li> </ul> |  |                                        |                    |                                           |                     |                                                     |                         |  |
| Installation Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  | M&V Costs                              | Total Cos<br>Incer | t Without<br>ntives                       | Financial Incentive |                                                     | Actual Project Costs    |  |
| \$29,922,466                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | \$75,477                               | \$29,9             | 77,943                                    | \$60,000            |                                                     | \$29,862,466            |  |
| Energy \$ Savings                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | O&M \$ Sav                             | ings               | Capital C                                 | Cost Avoidance      | То                                                  | Total Annual \$ Savings |  |
| \$592,321/year                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | \$1,395,838/year                       |                    | \$1,206,457/year                          |                     | \$3,194,616                                         |                         |  |
| Energy Cost Intensity<br>Pre-Retrofit                                                                                                                                                                                                                                                                                                                                                                                                                                |  | Energy Cost Intensity<br>Post-Retrofit |                    | Energy Cost Intensity<br>ASHRAE 90.1-2004 |                     | Simple Payback<br>(years)<br>(Excluding Incentives) |                         |  |
| \$0.84/ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | \$0.70/f                               | t²                 | \$1.40/ft <sup>2</sup>                    |                     | 9.3 (9.4)                                           |                         |  |

• For example, for K-12:

|               |                                                                                                                                |               | App     | olicable | to:  |           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|---------|----------|------|-----------|
| System        | EEM Description                                                                                                                | Hot-<br>Humid | Hot Dry | Marine   | Cold | Very Cold |
|               | Replace incandescent lamps in exit signs with LEDs                                                                             | ~             | 1       | 1        | 1    | ~         |
|               | Replace T12 fluorescent lamps and magnetic<br>ballasts with high- efficiency T8 lamps and<br>instant-start electronic ballasts | 1             | 1       | 1        | 1    | 1         |
|               | Replace incandescent lamps with compact<br>fluorescent lamps (CFLs)                                                            | ~             | 1       | 1        | 1    | 1         |
| Lighting      | Install wireless motion sensors for lighting in rooms that are used intermittently                                             | 1             | 1       | 1        | 1    | 1         |
|               | Install photosensors and dimming ballasts<br>to dim lights when daylighting is sufficient                                      | ~             | 1       | 1        | 1    | 1         |
|               | Replace high intensity discharge (HID) lights<br>with T5 high- output (HO) fluorescents in<br>gymnasiums                       | 1             | 1       | 1        | 1    | 1         |
|               | Install more efficient exterior lighting for<br>façades and parking lot                                                        | 1             | 1       | 1        | 1    | 1         |
| Plug and      | Replace cafeteria appliances with ENERGY<br>STAR models                                                                        | 1             | 1       | 1        | 1    | 1         |
| process loads | Install VSD demand control for kitchen hood<br>exhaust fans                                                                    | 1             | 1       | 1        | 1    | 1         |

• For example, for K-12:

| System                   | EEM Description                                                                                                                                          | Hot-<br>Humid | Hot Dry | Marine | Cold | Very Cold |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|--------|------|-----------|--|--|
| Envelope                 | Add reflective roof covering                                                                                                                             | 1             | 1       |        | 1    |           |  |  |
| Service water<br>heating | Install low-flow showerheads in locker<br>rooms                                                                                                          | 1             | 1       | 1      | 1    | 1         |  |  |
|                          | Add evaporative precooling of condenser<br>supply air                                                                                                    |               | 1       |        |      |           |  |  |
|                          | Add a small condensing boiler to handle the<br>base load and summer load, with current<br>inefficient boiler operating when heating<br>loads are highest | 1             | 1       | 1      | 1    | 1         |  |  |
|                          | Install VSDs on chilled-water and hot water<br>pumps                                                                                                     |               | 1       | 1      | 1    | 1         |  |  |
| HVAC Heating             | Replace standard furnace with a high-<br>efficiency condensing furnace                                                                                   | ~             | 1       | 1      | 1    | 1         |  |  |
| and cooling              | Install an EMS and replace pneumatic<br>controls with direct digital controls (DDCs)                                                                     | 1             | 1       | 1      | 1    | 1         |  |  |
|                          | Replace oversized, inefficient fans and<br>motors with rightsized National Electric<br>Manufacturers Association (NEMA) premium<br>efficiency models     | ~             | 1       | 1      | ~    | 1         |  |  |
|                          | Convert CV or dual-duct air handling system<br>to variable air volume (VAV) (add dampers,<br>VSD fan motors)                                             | 1             | 1       | 1      | 1    | 1         |  |  |
|                          | Install VSDs on cooling tower fans                                                                                                                       | 1             | 1       | 1      | 1    | ~         |  |  |
|                          | Install a dry-bulb airside economizer                                                                                                                    | 1             | 1       | 1      | 1    | 1         |  |  |
| HVAC<br>Ventilation      | Upgrade to DCV to reduce OA flow during<br>partial occupancy                                                                                             | 1             | 1       | 1      | 1    | 1         |  |  |
| ventilation              | Add heat/energy recovery to the ventilation system                                                                                                       | 1             | 1       | 1      | 1    | ✓ 58      |  |  |

