CAE 464/517 HVAC Systems Design Spring 2023

April 18, 2023

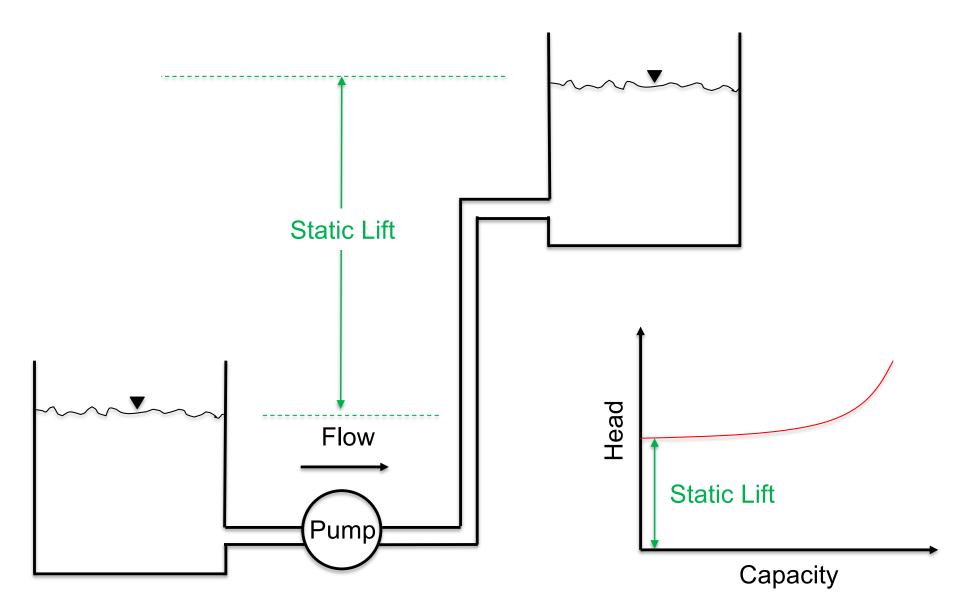
Hydronic systems: Boiler and chiller selection and additional examples

Built Environment Research @ IIT] 🐋 🕣 🍂 🦯

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

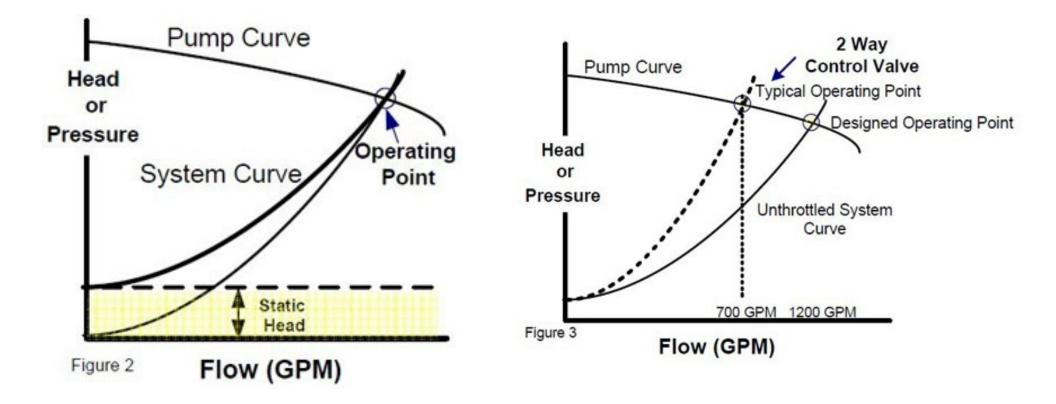
Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

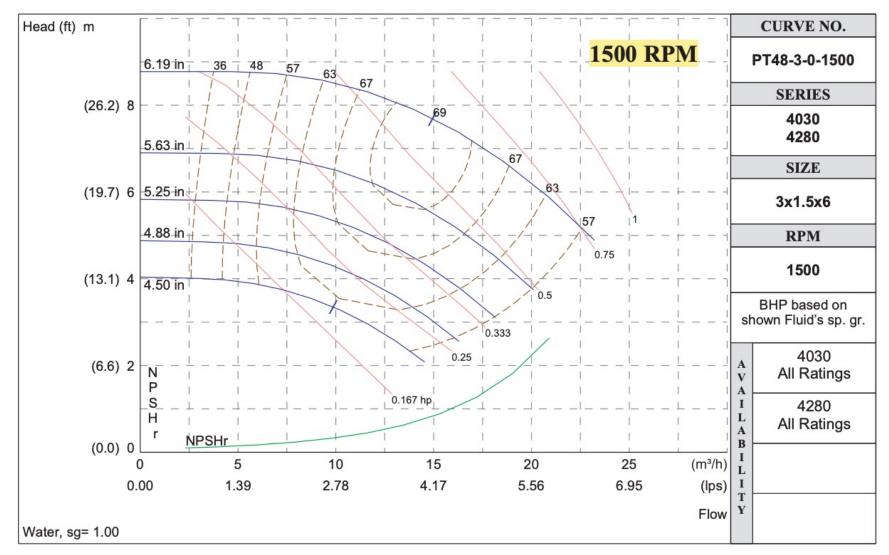

ANNOUNCEMENTS

Announcements

- Assignment 5 is due tonight (optional) solution will be posted immediately
- If you forget about your contribution page for Project Part 2, you should email it to me immediately. Otherwise, your project will not be graded.

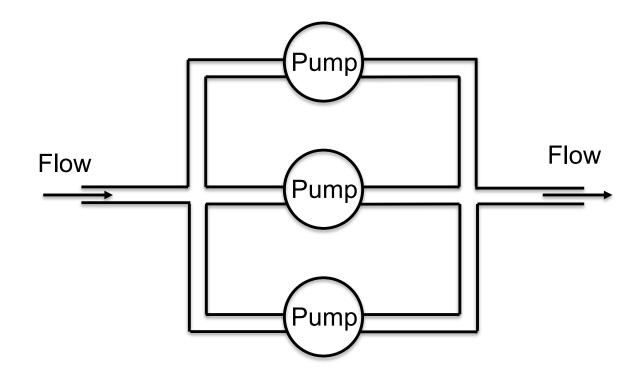

RECAP

• How is the system curve for this one?



