CAE 465/526 Building Energy Conservation Technologies Fall 2022

September 21, 2022 OpenStudio and Advanced HVAC Systems

Built Environment Research @ IIT] 🗫 🕣 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcements

Mechanical Design Advise Professional Networking

SPEAKER

Mechanical Designer Aaron Horta

WHEN

September 22nd, 2022 12:40pm – 1:40pm

WHERE

John T. Rettaliata Engineering Center, RE 124

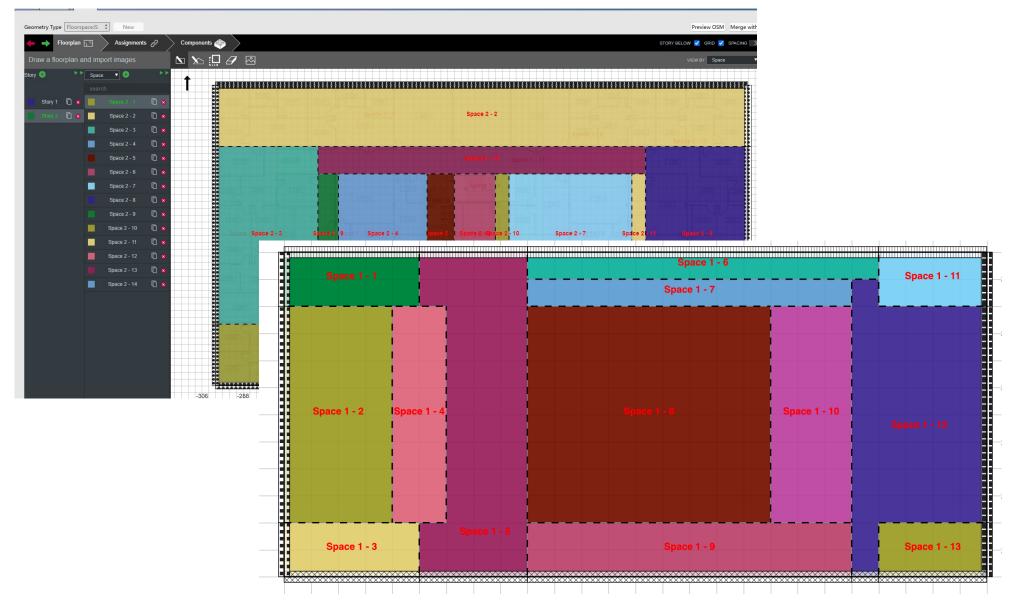
TALK ABOUT

- ✓ Work Experiences
- ✓ Mechanical Design
- ✓ Tips & IIT Courses

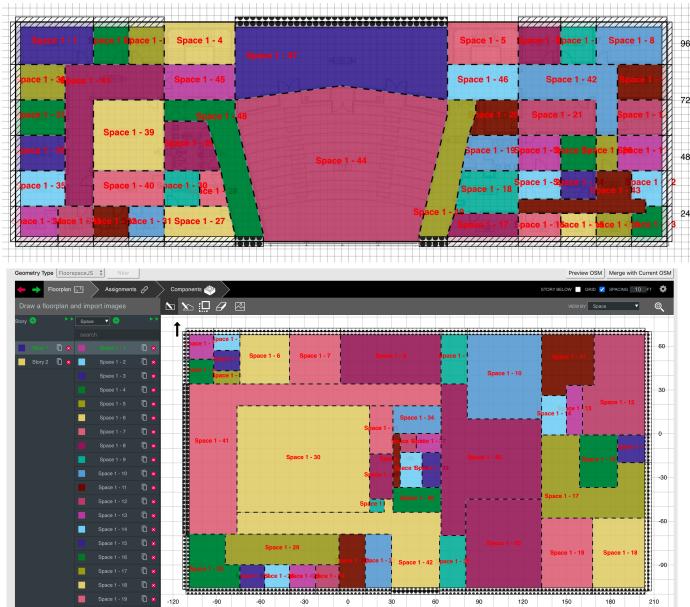
For more information, feel free to contact ASHRAE official email ashrae_iit@iit.edu

Lunch will be provided!

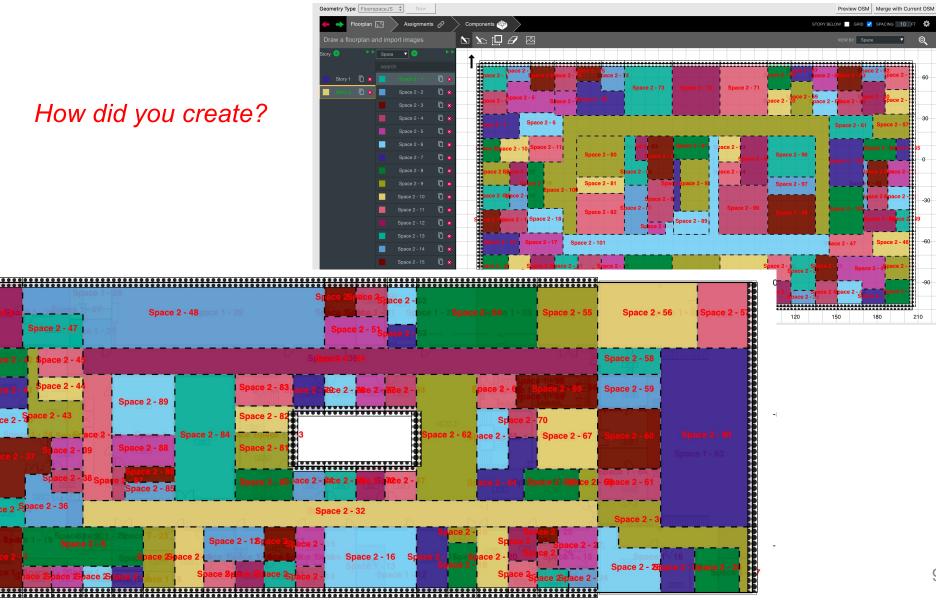
Announcements


• Assignment 3 is due tonight

ASSIGNMENT FEEDBACK


 Use the right construction set (e.g., "189.1-2009-cz5-office" is not the right construction set for our climate)

File Preferences Components & Measures Help							
Constructions Construction Set	S Constructions Mat	erials					
Image: 189.1-2009 - CZ5 - Office Image: 189.1-2009 - CZ5 - Office 1 Image: 189.1-2009 - CZ5 - Office 1 Image: 189.1-2009 - CZ5 - Office 2	Name 189.1-2009 - CZ5 - Office Exterior Surface Construction Walls ASHRAE 189.1-2009 ExtWall	Floors ExtSlabCarp 4in ClimateZone	Roofs ASHRAE 189.1-2009 & ExtRoof				
	Interior Surface Constructio Walls	Floors	Ceilings				
	Ground Contact Surface Constructions						
× 3	Walls ExtSlabCarp 4in ClimateZone	Floors ExtSlabCarp 4in ClimateZone	Ceilings ExtSlabCarp 4in ClimateZone				

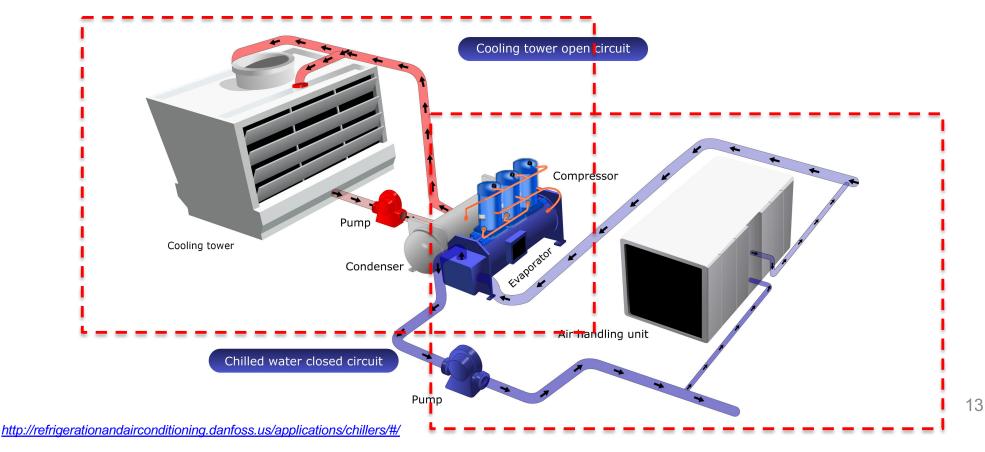

• Simplifications should be reasonable (not too simplified):

• Simplifications should be reasonable:

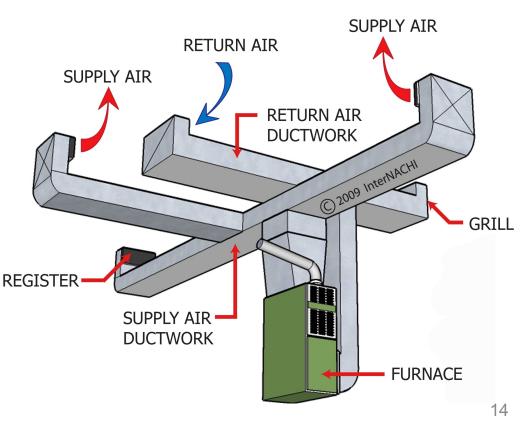
• Simplifications should be reasonable:

• Be careful of the space types and schedule rulesets:

••	🖥 HW 2 Minyoung Kim.osm							
<u>F</u> ile <u>P</u>	e Preferences Components & Measures Help							
	Space Types							
	Drop Space Type	Gei	neral Loads Measur Tags	e Custom				_
	Filter: Load Type							
	Show all loads		*					
	Space Type Name	All	Rendering Color	Default Construction Set	Default Schedule Set	Design Specification	Space Infiltration Design	Space Infiltration Effective
			Rendering Color	Delaut Construction Set	Delaur Schedule Ser	Outdoor Air	Flow Rates	Leakage Areas
				Apply to Selected	Apply to Selected	Apply to Selected	Apply to Selected	Apply to Selected
	ice - ClosedOffice - CZ4-8			DOE Ref Pre-1980 - Off	189.1-2009 - Office - C	189.1-2009 - Office - C	dOffice - CZ4-8 Infiltration	
							iorridor - CZ4-8 Infiltration	
	- Office - Corridor - CZ4-8			DOE Ref Pre-1980 - Off	189.1-2009 - Office - C	189.1-2009 - Office - C		
× ~ ~ ~	Office - IT_Room - CZ4-8			DOE Ref Pre-1980 - Off	189.1-2009 - Office - IT	189.1-2009 - Office - IT	CCCC Room - CZ4-8 Infiltration	
6	9 - Office - Lobby - CZ4-8		-	DOE Ref Pre-1980 - Off	189.1-2009 - Office - Li	189.1-2009 - Office - Li	CZ4-8 Infiltration	
	Office - Restroom - CZ4-8			DOE Ref Pre-1980 - Off	189.1-2009 - Office - R	189.1-2009 - Office - R	stroom - CZ4-8 Infiltration	
	09 - Office - Stair - CZ4-8			DOE Ref Pre-1980 - Off	189.1-2009 - Office - S	189.1-2009 - Office - S	- Stair - CZ4-8 Infiltration	


BUILDING MECHANICAL SYSTEMS

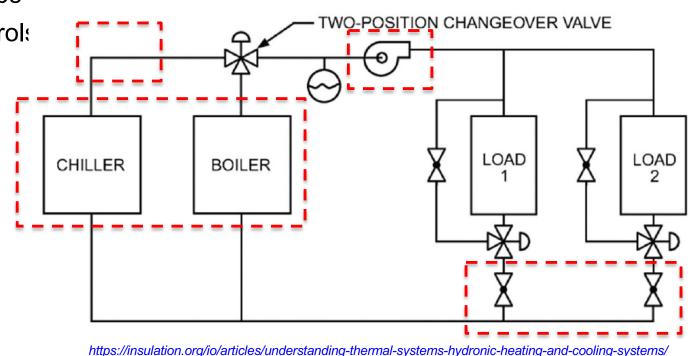
- Purpose of building mechanical systems is to control indoor air parameters within required:
 - Thermal comfort
 - □ Indoor air quality


- To achieve required indoor air parameters, the system needs to conduct the following heat transfer processes:
 - Heat

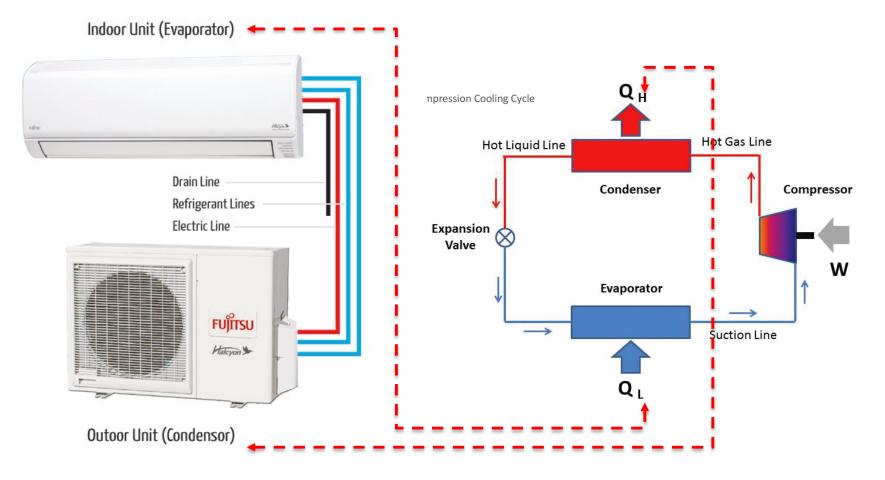
 - Humidify
 - Dehumidify
 - Filter outdoor air

- HVAC system consists of four main parts:
 - Primary systems or central plant
 - Distribution system
 - Terminal devices
 - Controls

- Air distribution systems include air handlers, ductwork, and associated components for heating, ventilating, and air-conditioning buildings
 - □ Air distribution components:
 - Air distribution devices
 - Ductwork
 - Dampers
 - Fans
 - Controls



AIR DISTRIBUTION SYSTEM


• Do we use this system at IIT?

- Hydronics refers to systems focused on heating or cooling with water:
 - □ Steam or chiller water systems
 - Boiler or chiller
 - Piping
 - Valves
 - Pumps
 - Control:

 Refrigeration refers to the process of removing heat from a low-temperature reservoir and transferring it to a hightemperature reservoir.