Applicable to:

• For example, for K-12:

| Table E-2 Rec | commended Temperatur | e Setbacks and | Setups for U.S | . Climate Zones |
|---------------|----------------------|----------------|----------------|-----------------|
|---------------|----------------------|----------------|----------------|-----------------|

|              | Massive                 | Building              | Metal Building          |                       |  |
|--------------|-------------------------|-----------------------|-------------------------|-----------------------|--|
| Climate Zone | Heating<br>Setback (°F) | Cooling<br>Setup (°F) | Heating<br>Setback (°F) | Cooling<br>Setup (°F) |  |
| 1A           | 4.3                     | 10.4                  | 4.1                     | 7.7                   |  |
| 2A           | 9.4                     | 13.9                  | 10.1                    | 11.2                  |  |
| 3A           | 9.4                     | 13.1                  | 13.3                    | 12.9                  |  |
| 4A           | 19.4                    | 16.4                  | 20.7                    | 15.3                  |  |
| 5A           | 18                      | 10.8                  | 22.1                    | 13.5                  |  |
| 6A           | 20.5                    | 10.4                  | 23.9                    | 12.7                  |  |
| 2B           | 9.7                     | 20.5                  | 8.6                     | 15.5                  |  |
| 3B           | 7.9                     | 14.2                  | 12.1                    | 13.5                  |  |
| 4B           | 20.7                    | 16.5                  | 21.9                    | 15.8                  |  |
| 5B           | 19.4                    | 10.6                  | 22.1                    | 12.1                  |  |
| 6B           | 19.4                    | 10.3                  | 22.3                    | 12.1                  |  |
| 7            | 20.7                    | 8.8                   | 6.3                     | 11.5                  |  |
| 8            | 22.3                    | 5                     | 23                      | 7.9                   |  |

## PAYBACK PERIOD EXAMPLES

• An example of short payback period in Dayton Ohio:

|               | AR<br>No. | Description                                                  | Payback (yrs) |
|---------------|-----------|--------------------------------------------------------------|---------------|
| ting          | 1         | Replace Metal Halide Lamps with<br>T-8 Flourescent Fixtures  | 2.3           |
| Ligh          | 2         | Install Photosensor Controls to<br>Utilize Daylight          | 0.6           |
| ce<br>oning   | 3         | Install Programable Thermostat in the Office                 | 0.2           |
| Spc<br>Condit | 4         | Adjust the Year Round Thermostat<br>Set Points in the Office | 0.2           |
| l Air         | 5         | Reduce Overall Pressure in<br>Compressed Air System          | 0.2           |
| Compressed    | 6         | Reduce Leaks in Compressed Air<br>System                     | 1.1           |
|               | 7         | Eliminate use of Air Motors on Pipe<br>Turners               | 1.0           |