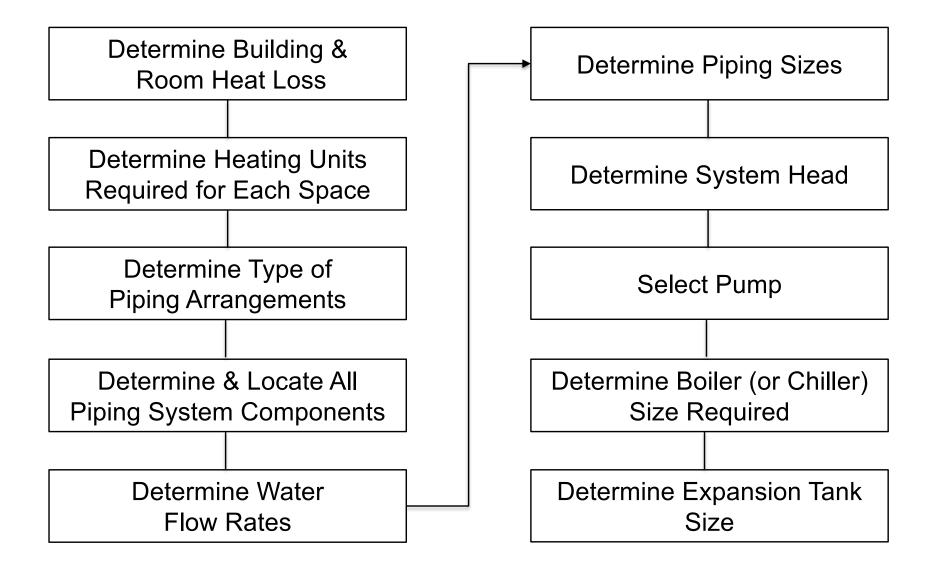
Recap

• System curve can change over time

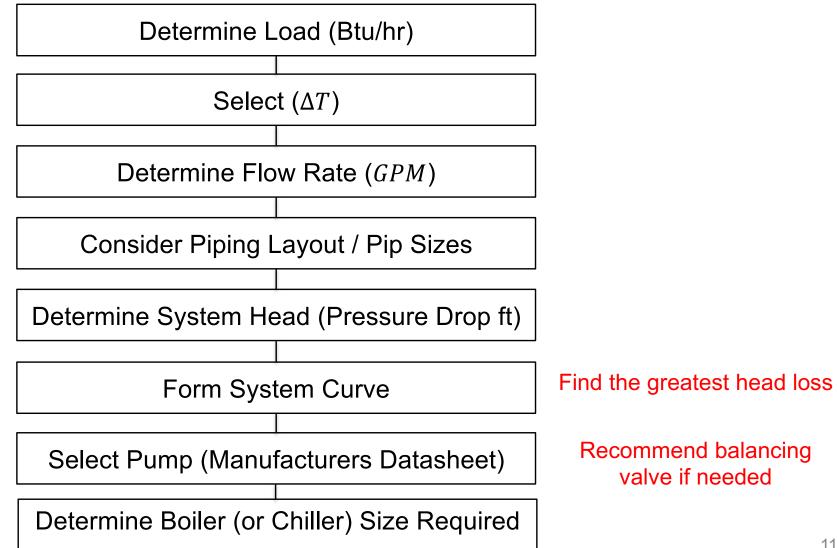


• Manufacture 1:

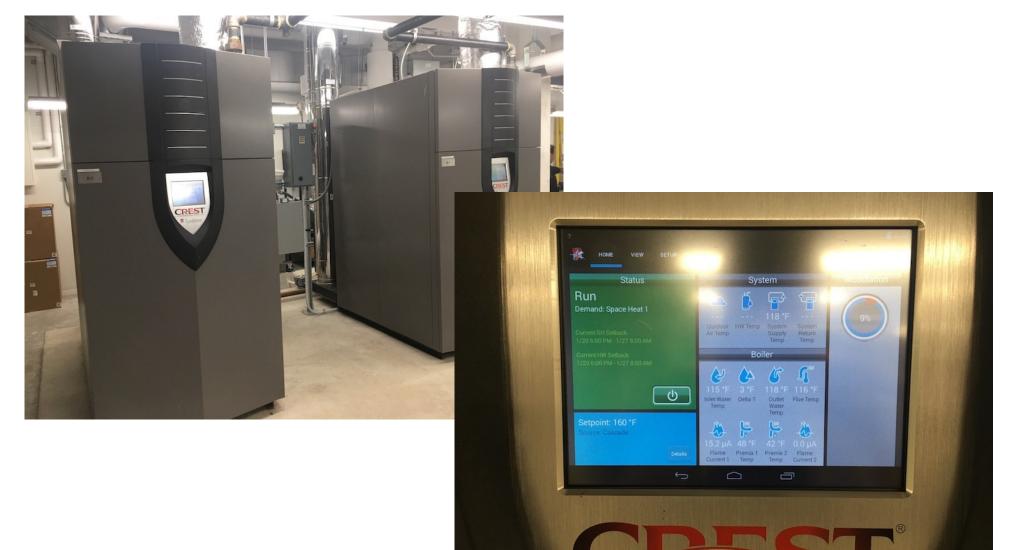
Recap


- Pumps in parallel:
 - Operate at the same head
 - □ The total flow rate in the system is the sum of each pump flow rate

DESIGN PROCEDURE


Design Procedure

Overall design procedure:


Design Procedure

Pump design procedure: •

BOILER SELECTION AND HEAD LOSSES

• An example from the campus

- Manufacture 1 (VIESMANN):
 - Website Link: <u>https://www.viessmann-us.com/</u>
 - Click on the "Product Finder" to select your product:

I'm interested in products for e.g. residential building \sim and looking for e.g. gas boiler \sim , especially e.g. gas condensing boiler \sim .								
VIESMANN	Q Search	Contact	International	Ø Products	Ø Product finder			

- Manufacture 1 (VIESMANN):
 - Review the capacity first range first

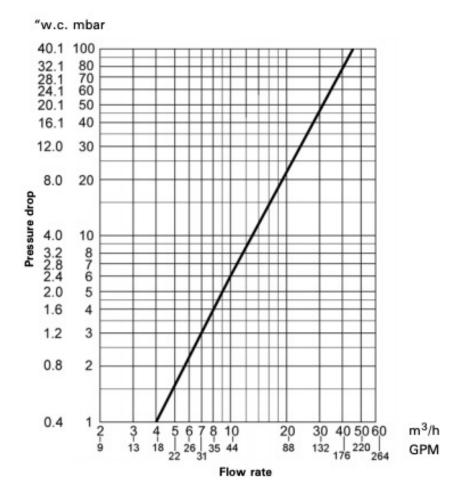
I'm interested in products for Commercial v and looking for Gas boilers v, especially Gas condensing boilers v.