- HVAC systems categories in terms of their distribution are:
 - Unitary
 - Local systems
 - Each room has an HVAC system
 - Centralized
 - Central systems (all HVAC equipment in one room)
 - Semi-central systems
 - District
 - Central systems (all HVAC equipment in one room)
 - Semi-central systems

• Few examples of the graphical symbols:

Refrigeration

Compressors

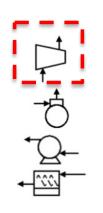
Centrifugal

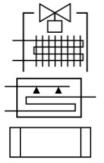
Reciprocating

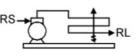
Rotary

Rotary screw

Condensers


Air cooled


Evaporative


Water cooled, (specify type)

Condensing Units

Air cooled^b

Air Moving Devices and Components

Fans (indicate use)^a

Axial flow

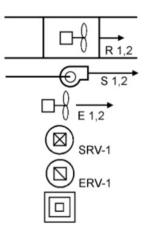
Centrifugal

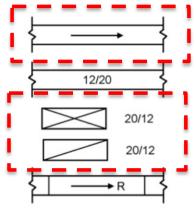
Propeller

Roof ventilator, intake

Roof ventilator, exhaust

Roof ventilator, louvered


Ductwork^b


Direction of flow

Duct size, first figure is side down

Duct section, positive pressure, first figure is top Duct section, negative pressure

Change of elevation rise (R) drop (D)

- Heating production:
 - Equipment: Boiler, furnace, heat pump
 - □ Energy: combustion, electrical, waste heat
 - Distribution: air, steam, water

- Cooling production:
 - Equipment: Air conditioner, chiller, heat pump
 - □ Energy: electrical, natural gas, steam, waste heat
 - □ Cycle: vapor compression, absorption
 - Distribution: chilled water, air

• Three main ventilation strategies are:

□ Constant Air Volume (CAV):

- Hold the system airflow rate constant
- Let the space thermostat modulate the supply air temperature
- □ Variable Air Volume (VAV):
 - Modulate supply airflow rate
 - Hold the supply air inlet temperature constant
- Dedicated Outdoor Air System (DOAS):
 - Consist of two parallel systems
 - Deliver outdoor to handle both latent and sensible loads
 - Include a parallel system to handle mostly sensible loads

ASHRAE 90.1 APPENDIX G

ASHRAE Appendix G 90.1

• From ASHRAE Appendix G 2019:

Table G3.1.1-4 Baseline System Descriptions

System No.	System Type	Fan <i>Control</i>	Cooling Type ^a	Heating Type ^a
1. PTAC	Packaged terminal air conditioner	Constant volume	Direct expansion	Hot-water fossil fuel boiler
2. PTHP	Packaged terminal heat pump	Constant volume	Direct expansion	Electric heat pump
3. PSZ-AC	Packaged rooftop air conditioner	Constant volume	Direct expansion	Fossil fuel furnace
4. PSZ-HP	Packaged rooftop heat pump	Constant volume	Direct expansion	Electric heat pump
5. Packaged VAV with reheat	Packaged rooftop VAV with reheat	VAV	Direct expansion	Hot-water fossil fuel boiler
6. Packaged VAV with PFP boxes	Packaged rooftop <i>VAV</i> with parallel fan power boxes and <i>reheat</i>	VAV	Direct expansion	Electric resistance
7. VAV with reheat	VAV with reheat	VAV	Chilled water	Hot-water fossil fuel boiler
8. VAV with PFP boxes	VAV with parallel fan-powered boxes and <i>reheat</i>	VAV	Chilled water	Electric resistance
9. Heating and ventilation	Warm air furnace, gas fired	Constant volume	None	Fossil fuel furnace
10. Heating and ventilation	Warm air furnace, electric	Constant volume	None	Electric resistance
11. SZ– <i>VAV</i>	Single-zone VAV	VAV	Chilled water	See note (b).
12. SZ-CV-HW	Single-zone system	Constant volume	Chilled water	Hot-water fossil fuel boiler
13. SZ-CV-ER	Single-zone system	Constant volume	Chilled water	Electric resistance

a. For purchased chilled water and purchased heat, see G3.1.1.3.

b. For Climate Zones 0 through 3A, the heating type shall be *electric resistance*. For all other climate zones the heating type shall be hot-water fossil-fuel boiler.

ASHRAE Appendix G 90.1

• From ASHRAE Appendix G 2019:

Table G3.1.1-3 Baseline HVAC System Types

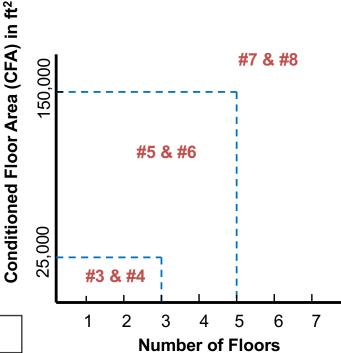
<i>Building</i> Type, Number of <i>Floors</i> , and Gross Conditioned Floor Area	Climate Zones 3B, 3C, and 4 to 8	Climate Zones 0 to 3A
Residential	System 1—PTAC	System 2—PTHP
Public assembly <120,000 ft ²	System 3—PSZ-AC	System 4—PSZ-HP
Public assembly \geq 120,000 ft ²	System 12—SZ-CV-HW	System 13—SZ-CV-ER
Heated-only storage	System 9—Heating and ventilation	System 10—Heating and ventilation
Retail and 2 floors or fewer	System 3—PSZ-AC	System 4—PSZ-HP
Other nonresidential and 3 floors or fewer and <25,000 ${\rm ft}^2$	System 3—PSZ-AC	System 4—PSZ-HP
Other nonresidential and 4 or 5 <i>floors</i> and <25,000 ft^2 or 5 <i>floors</i> or fewer and 25,000 ft^2 to 150,000 ft^2	System 5—Packaged VAV with reheat	<i>System</i> 6—Packaged <i>VAV</i> with PFP boxes
Other nonresidential and more than 5 floors or >150,000 ${\rm ft}^2$	System 7—VAV with reheat	System 8—VAV with PFP boxes

Notes:

1. Residential building types include dormitory, hotel, motel, and multifamily. Residential space types include guest rooms, living quarters, private living space, and sleeping quarters. Other building and space types are considered nonresidential.

2. Where attributes make a *building* eligible for more than one baseline *system* type, use the predominant condition to determine the *system* type for the entire *build-ing* except as noted in Section G3.1.1.

3. For laboratory *spaces* in a *building* having a total laboratory exhaust rate greater than 15,000 cfm, use a single *system* of type 5 or 7 serving only those *spaces*.


4. For hospitals, depending on *building* type, use *System* 5 or 7 in all climate zones.

5. Public assembly *building* types include houses of worship, auditoriums, movie theaters, performance theaters, concert halls, arenas, enclosed stadiums, ice rinks, gymnasiums, convention centers, exhibition centers, and natatoriums.

ASHRAE Appendix G 90.1

• From ASHRAE Appendix G:

- Building floor area
- Number of floors
- Building type

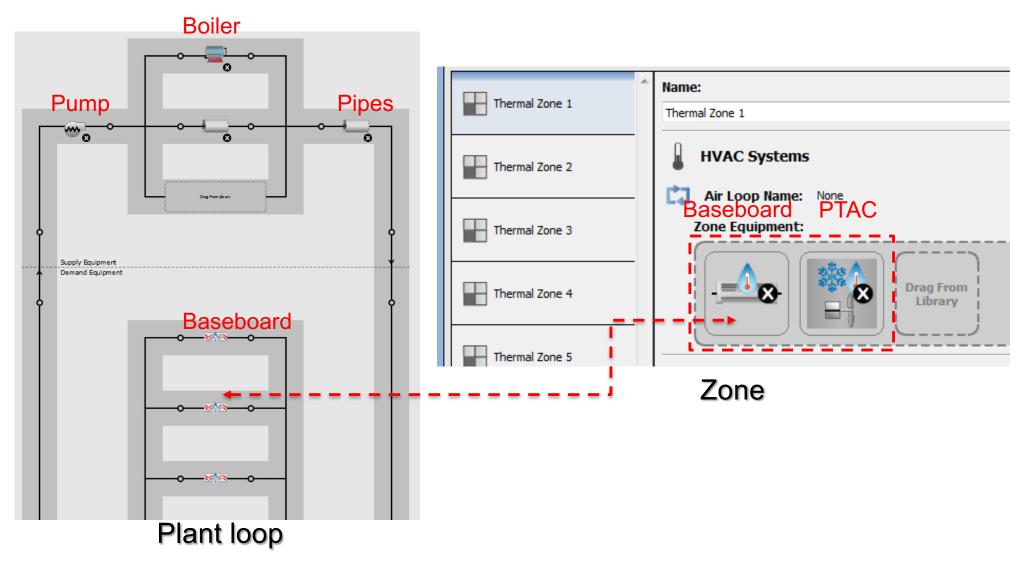
Building Type	Fossil Fuel, Fossil/Electric	Electric and Other
	Hybrid, and Purchased Heat	
Residential	System 1—PTAC	System 2—PTHP
Nonresidential and 3 Floors or	System 3—PSZ-AC	System 4—PSZ-HP
Less and <25,000 ft ²		
Nonresidential and 4 or 5	System 5—Packaged VAV	System 6—Packaged VAV
Floors and <25,000 ft ² or	with Reheat	with PFP Boxes
5 Floors or Less and 25,000 ft ²		
to 150,000 ft ²		
Nonresidential and More than 5	System 7—VAV with Reheat	System 8-VAV with PFP
Floors or >150,000 ft ²		Boxes
Heated Only Storage	System 9—Heating and	System 10—Heating and
	Ventilation	Ventilation
Erom: TADIE (22 1 1A Deceline UVA)	¹ System Types - ASUPAE Standard 00	1 10

From: TABLE G3.1.1A Baseline HVAC System Types - ASHRAE Standard 90.1-10.

Note: PTAC - packaged terminal air conditioner PTHP - packaged terminal heat pump PSZ- packaged single zone

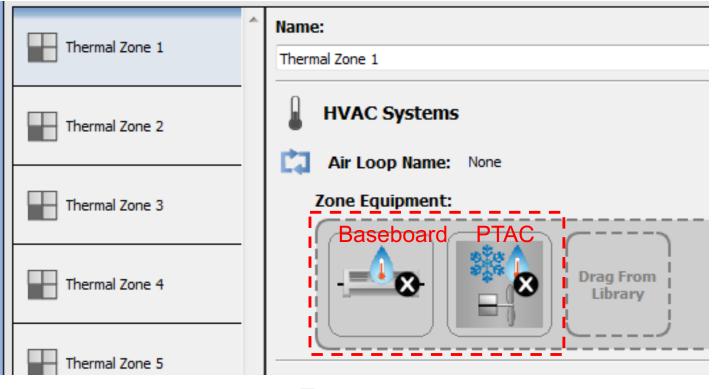
VAV - variable air volume PFP - parallel fan power

Advanced Energy Design Guide (AEDG)

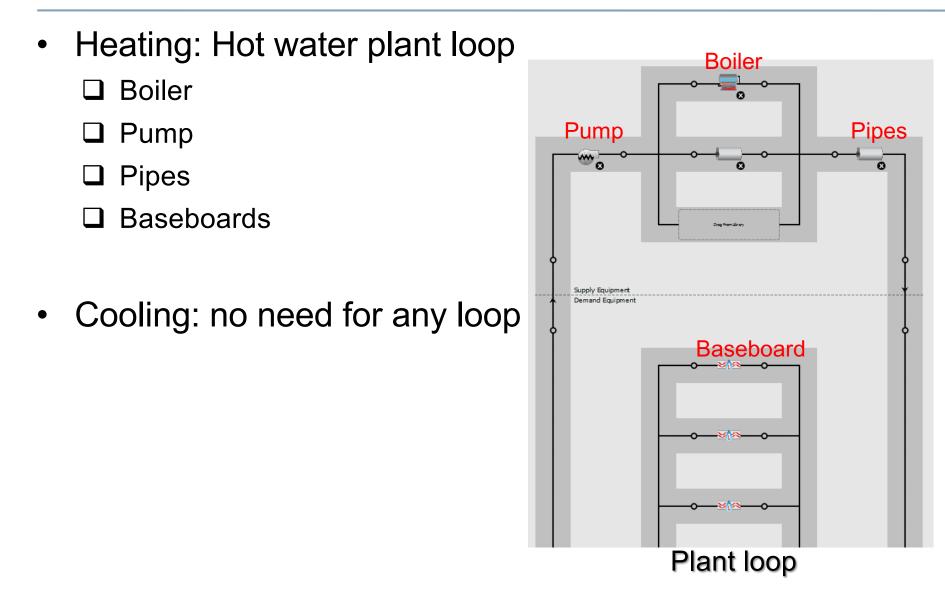

- This guideline:
 - Provide opportunities to save 30% or 50% (or net zero) site energy reductions when compared to those same facilities designed to meet the minimum code requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004
 - Recommend design for a low-energy-use building and is not a minimum code or standard
 - □ Is a voluntary guidance document
 - Do not supplement, replace, or supersede existing codes and standards
 - Represents a way, but not the only way, to build energy-efficient small to medium office buildings with 50% energy savings

System Loops and Zone Equipment

- System loops vs. zone equipment
 Loops:
 - Plant
 - Chilled water
 - Condenser
 - Air


Zone level

No. 1: PTAC & Baseboard


No. 1: PTAC & Baseboard

- Heating: Zone baseboard
- Cooling: PTAC

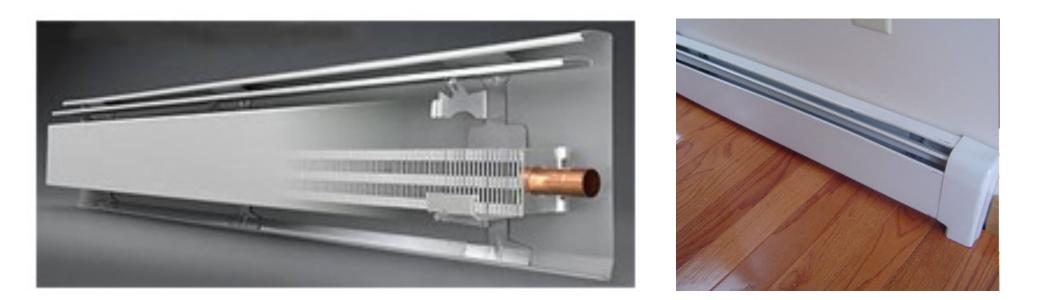
Zone

No. 1: PTAC & Baseboard

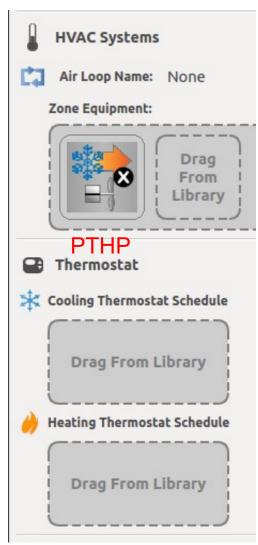
No. 1: PTAC

• Example:

- □ LG PTAC 15,000 BTU with electric heat
- Self-contained heating and AC system commonly found in hotels, condominiums, apartment buildings