|               | AR<br>No. | Description                                        | Cost-Benefit<br>Analysis<br>Results | Simple<br>Payback (yrs) |
|---------------|-----------|----------------------------------------------------|-------------------------------------|-------------------------|
| Lighting      | 1         | Replace 8' T-12 Bulbs with 8' T-8<br>Bulbs         | 1.085                               | 3.6                     |
|               | 2         | Install Photo Sensor Controls                      | 0.525                               | 2.0                     |
| Comp<br>Air   | 3         | Lower Air Compressor Discharge<br>Pressure         | 0.093                               | 0.3                     |
| ioning        | 4         | Install Programmable Thermostats                   | 0.128                               | 0.4                     |
| Spi<br>Condit | 5         | Increase Air Conditioning<br>Thermostat Set Points | 0.012                               | 0.0                     |
| Other Rec.    |           | Replace 4' T-12 Lamps with 4' T-8<br>Lamps         | 1.881                               | 4.9                     |

- Building: Liberty Tower (Dayton, Ohio)
   85-year-old
   114,000 ft<sup>2</sup>
- Three energy efficiency measures are:
  - □ Steam boiler replaced with vertical fire tube boilers
  - □ Replace interior and exterior with LEDs
  - Building control upgrade

![](_page_61_Picture_6.jpeg)

- Building: Liberty Tower (Dayton, Ohio)
  LEDs consume 60% less energy
  Add controls to dim or turn off the lights
  LED lights fail in a different way, so control may be an important
  - factor in the light selection

- Building: Liberty Tower (Dayton, Ohio)
   Total cost: \$870,000
   Annual utility cost savings \$99,000
  - □ Payback period:

 $Payback = \frac{870,000}{99,000} = 8.8 \ years$ 

The project has received \$70,000 in utility rebates, making the economic case more practical

$$Payback = \frac{(870,000 - 70,000)}{99,000} = 7.8 \ years$$

- Long payback period for building envelopes:
   It is hard to do a building envelope retrofit since owners only 60% of the commercial floorspaces
  - They do not have a good payback period
  - Usually there are different motivations to conduct a building envelope retrofit

| EEM                              | Cost / Unit                        | Cost          | Source                                                                                        |  |  |  |
|----------------------------------|------------------------------------|---------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Occupancy Sensors                | \$1.06/ft <sup>2</sup>             | \$<br>44,991  | RSMeans, "5 fixtures per 1000 S.F., including occupancy and time switching"                   |  |  |  |
| Condensing Boiler                | \$20,706 +<br>\$13.82/MBH          | \$<br>31,401  | RSMeans, commercial gas boilers                                                               |  |  |  |
| Light Power Density<br>Reduction | \$4.78/ft <sup>2</sup>             | \$<br>202,886 | RSMeans, "Fluorescent high-bay 4 lamp fixture,<br>1W/sf,59FC, 4 fixtures per 1000 S.F."       |  |  |  |
| Condensing Unit<br>Replacement   | \$7,909 +<br>\$766/ton             | \$<br>132,687 | RSMeans, packaged air-cooled refrigerant compressor and condensor                             |  |  |  |
| Window Film                      | \$18.93/ft <sup>2</sup><br>glazing | \$<br>182,311 | RSMeans, "Solar Films on Glass" average of min/max value                                      |  |  |  |
| Wall Insulation                  | \$4.78/ft <sup>2</sup> wall area   | \$<br>927,930 | RSMeans, "4 in. EPS insulation, Commercial renovation Exterior Insulation and Finish System", |  |  |  |

| Energy Efficiency Measures         | Simple Payback |  |  |  |  |
|------------------------------------|----------------|--|--|--|--|
| Condensing Boiler                  | 9.4            |  |  |  |  |
| Occupancy Sensors                  | 10.4           |  |  |  |  |
| Light Power Density Reduction      | 32.4           |  |  |  |  |
| <b>Condensing Unit Replacement</b> | 41.2           |  |  |  |  |
| Window Film                        | 70.7           |  |  |  |  |
| Wall Insulation                    | 247.0          |  |  |  |  |

## **CLASS ACTIVITY**

### **Class Activity**

- Spend 30 to 40 minutes to propose different retrofit paths:
  - Staging
  - EBCx
  - Lowest cost
  - □ Lowest energy