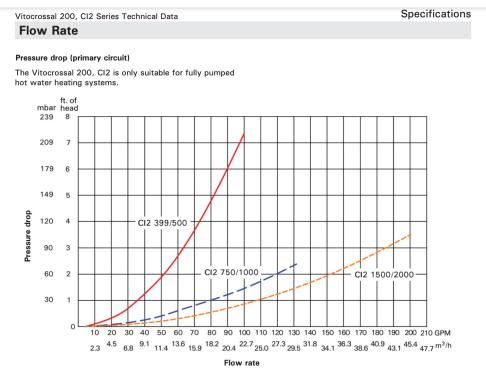
4 products found

> Vitodens 200-W Cascade Systems

Prefabricated multiple boiler system, with gas-fired condensing boilers. Rated input: 60 to 4240 MBH. For residential homes, apartment buildings and commercial applications, new buildings and retrofits.

> Vitocrossal 200


Gas-fired condensing boiler with fully-modulating pre-mix cylinder burner. Rated input: 133 to 2245 MBH. For apartment buildings, commercial applications and district heating, new buildings and retrofits.


> Vitocrossal 300 CA3

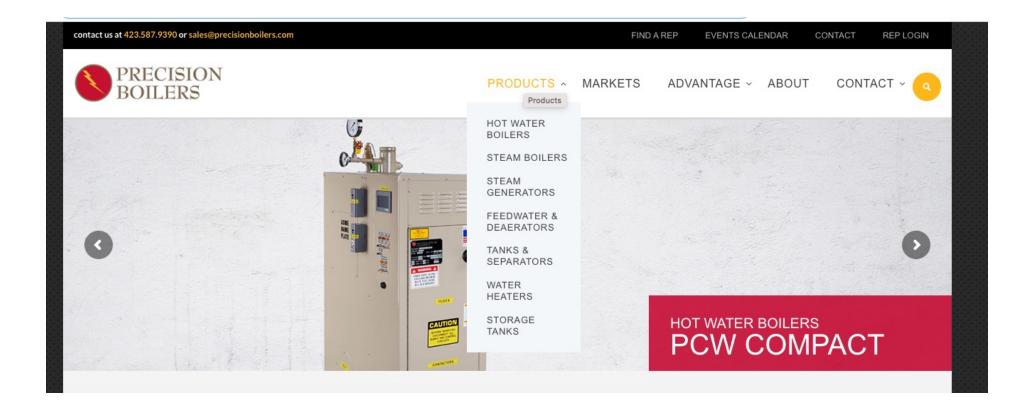
Gas-fired condensing boiler with Inox-Lamellar heat exchanger surface of high-grade stainless steel. Rated input: 2500 to 6000 MBH. For apartment buildings, commercial applications and district heating, new buildings and retrofits.

- Manufacture 1 (VIESMANN):
 - □ Click on Downloads (e.g., technical data, CAD file, ...)
 - □ Pay attention to specs (e.g., pressure drop, efficiency, capacity, ...)

- Manufacture 1 (VIESMANN):
 - Pay attention to specs (e.g., pressure drop, efficiency, capacity, ...)

Recommended Flow Rates CI2

CI2 model		399	500	750	1000	1500	2000
20°F ∆t	GPM	39	48	73	97	146	194
40°F ∆t 100°F ∆t	GPM GPM	19 8	24 10	36 15	49 19.5	73 29	97 39
11°C ∆t	m ³ /h	8.9	10.9	16.6	22.0	33.2	44.1
22°C ∆t 56°C ∆t	m ³ /h m ³ /h	4.3 1.8	5.5 2.3	8.2 3.4	11.1 4.4	16.6 6.6	22.0 8.9

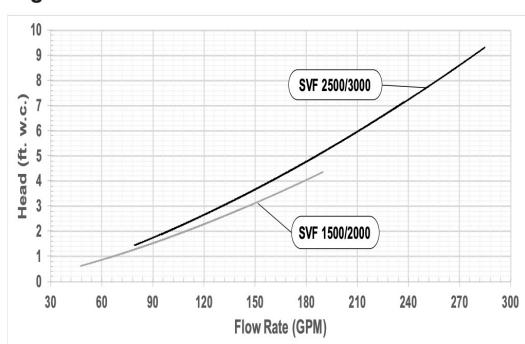

 $\triangle t = temperature difference$

This boiler does not require a flow switch.

Minimum flow rate based on: 100°F $\triangle t$ (56°C $\triangle t$) Maximum flow rate based on: 20°F $\triangle t$ (11°C $\triangle t$)

- Manufacture 1 (VIESMANN):
 - Some of the links for the CAD drawings and Revit models exist here:
 - https://www.viessmann-us.com/en/services/downloads/cad.html
 - https://www.vitoteam.com/Pages/eng/cad/drawings.php?b1=CU3A -26&b2=CU3A-35&b3=CU3A-45&b4=CU3A-57&clean=Y&title=Vitocrossal+300