No. 1: PTAC

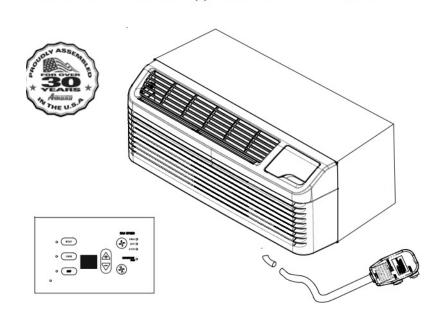

No. 1: PTAC

- Hydronic vs electric baseboards considerations:
 Initial cost
 - □ Energy efficiency
 - □ Performance (e.g., warm up, duration)

System No. 2: PTHP

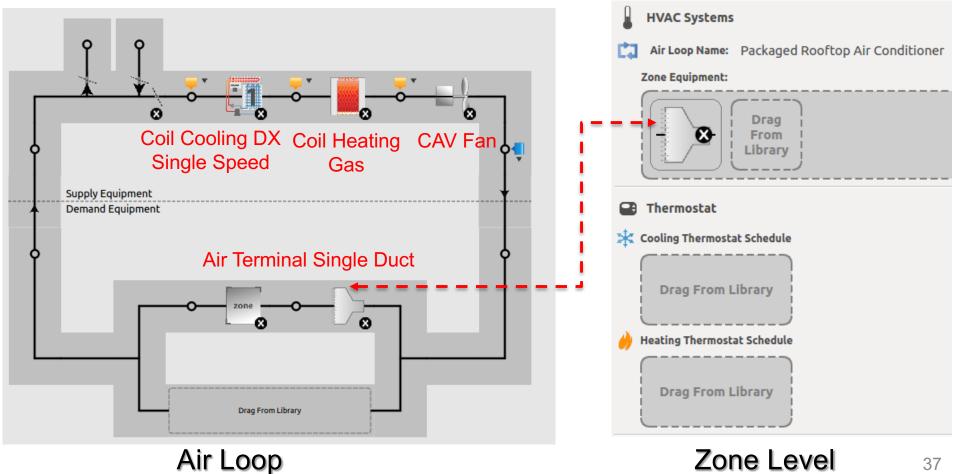
- Packaged Terminal Heat Pump system includes only:
 No loop
 - □ Zone level equipment

System No. 2: PTHP


Radiative

Baseboard Radiant Convective Water		
Zone HVAC Baseboard Rad		
Conv Water		

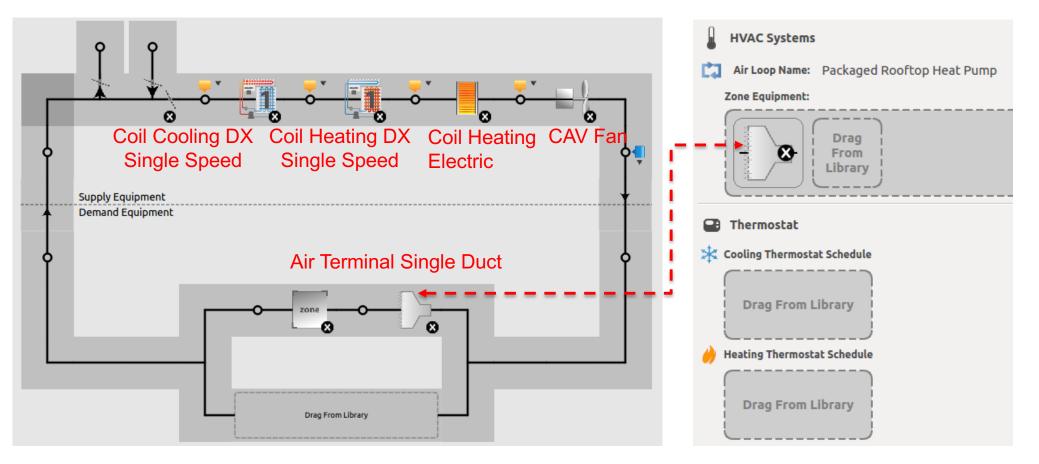
System No. 2: PTHP


- Example:
 - □ Amana 14,000 BTU (3.5 KW)
 - □ Automatic 2nd stage electric heat:
 - If the room temperature falls to 4 degrees below the set point temperature, the heat pump compressor is shut off and the electric heat strip is turned on
 - 3-Minute Compressor Lockout

PACKAGE TERMINAL AIR CONDITIONER/HEAT PUMP INSTALLATION INSTRUCTIONS & OWNER'S MANUAL Standard and Remote Applications with LED Control

No. 3: Packaged Rooftop Air Conditioner

- This system has: □ One air loop
 - □ Zone level equipment


No. 3: Packaged Rooftop Air Conditioner

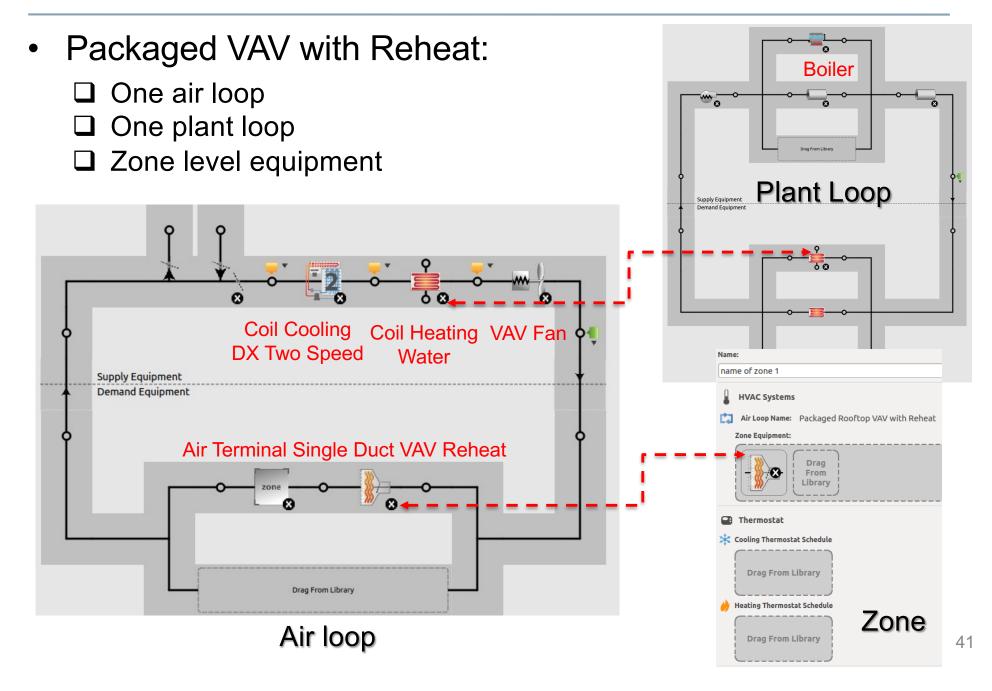
- Example:
 - Goodman 3.5 Ton 14 SEER 80,000 BTU Gas/Electric Package Unit
 - □ Refrigerant Type: R-410A

No. 4: Packaged Rooftop Heat Pump

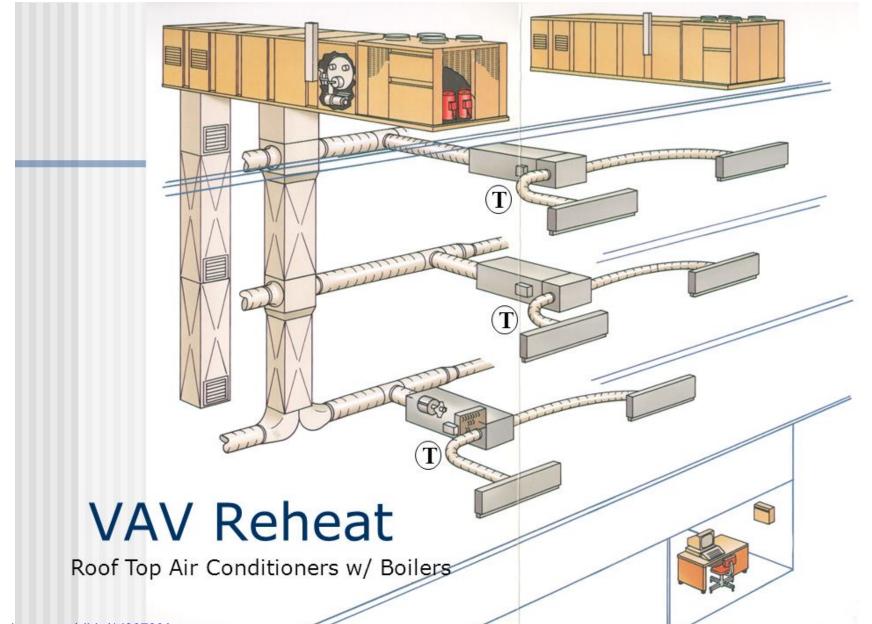
- This system has:
 One air loop
 - □ Zone level equipment

Air Loop

Zone Level 39


No. 4: Packaged Rooftop Heat Pump

- Example:
 - GOODMAN GPH1642H41
 - 3.5 Ton, 16 SEER Self-Contained Packaged Heat Pump, Dedicated Horizontal



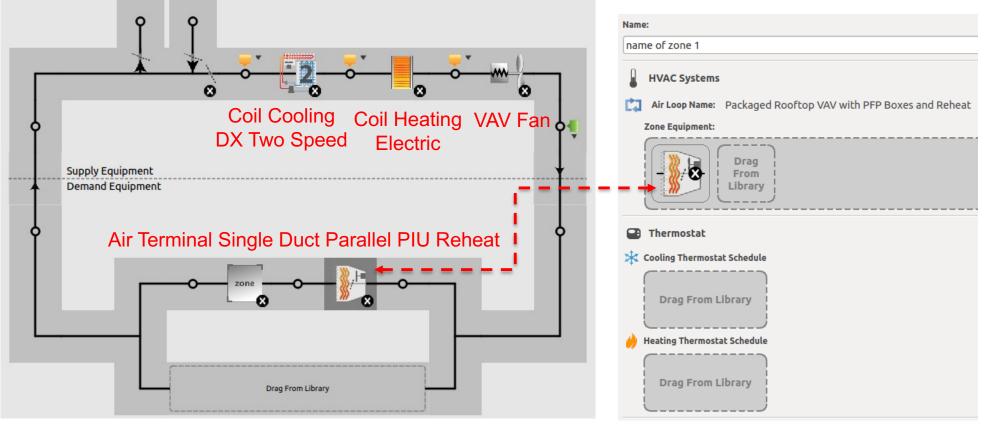
https://www.alpinehomeair.com/viewproduct.cfm?productID=453070933&linkfrom=froogle&gclid=CjwKCAjwwo7cBRBwEiwAMEoXPCggqPRV3hRF8h1X89fwHt CMxwjOm0dVPr0ELS38ycDfef4XqXvFQxoCFzEQAvD_BwE

No. 5: Packaged VAV with Reheat

No. 5: Packaged VAV with Reheat

No. 5: Packaged VAV with Reheat

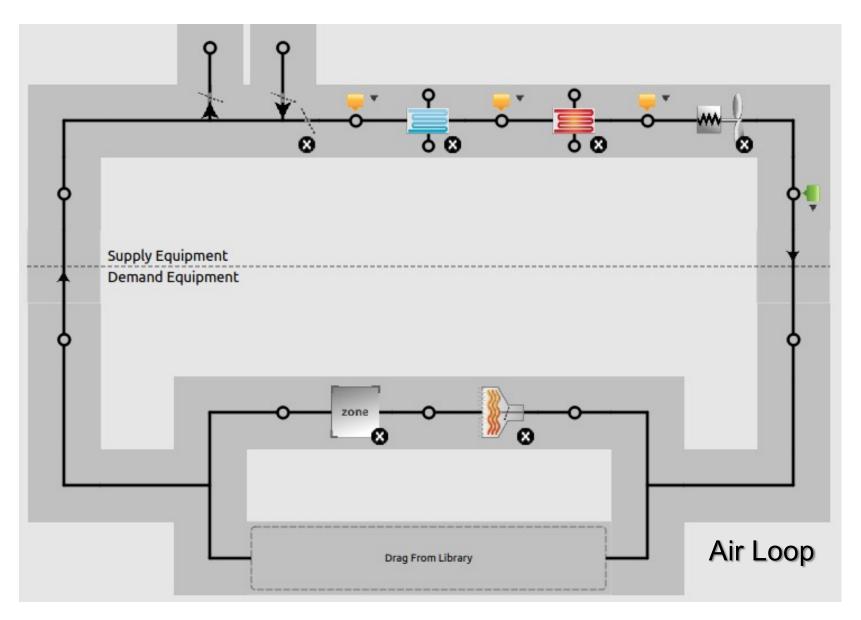
• Using economizer based on ASHRAE 90.1 Appendix G:


TABLE G3.1.2.6 Climate Conditions under which Economizers are Included for Comfort Cooling for Baseline Systems 3 through 8 and 11, 12, and 13

Climate Zone	Conditions	
1a, 1b, 2a, 3a, 4a	NR	
Others	Economizer Included	

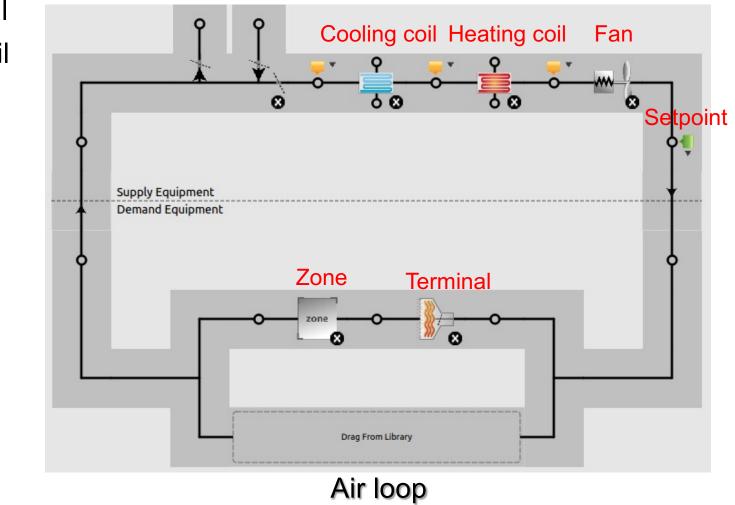
Note: NR means that there is no conditioned building floor area for which economizers are included for the type of zone and climate.