  - Decarbonization
- Complete this table:
  - https://docs.google.com/spreadsheets/d/14sF09IPNmiycBBCkLjfJTH g9MfXONQ8RqfUBOE0EaSE/edit#gid=199962998

# **OPENSTUDIO MEASURES**

### **OpenStudio Measures**

![](_page_70_Figure_1.jpeg)

PAT removes the need to hand edit each model to try out different architectures, energy efficiency measures, and mechanical systems. PAT applies scripts to your baseline model and lets you quickly compare many alternatives. OpenStudio has developed a workflow that allows energy modelers to create and run a customized parametric analysis using commercially available cloud computing services. This workflow will enable anyone to perform powerful parametric studies in a reasonable time for a relatively low cost.

### **Creating a Project**

The Parametric Analysis Tool Quick Start Guide (PDF) provides an introduction to the interface and workflow for creating multiple design alternatives from a seed model.

When you first open PAT you will see the screen below. It shows the workflow:

- 1. Organize and edit measures for project
- 2. Select measures and create design alternatives
- 3. Run simulations
- 4. Create and view reports

![](_page_70_Picture_10.jpeg)

#### Creating a Project

Loading a Baseline Model

Organize and Edit Measures for Project

Select Measures and Create Design Alternatives

Run Simulations

Create and View Reports

Running on the Cloud

Viewing Results

Publications

Back to OpenStudio®

### **OpenStudio Measures**

| 05                                                                      | NRELOper<br>3,278 subscriber | nStudio<br><sup>°</sup>                            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | S    | SUBSCRIBED 3.2K                             | ٠            |
|-------------------------------------------------------------------------|------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|---------------------------------------------|--------------|
| HOME                                                                    | VIDEOS                       | PLAYLISTS                                          | COMMUNITY                                                               | CHANNELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ABOUT                              | Q    |                                             |              |
| Uploads 👻 PLA                                                           | Y ALL                        |                                                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |      |                                             | SORT BY      |
|                                                                         |                              | Americal Haldings Research<br>Software Development | Commercial Buildings Research<br>and Software Development<br>OpenStudio | Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Transformer<br>Trans |                                    | 7:48 |                                             |              |
| Baseline Model Auto                                                     | mation Creat<br>Build        | e DOE Prototype<br>ing - OpenStudio 1.11.1         | Writing Custom O<br>Reporting Measur                                    | penStudio Open<br>es Featu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Studio 1.9.0 New<br>res (View Data |      | OpenStudio 1.9.0 N<br>Features (Facility, S | ew<br>paces, |
| Commercial Buildings Research<br>and Software Development<br>OpenStudio | 1.5K \                       | views • 2 years ago                                | 959 views • 2 years                                                     | ago 6K vie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ws • 3 years ago                   |      | 8.8K views • 3 years                        | ago          |

### How many of you have watched any videos related to OpenStudio?

https://www.youtube.com/user/NRELOpenStudio/videos
## **OpenStudio Measures**

- Useful links:
  - https://www.youtube.com/watch?v=3rmElK\_OB28
  - https://www.youtube.com/watch?v=4g5nJzDoh58
  - https://www.youtube.com/watch?v=9WgUhiJ785I
  - <u>https://www.youtube.com/watch?v=0IINfGNe5x0</u>

## **OpenStudio Measures**

• You can also use the OpenStudio App

| • •      | zone_hvac2.osm                                               |                             |
|----------|--------------------------------------------------------------|-----------------------------|
|          | Measures                                                     | Library Edit                |
|          | V 🔰 OpenStudio Measures                                      |                             |
|          | Drop Measure From Library to Create a New Always Run Measure |                             |
|          | ▼ 🥙 EnergyPlus Measures                                      |                             |
|          | Drop Measure From Library to Create a New Always Run Measure |                             |
| B        | Reporting Measures                                           |                             |
|          | Drop Measure From Library to Create a New Always Run Measure |                             |
| ſ.       |                                                              |                             |
|          |                                                              |                             |
|          |                                                              | Select a Measure to<br>Edit |
|          |                                                              | In VILV                     |
| X        |                                                              |                             |
| <b>E</b> |                                                              |                             |
| 1        |                                                              |                             |