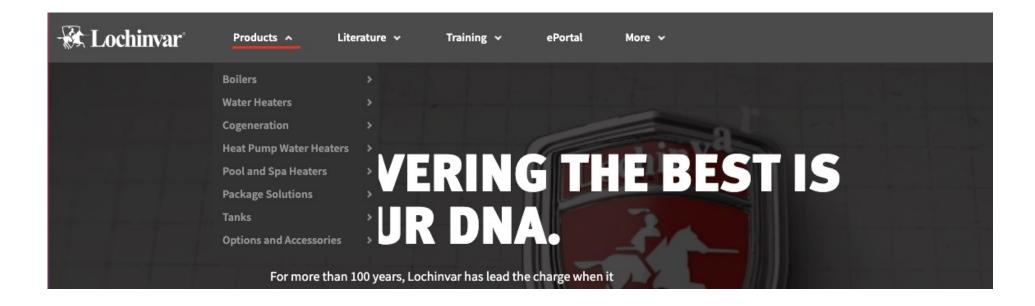
- Manufacture 2 (Precision Boilers):
 - Website Link: <u>https://precisionboilers.com/</u>
 - □ Click on the "Products" to select your product:

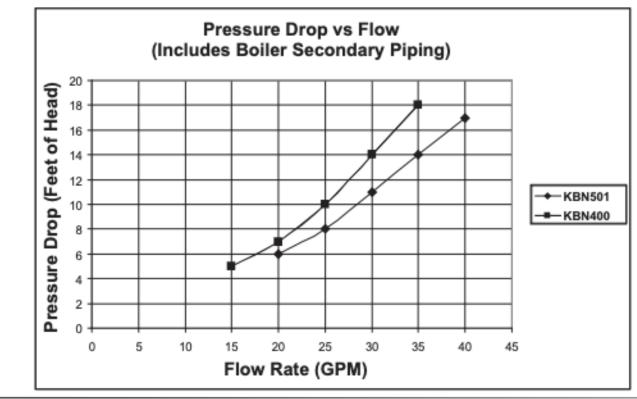


- Manufacture 3 (Weil-McLain):
 - Website Link: <u>https://www.weil-mclain.com/products/boilers</u>
 - □ Click on the "Products" to select your product:

		Log In Careers Contac
PRODUCTS CONTRACTOR		SMALL BUSINESS
Boilers	Indirect Fired Water Heaters	boards
Heat Exchangers	Controls Disco Produ	ntinued ucts WEIL-M.LAIN °
Product Comparison Tool De designed to fit the tightest space and optimize operation for comfort	e apartment complexes, the Weil-McLain name rt. Our high quality gas and oil-fired boilers can es, and feature boiler controls that are easy to use while maximizing energy savings.	Commercial Boilers The Weil-McLain brand offers a broad spectr and combination oil/gas boilers for commerce restaurant, hotel, casino, or any other commerce McLain boilers to provide the solution that d

- Manufacture 3 (Weil-McLain):
 - □ For a specific boiler: <u>https://www.weil-mclain.com/products/svf-1500-</u> 3000
 - Look at the datasheet: <u>https://www.weil-</u>


mclain.com/sites/default/files/field-file/Weil-McLain_SVF-1500-3000-TechDataSheet_WM2002-web.pdf


• Manufacture 4 (Lochinvar):

Webpage Link: <u>https://www.lochinvar.com/</u>
 Click on "Products"

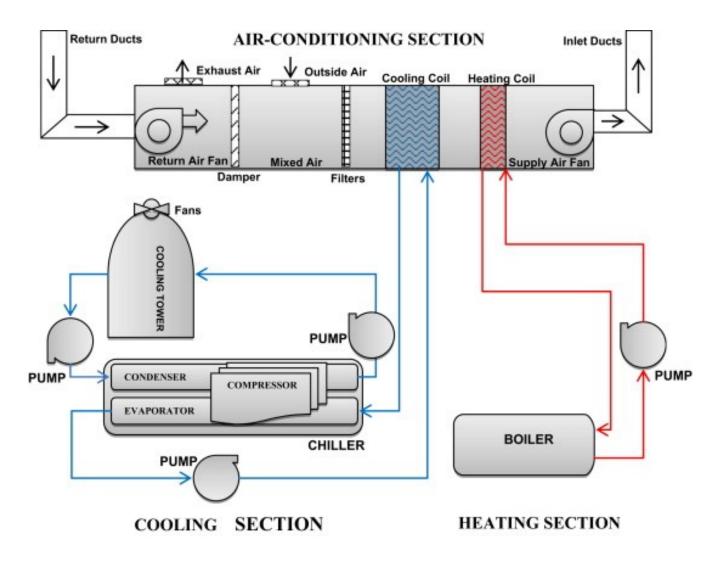
- Manufacture 4 (Lochinvar):
 - For example, looking into the pressure drop: <u>https://www.lochinvar.com/lit/455215KBXII-I-</u>
 <u>O_Rev%20AB_100161488_2000013409%20(34739).pdf</u>

Figure 6-5 Pressure Drop vs. Flow - Models 400 and 501

CLASS ACTIVITY

Class Activity

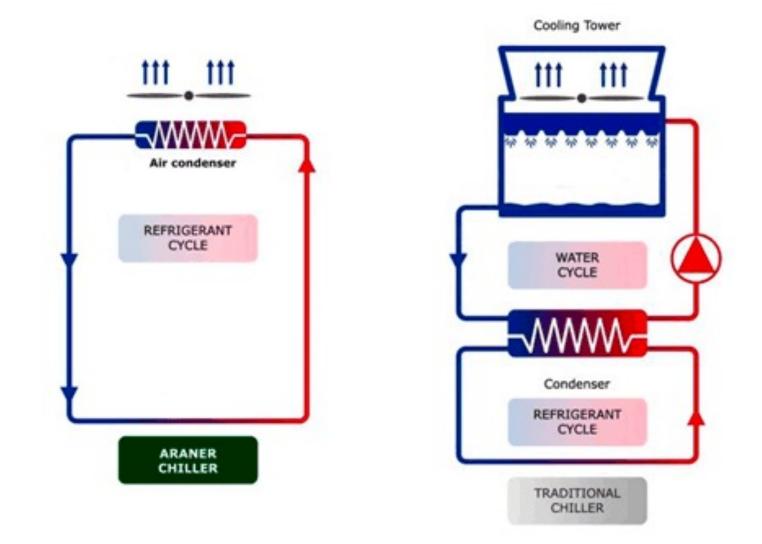
- Select one boiler and identify
 - □ Max capacity
 - GPM
 - □ Temperature difference
 - □ Pressure drop
 - □ BIM files