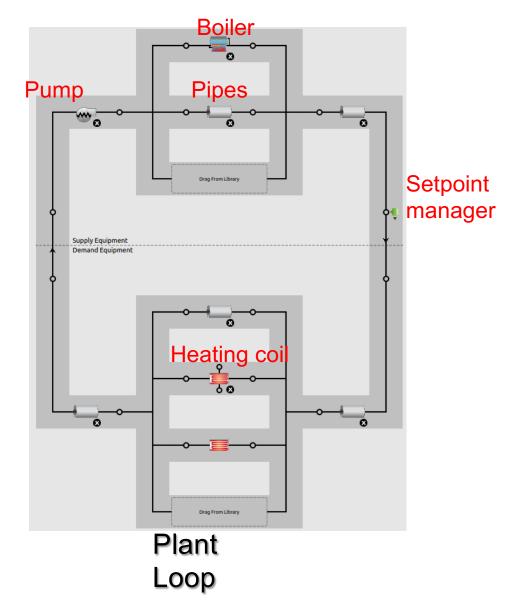
No. 6: Packaged Rooftop VAV with PFP Boxes & Reheat

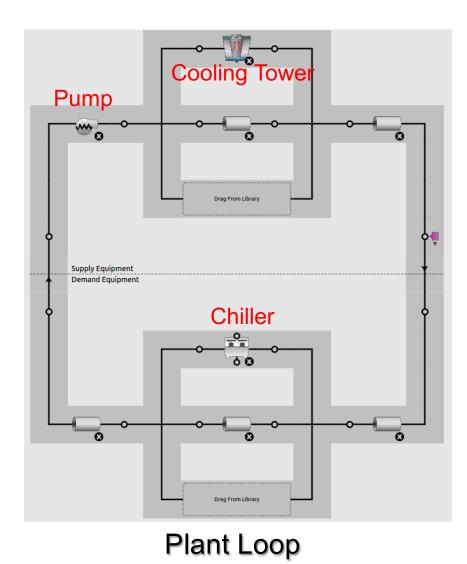

- Packaged Rooftop VAV with PFP Boxes and Reheat has:
 - One air loop
 - Zone level equipment

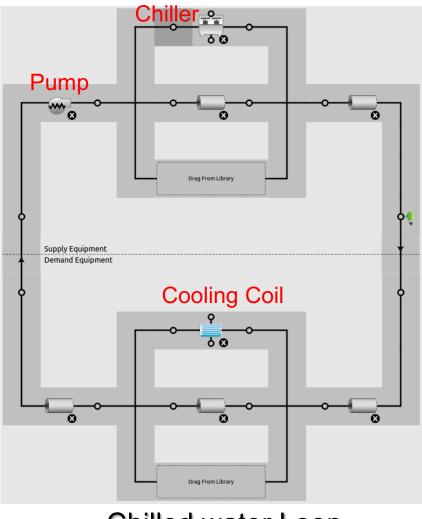
Air Loop

No. 6: Packaged Rooftop VAV with PFP Boxes & Reheat


- Fan Powered Boxes:
 - □ Series: fan-powered terminals have fans that must run throughout the occupied mode in order to deliver ventilation air to the zone:
 - Act as boosters for the air handler
 - Move the air the rest of the way to the zone
 - Allow AHU to run at system pressure far lower than other type of terminals
 - Provide constant air and more air changes than other type of terminals
 - Have constant sound levels, unlike other types of terminal units that vary air volumes and/or cycle fans
 - Parallel: Parallel fan-powered terminals have fans that only switch on during the heating mode to pull warm return air from ceiling plenum:
 - The unit fan is off during the cooling mode
 - Some engineers do not specify parallel fan units because the fan cycling is often noticeable to occupants

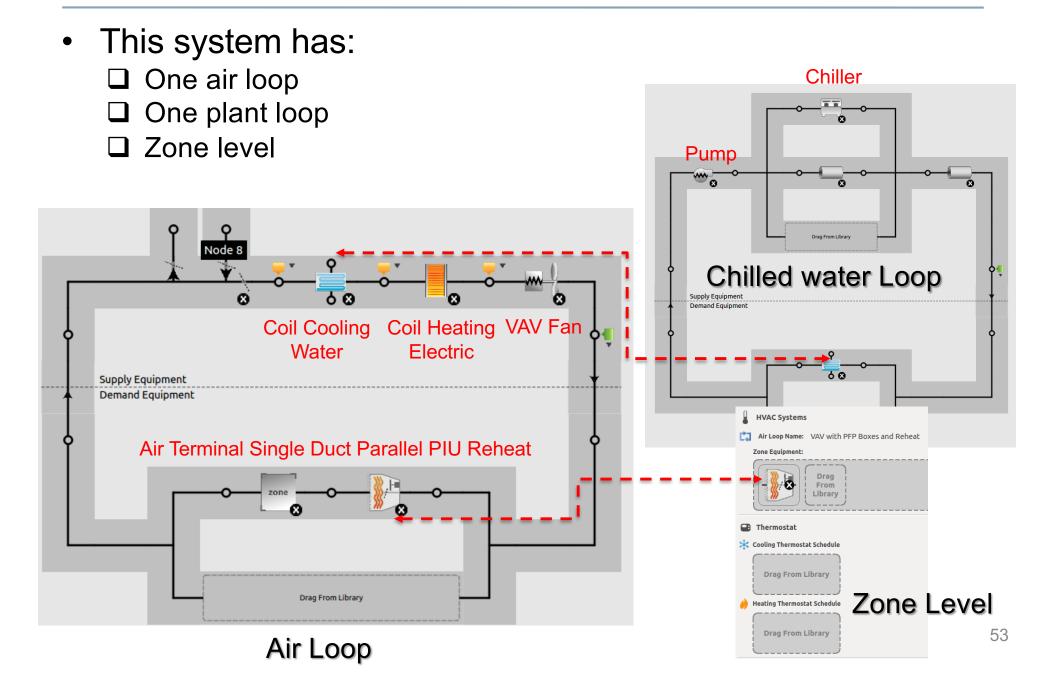

How many loops should we have?


- Air loop
 - Cooling coil
 - Heating coil
 - Fan
 - Setpoint
 - Zone
 - Terminal


- Plant Loop
 - Boiler
 - Fan
 - Pipes
 - Heating Coil

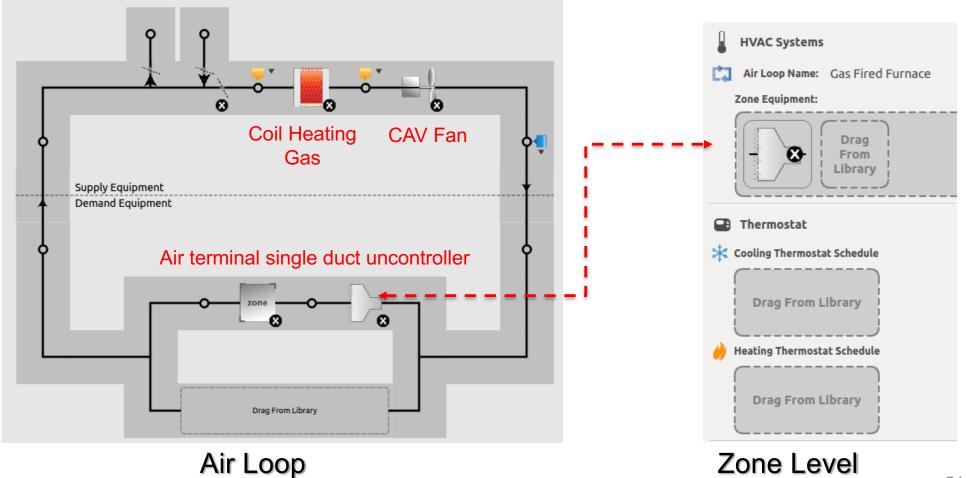
- Condenser Loop
 - Cooling Tower
 - Fan
 - Pipes
 - Chiller

- Chilled water Loop
 - Chiller
 - Fan
 - Pipes
 - Cooling coil

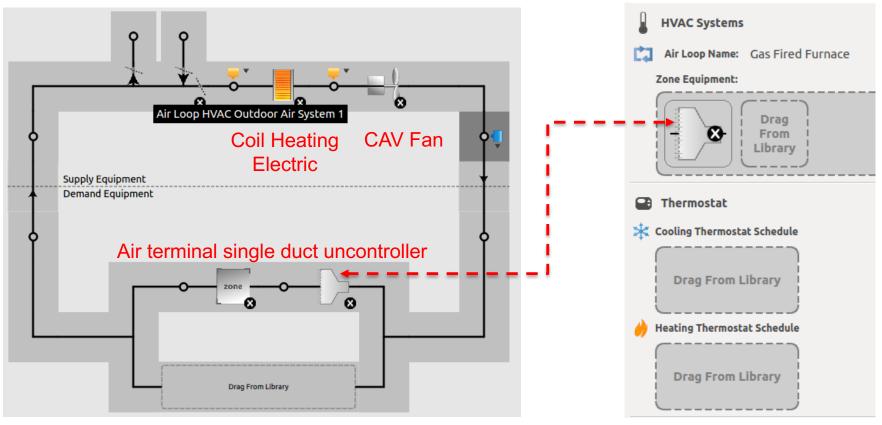


 Number and type of chillers based on ASHRAE 90.1 Appendix G:

Building Peak Cooling Load	Number and Type of Chiller(s)
≤300 tons	1 water-cooled screw chiller
>300 tons, <600 tons	2 water-cooled screw chillers sized equally
≥ 600 tons	2 water-cooled centrifugal chillers minimum with chillers added so that no chiller is larger than 800 tons, all sized equally


TABLE G3.1.3.7 Type and Number of Chillers

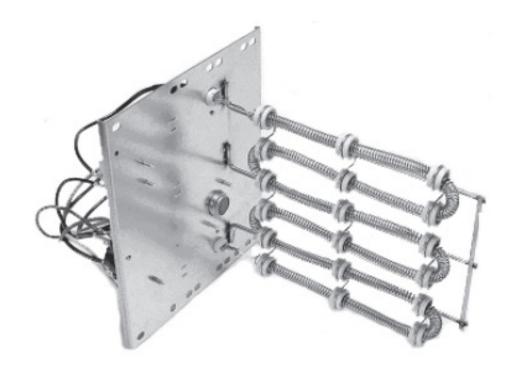
No. 8: VAV with PFP Boxes and Reheat


No. 9: VAV with PFP Boxes and Reheat

- This system includes only:
 - □ An air loop
 - □ Zone level

No. 10: Electric Furnace

- This system includes only:
 An air loop
 - □ Zone level



Air Loop

Zone Level

No. 10: Electric Furnace

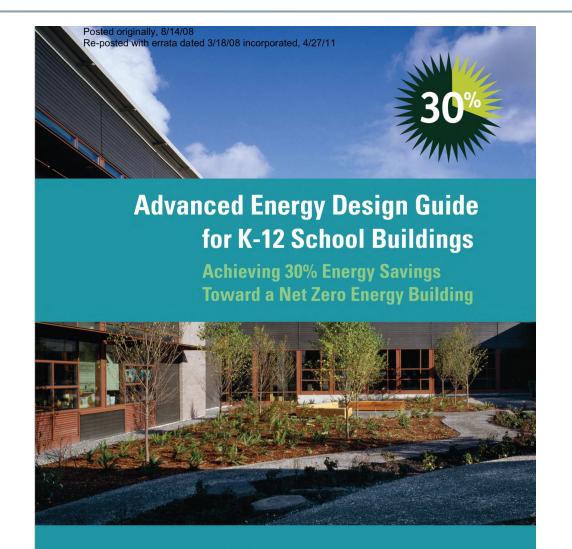
• It includes a blower and a heater:

56

ASHRAE ADVANCED ENERGY DESIGN GUIDES

Advanced Energy Design Guide (AEDG)

Posted originally, 4/28/11 Reposted withminor changes, 9/27/1



Advanced Energy Design Guide for Small to Medium Office Buildings

Achieving 50% Energy Savings Toward a Net Zero Energy Building

Reference System No.	Ventilation Type	Cooling Type	Heating Type	Additional Information
1	DOAS	Air-source heat pump	Heat pump w/ electric supplemental heating	Packaged single zone unit
2	DOAS	Water-source heat pump or Ground- source heat pump	Heat pump	Packaged single zone unit
3	MZ VAV	DX	 Hydronic system; (2) Indirect gas furnace; or (3) Inter electric heating w/ perimeter electric convection heating 	Packaged rooftop units
4	MZ VAV	Air-cooled chiller	Gas-fired boiler	Air- handling units
5	DOAS	Air-cooled chiller	Gas-fired boiler	Fan-coils system
6	DOAS	Air-cooled chiller	Condensing boiler	Radiant system

Developed by: American Society of Heating, Refrigerating, and Air-Conditioning Engineers The American Institute of Architects Illuminating Engineering Society of North America U.S. Green Building Council U.S. Department of Energy

Posted originally, 9/28/2011 Reposted with errata dated 2/19/14 incorporated, 2/19/2014

Advanced Energy Design Guide for K–12 School Buildings

Achieving 50% Energy Savings Toward a Net Zero Energy Building

Developed by:

American Society of Heating, Refrigerating and Air-Conditioning Engineers The American Institute of Architects Illuminating Engineering Society of North America U.S. Green Building Council U.S. Department of Energy

Posted originally, 1/11/2018 Reposted with errata dated 1/31/18 incorporated, 2/1/2018