CHILLER SELECTION

Cycle

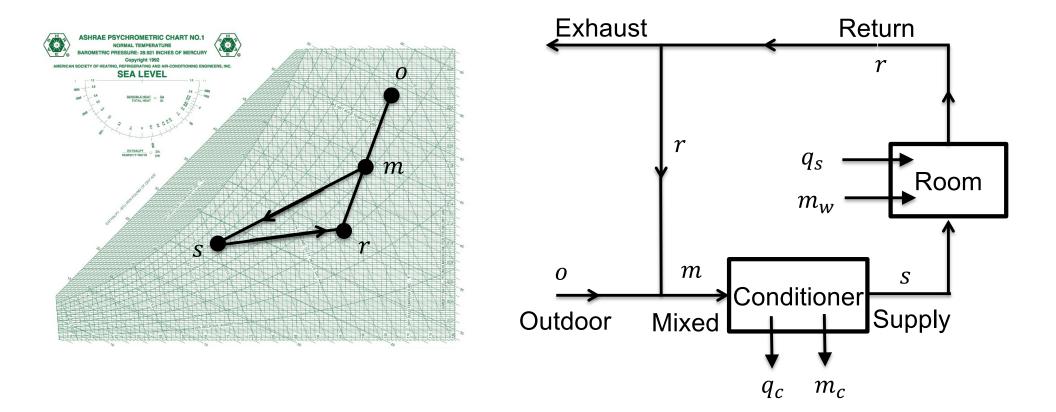
- □ Vapor compression
- □ Absorption

Heat rejection
 Sensible to air
 Evaporative to air
 Water or ground


• How many HVAC loops do you see here?

- The cooling is the most complex one to determine the number of loops:
 - Do we have a chilled water loop or not?
 - □ If it is a chilled water loop, do we have an air cooled or a water cooled chiller?

• Water cooled vs air cooled chillers



Chiller Selection Considerations

- Peak load
 Size ranges covered by different types vary
- Load characteristics
 Operating temperatures
 Load variation
- Energy availability/cost
 Maintenance and reliability
 Compatibility (retrofit)

- The chiller selection process entails the following steps:
 - 1. Determine the cooling load
 - 2. Consider the outdoor condition
 - 3. Determine the coolant type (e.g., chilled water with glycol), temperature, and flow rate
 - 4. Review the chiller specifications and datasheets
 - 5. Review the performance of the chiller under the selected outdoor condition (i.e., capacity (Ton or kW), water flow rate)
 - 6. Calculate the temperature difference between the leaving water of the chiller and the return water of the chiller
 - 7. Consider the capacity correction factor in your calculations (i.e., anti-freeze factor, power factor, defrosting factor, quiet factor, altitude factor)

• How do we account for the outdoor air/return fractions

Can you write the equations?

• For example, consider this Samsung chiller:

https://www.samsunghvac.com/DVM-Chiller/DVM-Chiller

• Determine the cooling load:

Utilize the cooling load calculation

□ System schematic and space conditioning processes

 Determine the chiller size, coolant type (e.g., chilled water with glycol), temperature, and flow rate

 $\Delta T = LWT - EWT$

$$\frac{Btu}{hr} = GPM \times 8.33\Delta T(^{\circ}F)$$

$$Ton = \frac{\Delta T(^{\circ}F) \times GPM}{24}$$

$$ton = \frac{\frac{Btu}{hr}}{12,000}$$

$$\Delta T(^{\circ}\mathrm{F}) = \frac{12,000 \times Ton}{500 \times GPM}$$

• Look at the nomenclature:

Nomenclature

Model Nar	ne .									
AG	015	к	S	V	А	F	Н	/	AA	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		Buyer	

(1) Clas	sification
AG	Chiller
AM	DVM

(5) Feature1							
v	Inverter						
V	Inverter						

(2) Capacity

USRT (3 digits)

6)	Feature2
----	----------

A Standard + General Temp.+ Module

(3) Version

(-)	
F	2013
н	2014
J	2015
к	2016

(4) Product Type

_

S	Set
х	Outdoor Unit
N	Indoor Unit

(7) Rating Voltage

F	3Ø, 208~230V, 60Hz
н	3Ø, 380V, 60Hz
J	3Ø, 460V, 60Hz

(8) Mode

(0) 11100	•
н	Heat Pump

• Understand the performance and power requirements:

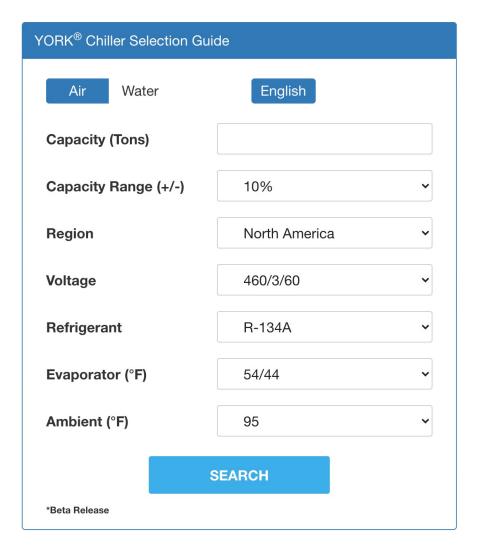
DVM Chiller

Туре						DVM Chiller	DVM Chiller	DVM Chiller	DVM Chiller
Model Name						AG010KSVAFH/AA	AG015KSVAFH/AA	AG010KSVAJH/AA	AG015KSVAJH/AA
					α # V ⊔~				
Power Supply					Φ, #, V, Hz	3,3,208~230,60	3,3,208~230,60	3,3,460,60	3,3,460,60
Mode					-	HEAT PUMP	HEAT PUMP	HEAT PUMP	HEAT PUMP
Performance	Ton				usRT	10	15	10	15
	HP				HP	12	18	12	18
	Capacity	Cooling	Amb. 95°F, Entering/Le	aving Temp 55/44°F	kBtu/h	120.0	168.0	120.0	168.0
	(Rated)	Heating	Dry/Wet Bulb 47/43°F	Leaving Temp. 105°F	kBtu/h	128.0	182.0	128.0	182.0
				Leaving Temp. 120°F	kBtu/h	120.0	171.0	120.0	171.0
			Dry/Wet Bulb 17/15°F	Leaving Temp. 105°F	kBtu/h	84.0	90.0	84.0	90.0
				Leaving Temp. 120°F	kBtu/h	80.0	85.0	80.0	85.0
Power	Power	Cooling	Amb. 95°F, Entering/Le	aving Temp 55/44°F	kW	10.71	16.63	10.71	16.63
	Input	Heating	Dry/Wet Bulb 47/43°F	Leaving Temp. 105°F	kW	9.77	15.17	9.77	15.17
				Leaving Temp. 120°F	kW	11.54	17.45	11.54	17.45
			Dry/Wet Bulb 17/15°F	Leaving Temp. 105°F	kW	11.20	12.00	11.20	12.00
				Leaving Temp. 120°F	kW	12.70	13.08	12.70	13.08
	Current	Cooling	Amb. 95°F, Entering/Le	aving Temp 55/44°F	A	29.59	47.24	15.81	25.25
	Input	Heating	Dry/Wet Bulb 47/43°F	Leaving Temp. 105°F	A	26.99	41.91	14.43	22.40
				Leaving Temp. 120°F	A	31.88	48.20	17.04	25.77
			Dry/Wet Bulb 17/15°F	Leaving Temp. 105°F	A	30.94	33.15	16.54	17.72
				Leaving Temp. 120°F	A	35.08	36.13	18.75	19.31

 Review the temperature difference and impact of outdoor air temperature on the performance:

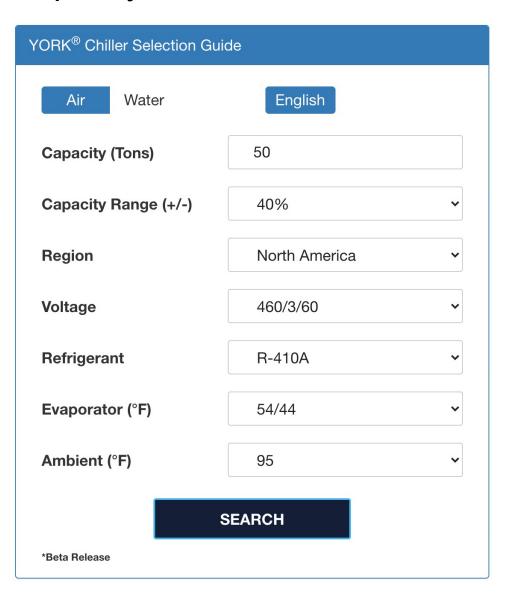
Cooling ($\Delta T = 10^{\circ}F$)

AG010KSV***


8		Outdoor Air Temperature (*F, DB)																						
		55			65	4		75			85			95 105					115			118.4		
LWT	тс	PI	Water flow	тс	PI	Water flow	тс	PI	Water flow	тс	PI	Water flow	тс	PI	Water flow	тс	PI	Water flow	тс	PI	Water flow	тс	PI	Water flow
	Ton	kW	GPM	Ton	kW	GPM	Ton	kW	GPM	Ton	kW	GPM	Ton	kW	GPM	Ton	kW	GPM	Ton	kW	GPM	Ton	kW	GPM
14 2)	7.671	5.763	18.410	7.499	7.002	17.995	7.251	7.814	17.401	6.575	8.425	15.800	5.930	9.488	15.800 1	5.258	10.745	15.800 3	4.004	10.629	15.800 2)	3.583	9.781	15.800 1
23 ²⁾	9.853	6.179	23.646	9.844	7.431	23.624	9.738	8.213	23.369	9.293	8.845	22.302	8.844	9.977	21.224	7.793	11.179	18.701	6.340	11.531	15.800 3)	5.673	11.091	15.800 31
32 2)	9.954	6.257	23.887	9.946	7.624	23.867	9.839	8.530	23.611	9.394	9.160	22.544	8.945	10.299	21.466	7.914	11.567	18.992	6.795	11.881	16.308	6.081	11.521	15.800 1
41	10.859	6.421	26.059	10.857	7.819	26.054	10.748	8.742	25.792	10.299	9.463	24.715	9.749	10.621	23.395	8.660	11.886	20.783	7.274	12.268	17.456	6.550	11.988	15.800 3
44	11.110	6.490	26.653	11.108	7.904	26.653	11.004	8.828	26.412	10.550	9.550	25.314	10.000	10.710	24.000	8.860	11.977	21.272	7.430	12.273	17.820	6.646	11.909	15.949
48	11.820	6.607	28.368	11.820	8.027	28.368	11.670	8.950	28.013	11.250	9.780	27.003	10.620	10.920	25.487	9.410	11.900	22.577	7.890	12.090	18.936	7.095	11.697	17.026
52	12.390	6.722	29.733	12.390	8.150	29.733	12.240	9.070	29.371	11.730	9.870	28.153	11.178	11.130	26.826	9.887	11.824	23.724	8.310	11.870	19.941	7.370	11.393	17.686
56	12.947	6.843	31.072	12.950	8.280	31.072	12.797	9.193	30.710	12.290	9.830	29.492	11.642	10.910	27.936	10.330	11.550	24.799	8.690	11.582	20.858	7.750	11.083	18.599
60	13.500	6.967	32.394	13.500	8.403	32.394	13.350	9.320	32.032	12.820	9.860	30.774	12.172	10.900	29.213	10.760	11.280	25.830	9.060	11.310	21.735	8.106	10.847	19.453
64.4	14.073	7.038	33.773	14.078	8.480	33.785	13.927	9.406	33.422	13.320	10.019	31.966	12.663	11.070	30.389	11.195	11.447	26.865	9.400	11.424	22.558	8.387	10.979	20.127

• Include the impact of correction factors:

1) Correction factor by % glycol


Anti-freeze		Et	hylene glyd	Propylene glycol							
	Freezing	Min.	Cor	rrection fac	ctor	Freezing	Min.	Co	Correction factor		
%wt	point (*F)	LWT (°F)	Capacity	Power Input	Pressure drop	point (°F)	LWT (°F)	Capacity	Power Input	Pressure drop	
0%	32.0	41.0	1.000	1.000	1.000	32.0	41.0	1.000	1.000	1.000	
10%	24.8	33.8	0.989	0.995	1.010	26.6	35.6	0.988	0.994	1.029	
20%	15.8	24.8	0.975	0.990	1.023	19.4	28.4	0.973	0.988	1.061	
30%	3.2	14.0	0.960	0.985	1.041	8.6	17.6	0.955	0.982	1.098	
40%	-9.4	14.0	0.943	0.980	1.064	-7.6	14.0	0.933	0.976	1.142	
50%	-34.6	14.0	0.924	0.975	1.082	-31.0	14.0	0.910	0.970	1.193	

• Let's look at another manufacturer:

https://chillerapps.york.com/chiller-selection-guide

• Add the chiller capacity:

• Review the suggested chillers:

< BACK	YORK [®] Chiller Selection R	esults						
	YCAL0043EE 37.2 Capacity (Tons) Standard Fans, Standard Compressor	14.45 IPLV, 10.11 EER						
	YCAL0046EE 39.4 Capacity (Tons) Standard Fans, Standard Compressor	14.66 IPLV, 10.16 EER						
	YLAA0041HE 39.6 Capacity (Tons) VSD Fans, Standard Compressor	In Stock (NA)						
↓F Dese 460V	YCAL0052EE 46.2 Capacity (Tons) Standard Fans, Standard Compressor cription: YORK 45 TON AIR COO	15.05 IPLV, 10.16 EER						
	lability: 0 uration: Standard Fans, Standar	d Compressor						
_	ils: YCAL0052EE ving: YCAL0052EE							
BIM: YCAL0052EE								
	rt Spec: YCAL0052EE RK [®] Chillers Brochure							

• Review the performance data:

....

Unit Tag	Qty	Model No	Net Cooling Capacity (ton.R)	Nominal Voltage	Refrigerant Type
CH-1	1	YCAL0052EE46XEBSDTX	46.23	460-3-60.0	R410A

PIN:							
YCAL0052EE	46XEBSDTXA	XXRLXXXX44	XX1XXXXXXX	SXXXPXX7XX	BXXNXXXXX		
510				550		 	

Evaporator	r Data	Evaporator Da	ta (Cont.)	Performance Data			
EWT (°F)	54.00	Min. Flow Rate (USGPM)	59.99	EER (Btu/W⋅h)	10.16		
LWT (°F)	44.00	Max. Flow Rate (USGPM)	Max. Flow Rate (USGPM) 300.0		15.05		
Design Flow Rate (USGPM)	110.6	Condenser	Condenser Data				
Pressure Drop (ft H2O)	9.22	Ambient Temp. Design (°F)	95.0	Physical [Data		
Fluid	Water	Altitude (ft)	0.000	Rigging Wt. (lb) 317			
Fouling Factor (h.ft ² .F/Btu)	0.000100	Compressor Type	Scroll - Hermetic	Operating Wt. (lb)	3208		
Fluid Volume (USGAL)	3.500						

Electrical Data										
Circuit	1	2	3	4						
Compressor RLA	23 / 23	23 / 23								
Fan QTY/FLA (each)	2/3.4	2/3.4								
High LRA Current	150 / 150	150 / 150								

Single Point									
Min. Circuit Ampacity	113								
Recommended Fuse/CB Rating	125								
Max. Inverse Time CB Rating	125								
Max. Dual Element Fuse Size (A)	125								
Unit Short Circuit Withstand (STD)	5 [kA]	Operating Co	Operating Condition Electrical Data						
Wires Per Phase	1	Compressor kW	47.90						
Wire Range (Lug Size)	4 AWG - 300 kcmil	Total Fan kW	6.720						
Starter Type	Across The Line	Total kW	54.62						

Look at another manufacturer:

Selection **Procedure**

The chiller capacity tables presented in the "Performance Data" section cover the most frequently encountered leaving water temperatures. The tables reflect a 10°F temperature drop through the evaporator. For temperature drops other than 10°F, fouling factors other than 0.0001 (in accordance with ARI Standard 550/590) and for units operating at altitudes that are significantly greater than sea level, refer to the "Performance Adjustment Factors" section and apply the appropriate adjustment factors. For chilled brine selections, refer to the "Performance Adjustment Factors" section for ethylene glycol adjustment factors

To select a Trane air-cooled chiller, the following information is required:

Design system load (in tons of refrigeration).

Design leaving chilled water temperature.

3

Design chilled water temperature drop.

л

2

Design ambient temperature. 5

Evaporator fouling factor.

An approximate evaporator chilled water flow rate can be determined by using the following formula: Tons x 24

GPM = Temperature Drop (Degrees F)

NOTE: Flow rate must fall within the limits specified in the "General Data" section of this catalog.

SELECTION EXAMPLE Given:

```
To calculate the approximate chilled
waterflow rate we use the formula:
GPM = Tons x 24
```

۸T

From the 60 ton unit table in the "Performance Data" section of this catalog, a CGAF-C60 at the given conditions will produce 56.6 tons with a system power input of 69.0 kw and a unit EER of 9.8

```
GPM = \frac{56.6 \text{ Tons x } 24}{10^{\circ}\text{F}} = 135.8
```

2

3

To determine the evaporator water pressure drop we use the flow rate (gpm) and the evaporator water pressure drop curves found in the "Performance Adjustment Factors" section of this catalog. Entering the curve at 135.8 gpm, the estimated pressure drop for a nominal 60 ton evaporator is 6.0 feet.

For selection of chilled brine units or applications where the altitude is significantly greater than sea level or the temperature drop is different than 10°F, the performance adjustment factors should be applied at this point.