ACHIEVING ZERO ENERGY

Advanced Energy Design Guide for K–12 School Buildings

Climate Zone 5 Recommendation Table for K-12 School Buildings

Item	Component Insulation entirely above deck	Recommendation R-30.0 c.i.	How-to Tips EN2,17,19,21,22
	Attic and other	R-30.0 C.I. R-49.0	EN3,17,19,20,21
Roofs	Metal building		EN4,17,19,21,22
		R-25.0 + R-11 L _s	EIN4,17,19,21,22
	Solar Reflectance Index (SRI)	Comply with Standard 90.1*	ENE 47 40 04
	Mass (HC > 7 Btu/ft ²)	R-13.3 c.i.	EN5,17,19, 21
	Steel framed	R-13.0 + R-15.6 c.i.	EN6,17,19, 21
Walls	Wood framed and other	R-13.0 + R-10.0 c.i.	EN7,17,19, 21
	Metal building	R-0.0 + R-19.0 c.i.	EN8,17,19, 21
	Below grade walls	R-7.5 c.i.	EN9,17,19, 21,22
	Mass	R-14.6 c.i.	EN10,17,19, 21
Floors	Steel framed	R-38.0	EN11,17,19,21
	Wood framed and other	R-38.0	EN11,17,19, 21
	Unheated	Comply with Standard 90.1*	EN17.19, 21
Slabs			EN13,14,17,19,
	Heated	R-20 for 24 in.	21.22
	Swinging	U-0.50	EN15,17
Doors	Nonswinging	U-0.50	EN16,17
Vestibules	At building entrance	Yes	EN17,18
vestibules		Nonmetal framing = U-0.35	
	Thermal transmittance	Metal framing = U-0.44	EN24
		E or W orientation = 5% maximum	
View	Fenestration-to-floor-area ratio (FFR)	N or S orientation = 7% maximum	EN24-25
Fenestration		E or W orientation = 0.42	
. onostration	Solar heat gain coefficient (SHGC)	N orientation = 0.62	EN24,32-33
	oolar near gain coemolent (SHGC)	S orientation = 0.02	21424,02-00
	Exterior sun control		EN26.33
Devilation		S orientation only = PF-0.5	
Daylight	Visible transmittance (VT)	See Table 5-5 for appropriate VT value	DL1,5-6,23
Fenestration	Interior/exterior sun control (S orientation only)	S orientation = no glare during school hours	DL1,9,12,13,31
	Classroom, resource rooms, cafeteria, gym, and	Daylight 100% of floor area for 2/3 of school hours	DL1-5,7-21,
Daylighting	multipurpose rooms		24-30,32-41
	Administration areas	Daylight perimeter floor area (15 ft) for 2/3 of school hours	DL1-5,8-12
Interior Finishes	Interior surface average reflectance for daylighted	Ceilings = 80%	DL14
	rooms	Wall surfaces = 70%	DEIN
	Lighting power density (LPD)	Classrooms, art rooms, kitchens, libraries, media centers= 0.8 W/ft ² Cafeterias, lobbies = 0.7 W/ft ² Offices = 0.60 W/ft ² Auditoriums, restrooms = 0.5 W/ft ²	EL12–19
Interior Lighting	Light source lamp efficacy (mean lumens per watt)	Corridors, mechanical rooms = 0.4 W/ft ² T8 & T5 > 2 ft = 92, T8 & T5 \leq 2 ft = 85, All other > 50	EL46
	T8 ballasts	Non-dimming = NEMA Premium Instant Start	
		Dimming= NEMA Premium Program Start	EL4-6
	T5/T5HO ballasts	Electronic program start	224-0
	CFL and HID ballasts	Electronic	
	Dimming controls daylight harvesting	Dim all fixtures in daylight zones	EL8,9,11-19
	Lighting controls	Manual ON, auto/timed OFF in all areas as	EL8,9,11-20
	Lighting controls	possible	220,0,11-20
	Façade and landscape lighting	LPD = 0.075 W/ft^2 in LZ-3 & LZ-4 LPD = 0.05 W/ft^2 in LZ-2 Controls = auto OFF between 12am and 6am	EL23
		LPD = 0.1 W/ft ² in LZ-3 & LZ-4	
Exterior Lighting	Parking lots and drives	LPD = 0.06 W/ft ² in LZ-2 Controls = auto reduce to 25% (12am to 6am)	EL21
		LPD = 0.16 W/ft ² in LZ-3 & LZ-4	
	Walkways, plaza, and special feature areas	LPD = 0.14 W/ft ² in LZ-2 Controls = auto reduce to 25% (12am to 6am)	EL22
	All other outgries lighting	LPD = Comply with Standard 90.1*	EL25
	All other exterior lighting	Controls = auto reduce to 25% (12am to 6am)	EL25
Equipment Choices	Laptop computers	Minimum 2/3 of total computers	PL2,3
	ENERGY STAR equipment	All computers, equipment, and appliances	PL3,5
	Vending machines	De-lamp and specify best in class efficiency	PL3,5
		Network control with power saving modes and	
	Computer power control	control off during unoccupied hours	PL2,3
Controls/ Programs	Power outlet control	Controllable power outlets with auto OFF during unoccupied hours for classrooms, office, library/ media spaces All plug-in equipment not requiring continuous operation to use controllable outlets	PL3,4
	Policies	Implement at least one: • District/school policy on allowed equipment	PL3,4
		 School energy teams 	

School energy teams
 Note: Where the table says "Comply with Standard 90.1," the user must meet the more stringent of either the applicable version of ASHRAE/IES Standard 90.1 or the local code requirements.

Climate Zone 5 Recommendation Table for K-12 School Buildings (Continued)

Item	Component	Recommendation	How-to Tips
	Cooking equipment	ENERGY STAR or California rebate-qualified equipment	KE1,2
Kitchen Equipment	Walk-in refrigeration equipment	6 in. insulation on low-temp walk-in equipment, Insulated floor, LED lighting, floating-head pressure controls, liquid pressure amplifier, subcooled liquid refrigerant, evaporative condenser	KE2,5
	Exhaust hoods	Side panels, larger overhangs, rear seal at appliances, proximity hoods, VAV demand-based exhaust	KE3,6
	Gas water heater (condensing)	95% efficiency	WH1-5
	Electric storage EF (≤12 kW, ≥20 gal)	EF > 0.99 - 0.0012 x Volume	WH1-5
Service Water Heating	Point-of-use heater selection	0.81 EF or 81% Et	WH1-5
Heating	Electric heat-pump water heater efficiency	COP 3.0 (interior heat source)	WH1-5
	Solar hot-water heating	30% solar hot-water fraction when LCC effective	WH7
	Pipe insulation ($d < 1.5$ in./ $d \ge 1.5$ in.)	1/1.5 in.	WH6
	GSHP cooling efficiency	17.1 EER	HV1,11
	GSHP heating efficiency	3.6 COP	HV1,11
	GSHP compressor capacity control	Two stage or variable speed	HV1.11
	Water-circulation pumps	VFD and NEMA Premium Efficiency	HV8
Ground Source	Cooling tower/fluid cooler	VFD on fans	HV1,8,11
Heat-Pump	Boiler efficiency	90% E _c	HV1,7,11
(GSHP) System with DOAS	Maximum fan power	0.4 W/cfm	HV12
WILL DOAS	Exhaust air energy recovery in DOAS	A (humid) zones = 60% enthalpy reduction B (dry) zones = 60% dry-bulb temp reduction C (marine) zones = 60% enthalpy reduction	HV4,5
	DOAS ventilation control	DCV with VFD	HV4,10,15
	Water-cooled chiller efficiency	Comply with Standard 90.1*	HV2,6,11
	Water circulation pumps	VFD and NEMA Premium Efficiency	HV6,7
	Boiler efficiency	90% E _c	HV2,7,11
	Maximum fan power	0.4 W/cfm	HV12
Fan-Coil System		Multiple speed	HV2,12
with DOAS	Economizer	Comply with Standard 90.1*	HV2,14
	Exhaust air energy recovery in DOAS	A (humid) zones = 60% enthalpy reduction B (dry) zones = 60% dry-bulb temp reduction C (marine) zones = 60% enthalpy reduction	HV4,5
	DOAS ventilation control	DCV with VFD	HV4,10,15
	Air-cooled chiller efficiency	10 EER; 12.75 IPLV	HV3,6,11
	Water-cooled chiller efficiency	Comply with Standard 90.1*	HV3,6,11
	Water circulation pumps	VFD and NEMA Premium Efficiency	HV6,7
	Boiler efficiency	90% E _c	HV3,7,11
VAV Air-Handling	Maximum fan power	0.8 W/cfm	HV12
System with	Economizer	Comply with Standard 90.1*	HV3,14
DOAS	Exhaust air energy recovery in DOAS	A (humid) zones = 60% enthalpy reduction B (dry) zones = 60% dry-bulb temp reduction C (marine) zones = 60% enthalpy reduction	HV4,5
	DOAS ventilation control	DCV with VFD	HV4,10,15
	Outdoor air damper	Motorized damper	HV10
Ducts and	Duct seal class	Seal Class A	HV20
Dampers	Insulation level	R-6	HV19
	Electrical submeters	Disaggregate submeters for lighting, HVAC, general 120V, renewables, and whole building	QA14–17
M&V/ Benchmarking	Benchmarking	Begin submetering early to address issues during warranty period Benchmark monthly energy use Provide training on benchmarking	QA14–17

*Note: Where the table says "Comply with Standard 90.1," the user must meet the more stringent of either the applicable version of ASHRAE/IES Standard 90.1 or the local code requirements.

Climate Zone	Plug/Process Loads, kBtu/ft ² ·yr	Lighting, kBtu/ft ² ·yr	HVAC, kBtu/ft ² ·yr	Total, kBtu/ft ^{2.} yr
1A			20	37
2A			20	37
2B			20	37
ЗA			15	32
3B:CA			8	25
3B		6	14	31
3C			10	27
4A	11		19	36
4B			15	32
4C			15	32
5A			22	39
5B			17	34
6A			27	44
6B			22	39
7			30	47
8			45	62

 Table 3-1
 Primary School Energy Use Targets for 50% Energy Savings

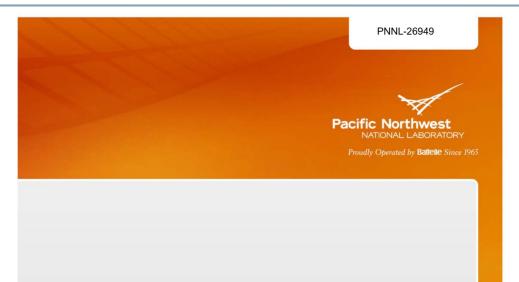
Climate Zone	Plug/Process Loads, kBtu/ft ² ·yr	Lighting, kBtu/ft ² ·yr	HVAC, kBtu/ft ^{2.} yr	Total, kBtu/ft ² ·yr
1A			21	36
2A			21	36
2B			21	36
3A			18	33
3B:CA			10	25
3B	8	8 7	17	32
3C			13	28
4A			22	37
4B			18	33
4C			19	34
5A			25	40
5B			21	36
6A			31	46
6B			26	41
7			34	49
8			48	63

 Table 3-2
 Secondary School Energy Use Targets for 50% Energy Savings

ASHRAE Advanced Energy Design Guide

Advanced Energy Design Guides

Free Download


To promote building energy efficiency, ASHRAE and its partners are making the Advanced Energy Design Guides available for free download (PDF). The zero energy Guides offer designers and contractors the tools needed for achieving zero energy buildings. The 50% Guides offer designers and contractors the tools needed for achieving a 50% energy savings compared to buildings that meet the minimum requirements of Standard 90.1-2004, and the 30% Guides offer a 30% energy savings compared to buildings that meet the minimum energy requirements of Standard 90.1-1999.

ASHRAE, in collaboration with AIA (American Institute of Architects), IES (Illuminating Engineering Society), USGBC (U.S. Green Building Council) and the DOE (Department of Energy) continues to develop the Advanced Energy Design Guide (AEDG) Series.

https://www.ashrae.org/technical-resources/aedgs

CBECS HVAC SYSTEMS

Analysis for Building Envelopes and Mechanical Systems Using 2012 CBECS Data

March 2018

DW Winiarski MA Halverson JB Butzbaugh

AL Cooke GK Bandyopadhyay DB Elliott

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

- Main heating equipment are:
 - □ Boilers inside the building
 - District steam or hot water
 - □ Furnaces that heat air directly
 - □ Heat pumps for heating
 - □ Individual space heaters (ISH)
 - □ Packaged central units (PCUs), roof mounted
 - □ Some other heating equipment

- Main cooling equipment are:
 - Central chillers inside the building
 - District chilled water
 - □ Heat pumps for cooling
 - □ Individual room air conditioners (IRAC)
 - Packaged air-conditioning units (PACU)
 - □ Residential-type central air conditioners (Res CAC)
 - □ Swamp coolers or evaporative coolers
 - □ Some other cooling equipment.

			PNNL Determination ^(a)		
Number	Туре	Heating	Cooling	Air Distribution	
1	Large Office	PCU	Chiller	MZ VAV	
2	Medium Office	PCU	PACU	MZ VAV	
3	Small Office	PCU	PACU	SZ CAV	
4	Warehouse	PCU	PACU	SZ CAV	
5	Stand-alone Retail	PCU	PACU	SZ CAV	
6	Strip Mall	PCU	PACU	SZ CAV	
7	Primary School	Boiler	Chiller	SZ CAV	
8	Secondary School	Boiler	Chiller	MZ VAV	
9	Grocery Store	PCU	PACU	SZ CAV	
10	Quick Service Restaurant	PCU	PACU	SZ CAV	
11	Full Service Restaurant	PCU	PACU	SZ CAV	
12	Hospital	Boiler	Chiller	FCU, CAV and MZ VAV ^(b)	
13	Outpatient Health Care	PCU	PACU	MZ VAV ^(c)	
14	Small Hotel	ISH	IRAC	SZ CAV	
15	Large Hotel	ISH/PCU	IRAC/PACU(d)	SZ CAV	

Table S.4. Most	Common HVAC	Equipment in	Post-1990 Buildings
-----------------	-------------	--------------	---------------------

(a) PNNL's determinations of the most common building envelope construction and mechanical system prevalence are based on analysis of CBECS data. PNNL utilizes the research and expertise of the authors to make determinations when either CBECS doesn't capture the data, or its data are conflicting or uncertain.

(b) Hospitals may utilize CV systems in some operating and critical care type areas with variable air flow used for pressurization, but classic VAV multi-zone systems in other areas like offices. CBECS guidance seems limited and other sources should be consulted.

- (c) Unclear if single zone or multi-zone is more common globally, but where PCU and PACU are used VAV and likely multi-zone is more common.
- (d) Large hotels may be best characterized with two system types serving different areas. Both multizone systems (VAV or CAV) may serve public spaces (lobby/conference rooms), whereas single zone IRAC or individual room heat pump systems may be most common for room space. Chiller fan coil systems appear more uncommon in new hotels. VAV appears to be found in the majority of large hotel buildings.

(e) System types

PACU – packaged air-conditioning unit	ISH – individual space heater
IRAC - individual room air conditioner	SZ – single zone
MZ – multi-zone	CAV – constant air volume
VAV – variable air volume	FCU – fan coil unit
	PCU – packaged central unit

Building Mechanical Systems

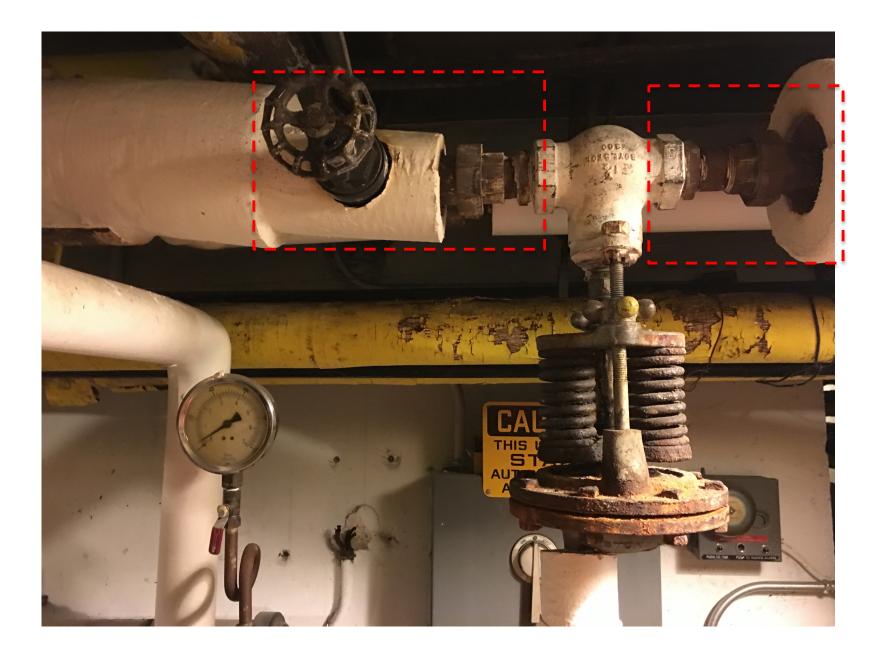
Prototype	Prototype	By Numbe	r of Buildings	By Floor Area		
Number	Building	Heating	Cooling	Heating	Cooling	
1	Large Office	PCU 67% Boilers 17% HP 10%	PACU 61% Chillers 27% HP 10%	PCU 48% Boilers 24% District 15%	Chillers 52% PACU 30% District 10%	
2	Medium Office	PCU 50% Furnace 22% Boilers 9%	PACU 42% Res CAC 31% HP 18%	PCU 54% Boilers 18% Furnace 11%	PACU 56% HP 18% Res CAC 13%	
3	Small Office	PCU 56% Furnace 22% HP 16%	Res CAC 43% PACU 33% HP 18%	PCU 67% Furnace 16% HP 12%	PACU 46% Res CAC 32% HP 16%	
4	Warehouse	None 55% PCU 26% ISH 9%	None 57% PACU 16% Res CAC 16%	PCU 51% None 24% ISH 9%	PACU 49% None 23% Res CAC 13%	
5	Stand-alone Retail	PCU 63% HP 15% Furnace 11%	PACU 49% Res CAC 25% HP 17%	PCU 81% HP 6% None 6%	PACU 73% Res CAC 10% HP 7%	
6	Strip Mall	PCU 76% Furnace 11% HP 6%	PACU 63% Res CAC 18% Heat Pumps 16%	PCU 85% Furnace 4% Other 4%	PACU 80% Res CAC 9% Heat Pumps 9%	
7	Primary School	PCU 59% HP 14% Boilers 14% Furnace 7% None 3%	PACU 48% HP 15% Res CAC 14% Chillers 11% District 8%	Boilers 45% PCU 37% HP 13% ISH 2% Furnace 2%	Chillers 39% PACU 31% HP 15% Res CAC 6% District 4%	
8	Secondary School	PCU 55% Boilers 15% District 11% HP 10% ISH 4%	PACU, 34% Res CAC, 22% Chillers, 15% District, 14% HP, 9%	Boilers 41% District 26% PCU 20% HP 10% Furnace 1%	Chillers, 39% District, 30% PACU, 16% HP, 10% Res CAC, 4%	
9	Grocery Store	PCU 66% None 20% ISH 7%	PACU 53% Res CAC 21% IRAC 10%	PCU 87% Boilers 6% Furnace 4%	PACU 78% Res CAC 16% None 5%	
10	Quick Service Restaurant	PCU 72% None 11% HP 7%	PACU 65% Res CAC 12% None 9%	PCU 78% None 9% HP 7%	PACU 67% Res CAC 15% None 8%	
11	Full Service Restaurant	PCU 62% HP 11% Furnace 10%	PACU 40% Res CAC 33% HP 14%	PCU 69% HP 7% Furnace 7%	PACU 42% Res CAC 24% HP 13%	
12	Hospital	Boilers 67% PCU 14% District 14%	Chillers 76% PACU 17% District 7%	Boilers 76% District 17% PCU 6%	Chillers 79% District 12% PACU 9%	
13	Out Patient Health Care	PCU 67% Furnace 13% Boilers 10%	Res CAC 44% PACU 32% HP 13%	PCU 57% Boilers 29% Furnace 6%	PACU 45% Chillers 31% Res CAC 17%	
14	Small Hotel	ISH 40% Boilers 24% PCU 17%	IRAC 73% Res CAC 17% None 6%	Boilers 40% ISH 36% PCU 17%	IRAC 74% Res CAC 17% HP 5%	
15	Large Hotel	ISH 39% HP 34% PCU 21%	IRAC 45% PACU 30% HP 20%	ISH 27% PCU 26% HP 21%	IRAC 37% PACU 22% Chillers 16%	

Table 3.1. HVAC Equipment in Post-1990 Buildings in 2012 CBECS

DISTRICT HEATING AND COOLING

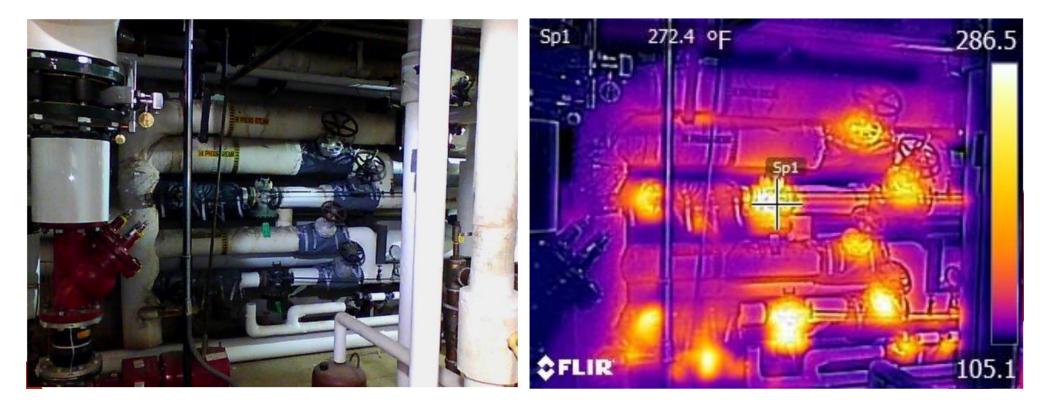
• What does district heating and cooling systems mean?

- District Heating:
 - Heat generated in a centralized location
 - Delivered through insulated systems
 - □ Used for space heating and water heating
- What are the pros and cons?
- Is there an example of district heating and cooling system?

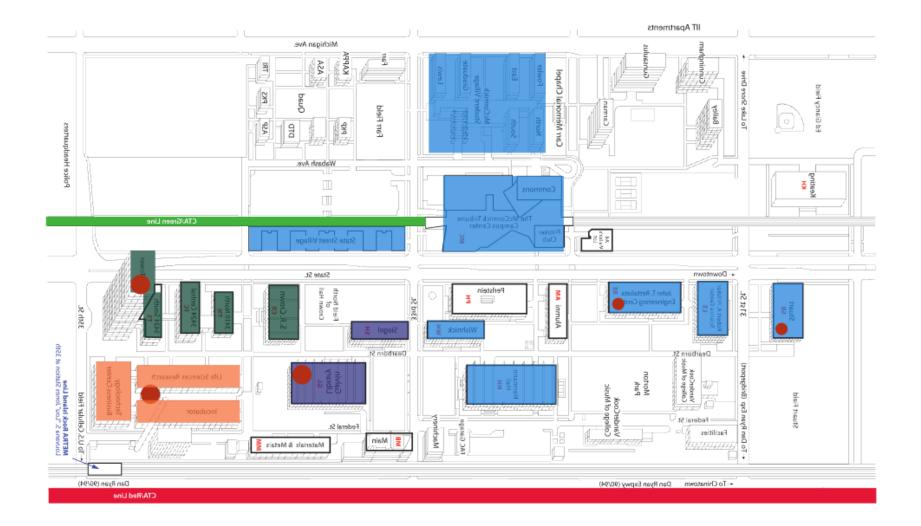


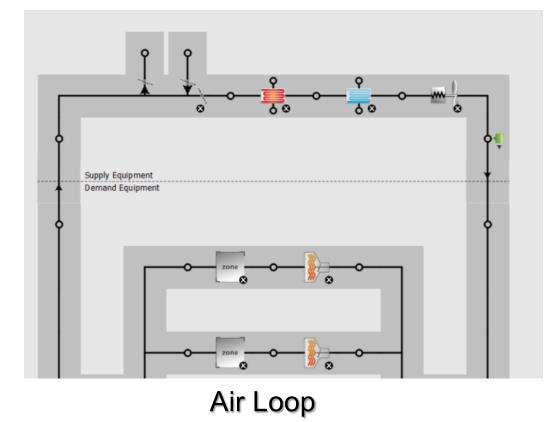
https://www.snipsmag.com/articles/93220-new-york-medical-center-saves-energy-with-insulation

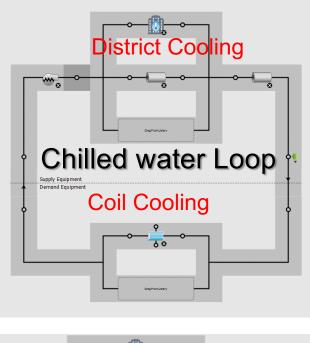
• Heating plant

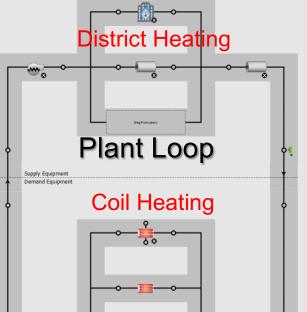


- Energy efficiency measure for steam reduction
 - Steam and condensate pipe insulation
 - Uninsulated steam pipe can have surface temperatures up to 350 degrees F.
 - Insulated over 7,800 linear feet of pipe in 28 buildings on campus
 - Steam traps
 - Steam traps are used to remove condensate from steam system.
 Many steam traps fail open, wasting steam.
 - Replaced 185 failed steam traps on campus
 - Annual energy savings of:
 - 20 million KBTU

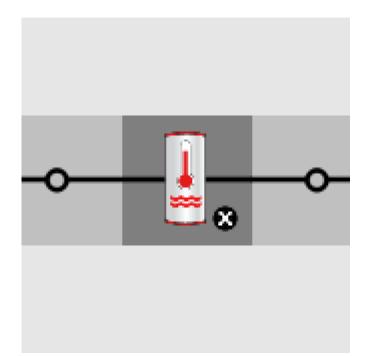



• Examples of insulating the system



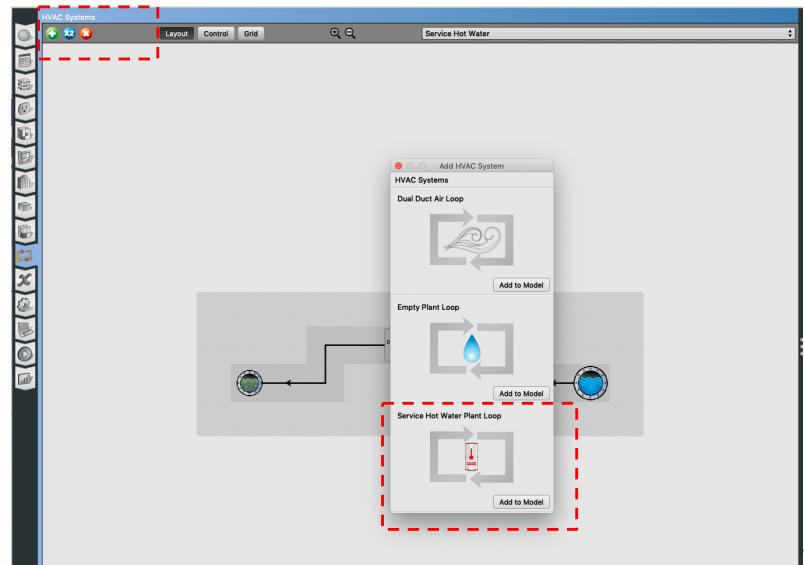

Cooling plant

- District heating and cooling:
 - □ No assumption required on:
 - □ Steam
 - □ Chilled water generation

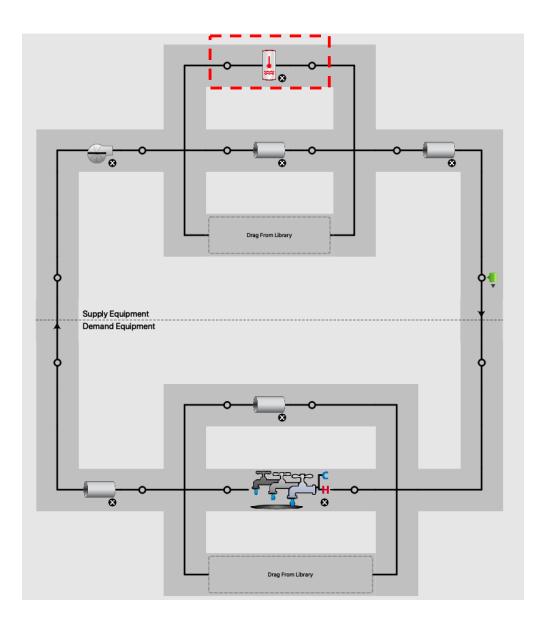

BCL

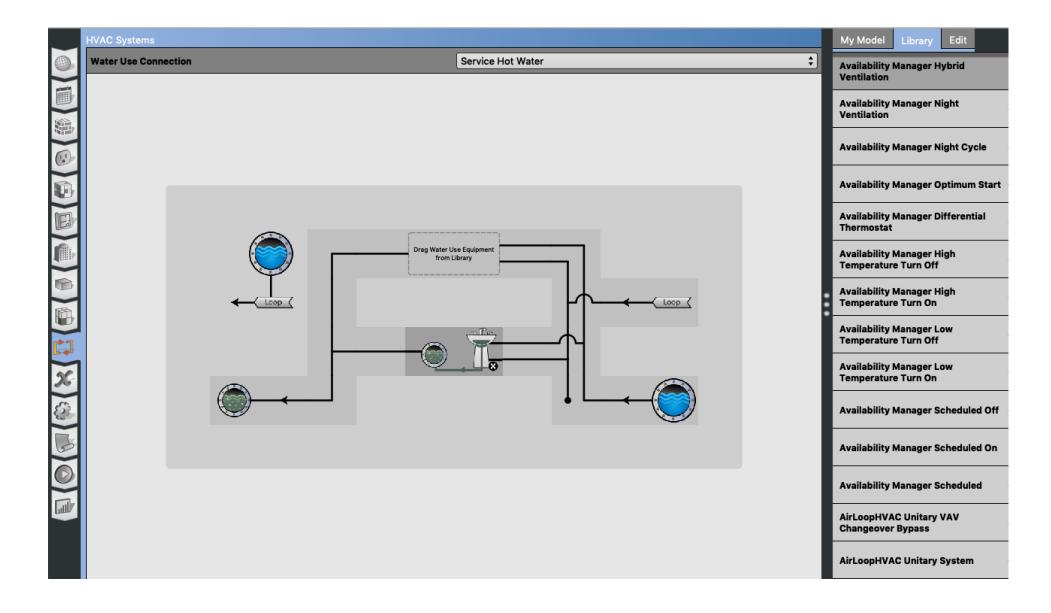
BCL

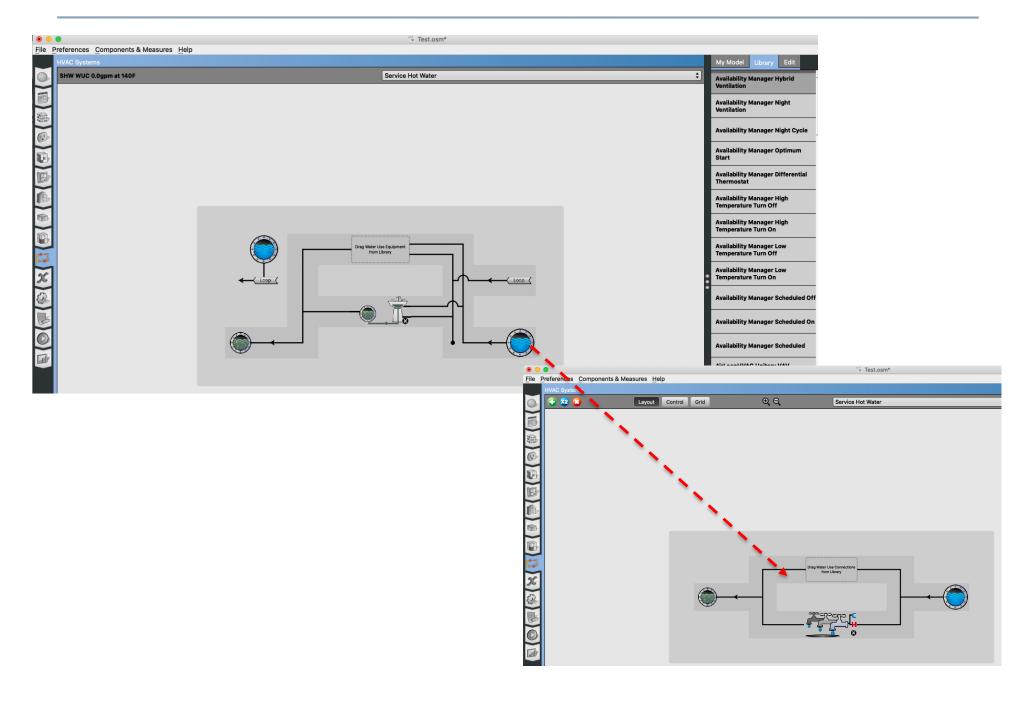
Ś	OpenStudio	File	Preferences	Components & Measures	Help
				Apply Measure Now H Find Measures Find Components	M


	Online BCL			
Q	Che	ck All	Attributes	
Categories			Effective R-value	6.50
Construction Assembly	Construction Assembly	3913	Film Coefficients	false
Material HVAC		_	Insulation Minimum R-value (ft^2 F h/Btu)	R-38
	Name: 189.1-2009 Nonres 1A Attic Floor Type: OS:Construction		Construction Type	Attic
			Construction	Attic
	Name: 189.1-2009 Nonres 1A Door Non-Swinging		Climate Zone	ASH
	Type: OS:Construction		OpenStudio Type	OS:C
	Name: 189.1-2009 Nonres 1A Door Swinging		Standard	ASH
	Type: OS:Construction		Standard Type	Nonr
	Name: 189.1-2009 Nonres 1A Exposed Floor Mass Type: OS:Construction		Arguments	
	Name: 189.1-2009 Nonres 1A Ext Slab Unheated- 4in Slab without Carpet Type: OS:Construction	•	Files	
	Name: 189.1-2009 Nonres 1A Ext Slab Unheated- 4in Slab with Carpet Type: OS:Construction		189.1-2009 Nonres 1A Attic Floor_v7.1.0.idf 189.1-2009 Nonres 1A Attic Floor_v0.9.3.os 189.1-2009 Nonres 1A Attic Floor_v0.9.3.os	sm
	Name: 189.1-2009 Nonres 1A Ext Slab Unheated- 8in Slab without Carpet Type: OS:Construction		Sources	
	Name: 189.1-2009 Nonres 1A Ext Slab Unheated- 8in Slab with Carpet Type: OS:Construction		Tags Construction Assembly.Floor.Attic Floor	
	Name: 189.1-2009 Nonres 1A Ext Wall Mass Type: OS:Construction			
	Name: 189.1-2009 Nonres 1A Ext Wall Metal Building			

SERVICE HOT WATER




• Add a water heater tank to a plant loop:



• Add service hot water plant loop:

• Add a fixture:

• Add service hot water definition

	Loads		My Model Library Edit	
	People Definitions 🛛 🖪	Name: Water Fixture Definition	Ruleset Schedules	•
	Lights Definitions 🛛 🖪	End Use Subcategory:	Compact Schedules	•
	Luminaire Definitions 🛛 🔍	General Peak Flow Rate:	Constant Schedules	•
	Electric Equipment Definitions	1.000155 gal/min	Year Schedules	•
B	Gas Equipment Definitions	Target Temperature Schedule:	Fixed Interval Schedules	•
	Steam Equipment Definitions	Drag From Library	Variable Interval Schedules	•
	Other Equipment Definitions	Sensible Fraction Schedule:	Constructions	•
	Internal Mass Definitions 🔌	Drag From Library	Internal Source Constructions	•
X	Water Use Equipment Definitions	Latent Fraction Schedule:	C-factor Underground Wall Constructions	•
	Water Fixture Definition		F-factor Ground Floor Constructions	•
6	·	Drag From Library	Window Data File Constructions	•
0	$\left(\begin{array}{c} \end{array} \right)$			
	Drag From Library			
	 2 2 3 			

• DOE Reference Buildings

□ Section 5.1.6 Service Water Heater Demand

	Use	Rate		np. at ture	
Space Type	gal/h	L/h	۴	°C	Data Sources
Guest room (small hotel)	1.75	6.6	110	43	Jiang et al. 2008, ASHRAE 2007
Guest room (large hotel)	1.25	4.7	110	43	Jiang et al. 2008, ASHRAE 2007
Laundry (small hotel)	67.5	255.5	140	60	Jiang et al. 2008, ASHRAE 2007
Laundry (large hotel)	156.6	592.8	140	60	Jiang et al. 2008, ASHRAE 2007
Restrooms (primary school)	56.5	214.0	110	43	ASHRAE 2007
Restrooms (secondary school)	104.4	395.0	110	43	ASHRAE 2007
Gym (secondary school)	189.5	717.2	110	43	ASHRAE 2007
Small office	3.0	11.4	110	43	Jarnagin et al. 2006, ASHRAE 2007
Medium office (per floor)	9.9	37.5	110	43	Jarnagin et al. 2006, ASHRAE 2007
Large office (per floor)	21.3	80.6	110	43	Jarnagin et al. 2006, ASHRAE 2007
Apartment	3.5	13.2	110	43	Gowri et al. 2007
Outpatient healthcare	30.0	113.5	110	43	Doebber et al. 2009
Hospital					
ER waiting room	1.0	3.8	120	49	Engineering judgment
Operating/surgical cystoscopic	2.0	7.6	120	49	Engineering judgment
Laboratory	2.0	7.6	120	49	Engineering judgment
Patient room	1.0	3.8	120	49	Engineering judgment

Table 11 Peak Service Hot Water Demand and Data Sources

- Make reasonable assumptions for the water heater temperature:
 - Most households require about 120 °F
 - Some manufacturers set water heater thermostats at 140 °F, which also slows mineral buildup and corrosion in your water heater and pipes
 - Water heated at 140°F also poses a safety hazard (scalding)

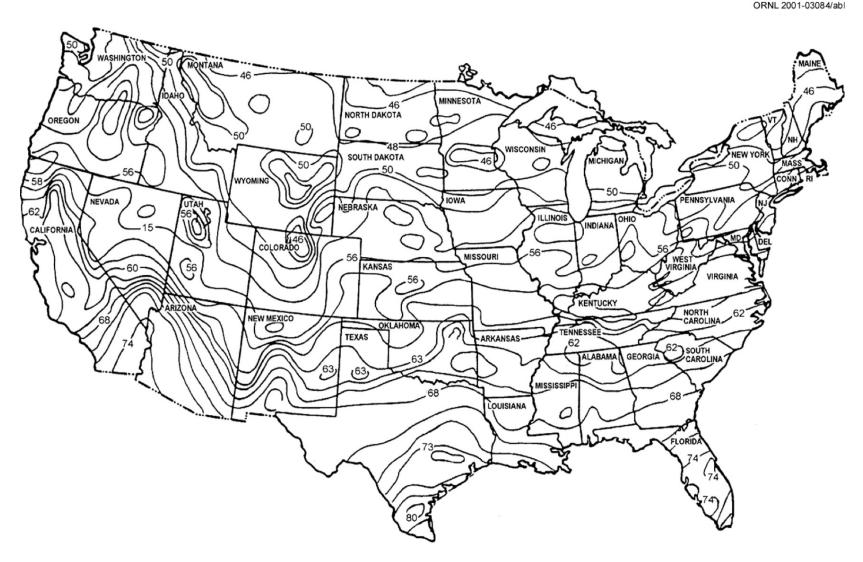
- Make reasonable assumptions for the flow rates and sizes. For example for residential units:
 - Small size: A 50 to 60-gallon storage tank is usually sufficient for 1 to 3 people
 - Medium size: A 80-gallon storage tank works well for 3 to 4 people
 - Large size: A large tank is appropriate for four to six people

• You can use the OpenStudio measures:

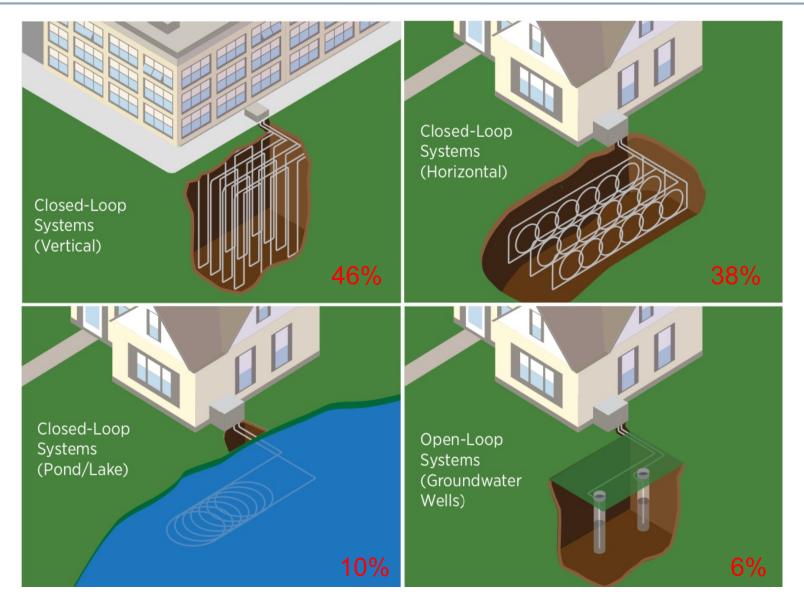
	Online BCL	
Q [Check All
Categories	Service Water Heating	8
Equipment People HVAC	Name: Set Water Heater Efficiency, Heat Loss, and Peak Water Flow Rate Measure Type: ModelMeasure	Г
Refrigeration Service Water Heating Water Use Water Heating	Name: Set Site Water Mains Temperature Measure Type: ModelMeasure	П
Distribution Onsite Power Generation Whole Building	Name: AedgK12Swh Measure Type: ModelMeasure	<u> </u>
 ⊕ Economics ⊕ Reporting 	Name: AedgOfficeSwh Measure Type: ModelMeasure	M
	Name: ZEDG K12 SWH Measure Type: ModelMeasure	M
	Name: Add SWH Loop Measure Type: ModelMeasure	Ø
	Name: Water Heater Mixed Multiplier Measure Type: ModelMeasure	Г
	Name: Water Heater Mixed Percent Change Measure Type: ModelMeasure	п

- You can use the OpenStudio measures:
 - First, use "Add SHW Loop"

▶ People	A Name	
► HVAC	Add SWH Loop	
Refrigeration	Description	
	Simply adds a SWH loop based on usual inp	outs.
Service Water Heating	4	
▶ Water Use	Modeler Description	
▼ Water Heating	4	
5 BCL Add SWH Loop		
BCL AedgK12Swh		
BCL AedgOfficeSwh	System Name.	
BCL ZEDG K12 SWH		
Distribution	Space Type.	


- Second, use "ZEDG K12 SHW"

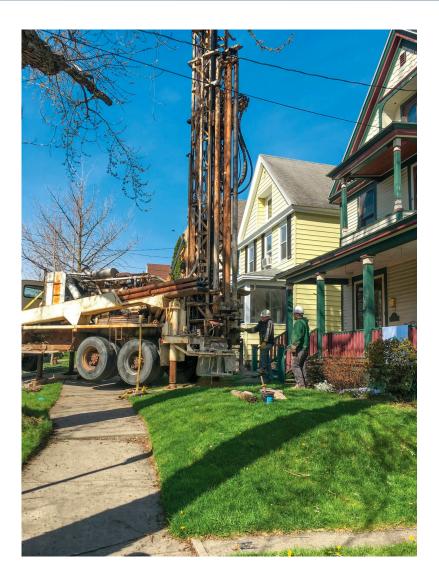
People	▲ Name
HVAC	ZEDG K12 SWH
Refrigeration	Description
Service Water Heating	Use 90% efficient natural gas-fired storage tank water heater. Water use demand is caluciated per student.
Water Use	Modeler Description
Water Heating	4
BCL Add SWH Loop	
BCL AedgK12Swh	
BCL AedgOfficeSwh	Total Cost for Kitchen System (\$).
BCL ZEDG K12 SWH	0
Distribution	Total Number of Students.

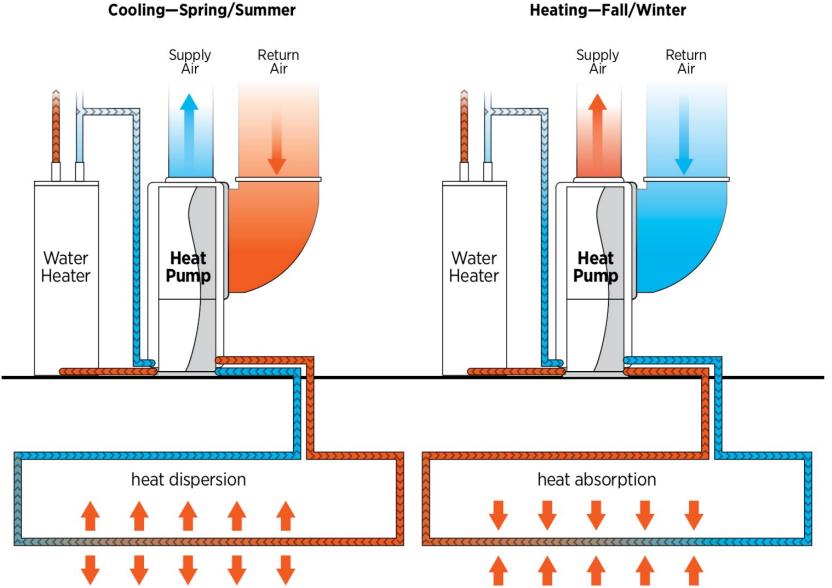

GROUND SOURCE HEAT PUMP (EXTRA)

- Ground Source Heat Pump (GHP) benefits from:
 - □ Relative constant ground temperature (about 30 ft)
 - 50 °F (10 °C) to 59 °F (15 °C)
 - Soil temperature warmer than air in winter and colder than the air temperature in summer
 - □ Thermal storage capacity of the ground
 - Sink in summer time
 - Source in winter time

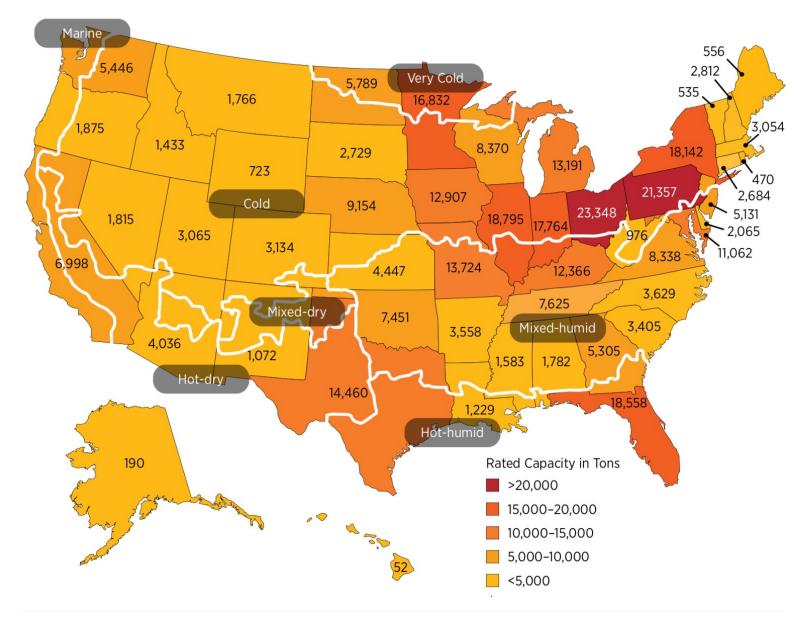
• Undisturbed ground temperature in the U.S.:

- Key components are:
 - □ A heat exchanger
 - A group of pipes buried in the ground
 - Immersed in a surface water body
 - Exchanging heat directly with ground water
 - Distribution systems
 - Ductwork for forced air heating/cooling and/or,
 - In-floor piping for radiant heating
 - □ Heat Pump (HP)
 - Connect the distribution system with the ground heat exchangers


What is the benefits and setbacks of each system? Which is one is more common in the US? $\frac{102}{102}$

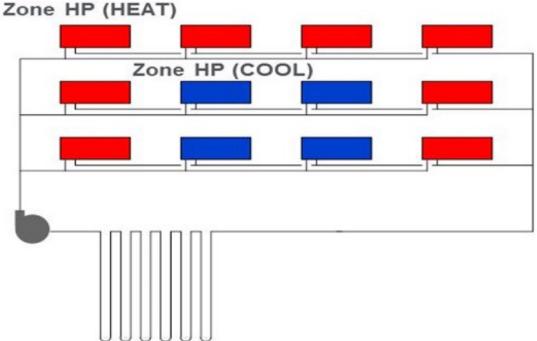


Installation of a horizontal closed-loop ground heat exchanger for a geothermal heat-pump system. Photo credit: Ed Lohrenz/ International Ground Source Heat Pump Association

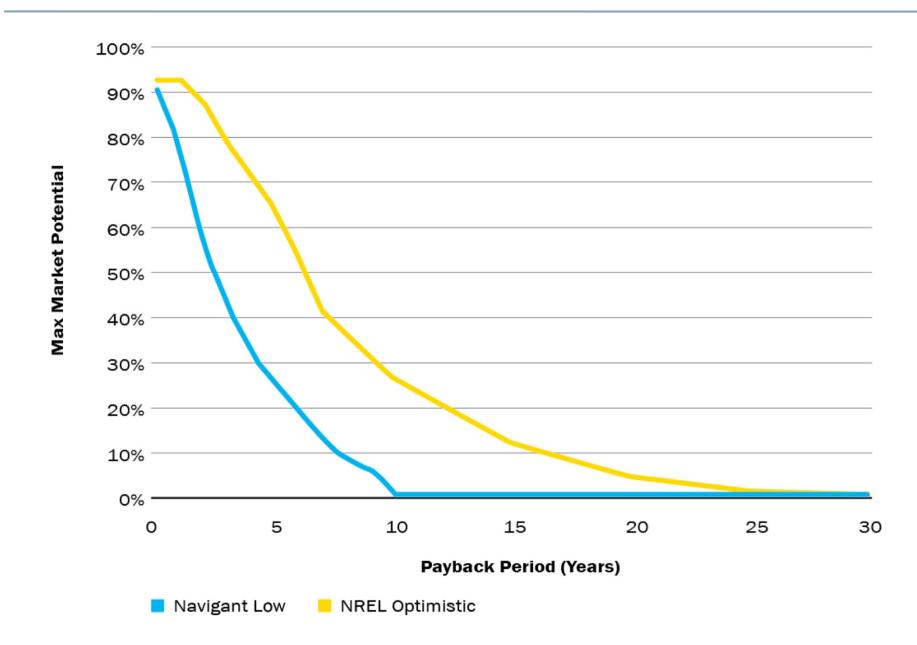


https://www.oldhouseonline.com/repairs-and-how-to/geothermal-options-old-homes https://www.homebuilding.co.uk/ground-source-heat-pumps-need-know/ GeoVision Report 2019

- Installed capacity in the U.S. was 16,800 MW (or 4.8 million cooling tons) as of 2016
- GHP is being used more in residential buildings than commercial buildings
- In residential buildings:
 - □ 75% in new construction
 - □ 25% in retrofitted homes
- GHPs account for 1% of the U.S. HVAC market


• 10 states account for 52% of the GHP shipments:

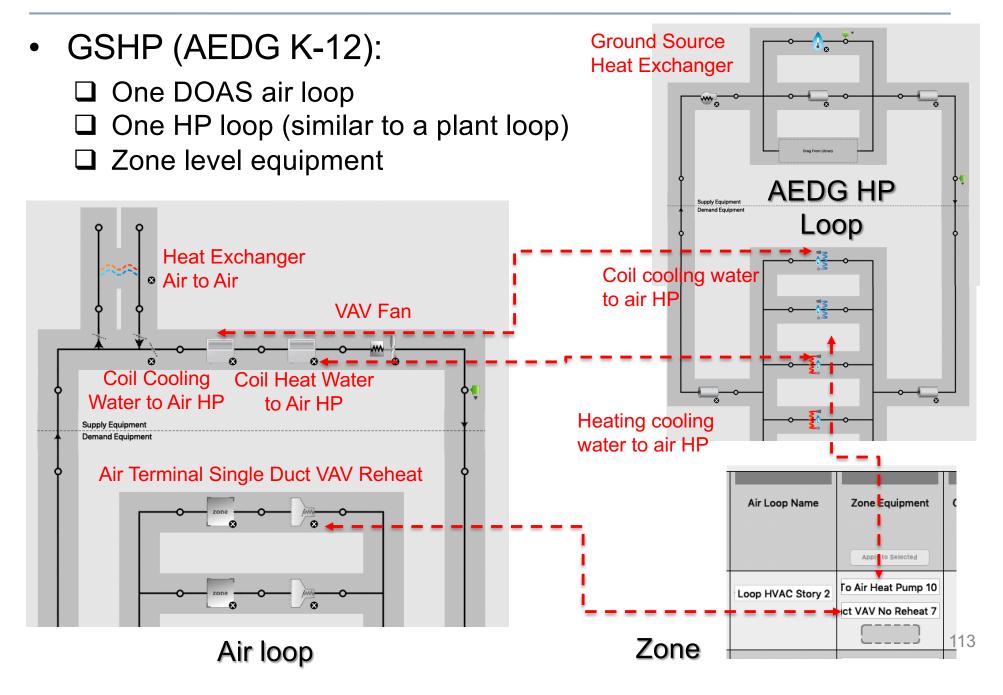
Florida, Illinois, Indiana, Michigan, Minnesota, Missouri, New York, Ohio, Pennsylvania, and Texas


Concentrated in areas with cold climate and high population density

- The most common GHP system configuration in the US homes are:
 - □ A packaged heat pump
 - Split water-to-air heat pump (WAHP) with a centrally ducted forced-air distribution system that conditions:
 - One floor of a multistory home
 - The entire house

- For commercial buildings distributed GHP systems are the most common:
 - □ Each zone of the building is conditioned with an individual WAHP
 - Multiple WAHPs are connected to a common water loop
 - □ Use a two-pipe water loop with a variable speed central pumping
 - The cooling capacities of the WAHP units usually range from 0.5 to 20 ton (1.74–70 kW)

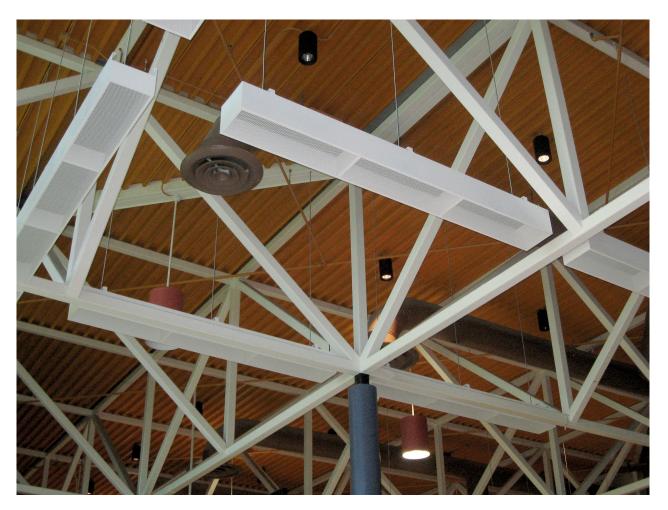
- Central GHP systems use large heat pumps or modular water-to-water heat pumps to:
 - Generate hot and/or chilled water for delivery to the conditioned space (a good option for retrofitting existing central chiller and boiler systems)
 - To satisfy the simultaneous demands for heating and cooling in different zones of a building (what's the pipe configuration?)



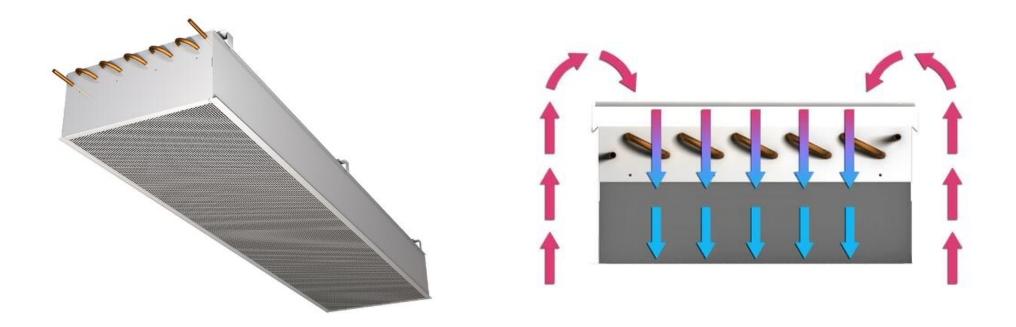
- Cost depends on the geological conditions, building loads, system designs, and the HP equipment. For a typical:
 - □ Home varies from \$3,000 to \$5,000
 - □ Large-scale housing retrofit is about \$4,600 per ton (in 2006)
 - □ For commercial buildings, the cost ranges are (in 2012):

Item	Cost
	(\$)
Water-source heat pump	$2.5-4/ft^2$
Closed-loop vertical GHX	6.76–15/ft
Total system	$13 - 26/ft^2$

• A simple payback is about 8-14 years for a retrofit project and shorter for a new construction.


Ground Source Heat Pump (AEDG K-12)

PASSIVE CHILLED BEAMS (EXTRA)


Passive Chilled Beams

- There are two types of chilled beams
 - □ Active (air comes from the AHU and is pressurized)
 - □ Passive (no moving part)

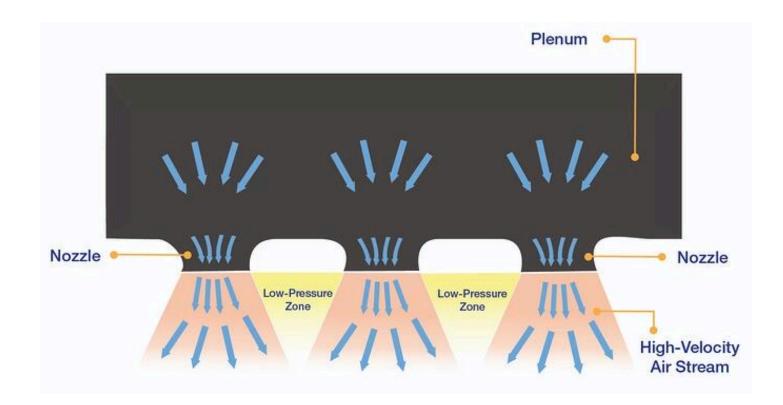
Passive Chilled Beams

- It works based on the natural convection
 - □ Water temperature is about 57 F (15-20 F colder than the air temperature)

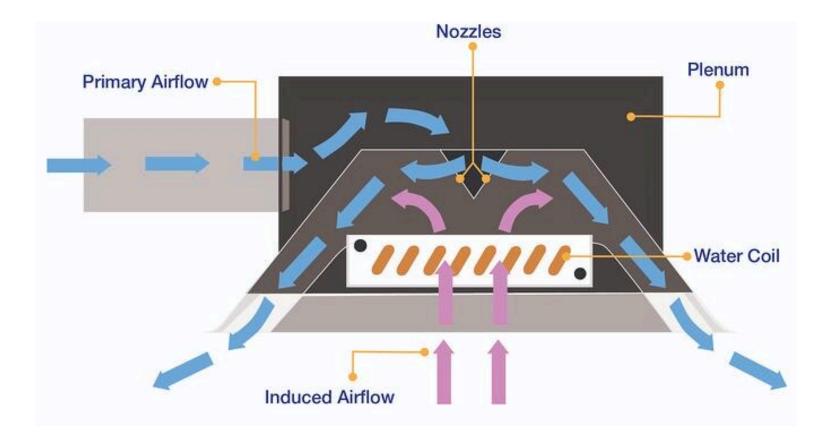
Passive Chilled Beams

- Since moving parts are involved, it is energy efficient
- It is usually used with other air systems such as
 - □ Displacement ventilation
 - Under floor
 - □ Active chilled beams

CHILLED CHILLED BEAMS (EXTRA)


Active Chilled Beams

• Relatively energy efficient over time, reduce the size of the ductwork, and lower the noise level


Active Chilled Beams

 From AHU to plenum – and then pressurized and move to the space

Active Chilled Beams

The ratio of air through nozzles versus the induced is important