For example:

Corrected Capacity = Capacity (unadjusted) x Appropriate Adjustment Factor

Corrected Flow Rate = Flow Rate (unadjusted) x Appropriate Adjustment Factor

Corrected KW Input = KW Input (unadjusted) x Appropriate Adjustment Factor

Verify that the selection is within design guidelines. The final unit selection is: Quantity (1) CGAF-C60

System Power Input = 69.0 KW

Unit EER = 9.8 MINIMUM LEAVING CHILLED WATER

TEMPERATURE SET POINTS

TRANE

The minimum leaving chilled water temperature set point for water is listed in the following table:

Table SP-1 — Minimum Leaving Chilled Water Temperature Set points for Water

Evaporator	Minimum Leavin	g Chilled Water				
Temperature	Temperature Set point (°F)					
Difference	CGAF-	CGAF-				
(Degrees F)	C20,C25,C30	C40,C50,C60				
6	40	39				
8	41	39				
10	42	40				
12	43	40				
14	44	41				
16	45	41				
18	46	42				

¹These are for units without HGBP, for units with HGBP, add 2°F to each minimum temperature in the

For those applications requiring lower set points, a glycol solution must be used. The minimum leaving chilled water set point for a glycol solution can be calculated using the following equation:

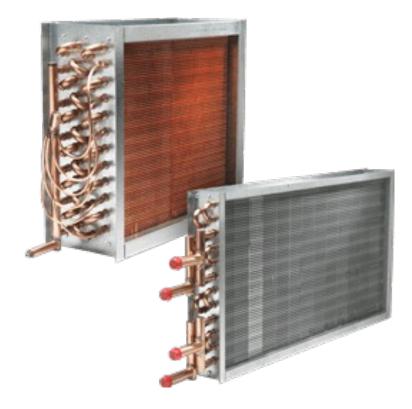
LCWS (Minimum) = GFT + 5 + Δ T (Evap)

of stages of capacity.

- LCWS = Leaving Chilled Water Set point (F)
- GFT = Glycol Freezing Temperature (F)
- DeltaT (the difference ΔT = between the temperature of the water entering and leaving the evaporator)

Solution freezing point temperatures can be found in the Performance Data section and the number of stages of capacity in the General Data section. For selection assistance, refer to the CGA Chiller Selection program.

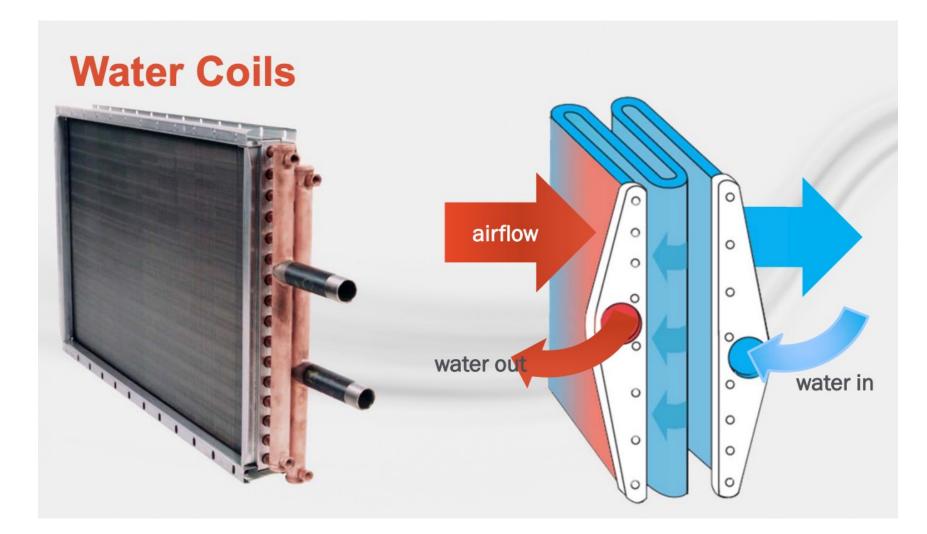
CLASS ACTIVITY


Class Activity

- Select one chiller and identify
 - □ Max capacity
 - GPM
 - □ Temperature difference
 - □ Pressure drop
 - Documents for using glycol
 - □ BIM files

COIL SELECTION

• Example of coils



Chilled/Hot Water Coil

DX coils

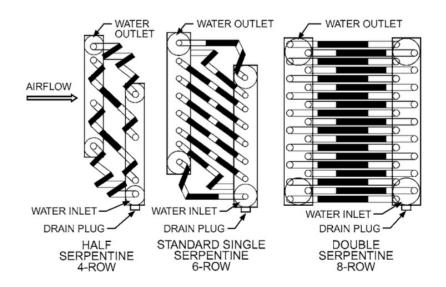
• Example of coils

- What are important variables?
 - Coil face area
 - Number of rows of tubes
 - Tube diameter
 - Number of fins
 - □ Fin surface design
 - Coil circuiting
 - Turbulators

ASHRAE Chapter 23: Systems and Equipment

CHAPTER 23

AIR-COOLING AND DEHUMIDIFYING COILS


Uses for Coils	23.1
Coil Construction and Arrangement	23.1
Coil Selection.	
Airflow Resistance	23.6
Heat Transfer	23.6

MOST equipment used today for cooling and dehumidifying an airstream under forced convection incorporates a coil section that contains one or more cooling coils assembled in a coil bank arrangement. Such coil sections are used extensively as components in room terminal units; larger factory-assembled, self-contained air conditioners; central station air handlers; and field built-up systems. Applications of each coil type are limited to the field within which the coil is rated. Other limitations are imposed by code requirements, proper choice of materials for the fluids used, the configuration of the air handler, and economic analysis of the possible alternatives for each installation.

1. USES FOR COILS

Coils are used for air cooling with or without accompanying dehumidification. Examples of cooling applications without dehumidifi-

Performance of Sensible Cooling Coils	
Performance of Dehumidifying Coils	
Determining Refrigeration Load	
Maintenance	
Symbols	

- There are too many coil sizing tools:
 - GreenHeck: <u>https://www.greenheck.com/resources/software/coil-</u> <u>software-selection-program</u>
 - □ CoilCalc: <u>http://www.coilcalc.com/</u>

• For GreenHeck:

JOB SUMMARY

, USA

888-921-COIL (2645) 200 Morgan Street Brownsville, TN 38012

Selection Summary

Tag	Comment	Model	Quantity
C-1		HW58S01B14-54x36-RH	12

• For GreenHeck:

SUBMITTAL DATA

Greenheck Coil C-1

888-921-COIL (2645) 200 Morgan Street Brownsville, TN 38012

Hot Water Coil

Tag Qty Model Footnotes Comment 12 HW58S01B14-54x36-RH C-1 a,b

Construction and Performance Details

Таа

Tag Air flow (SCFM) Altitude (ft) Total capacity (MBH) Entering dry bulb (°F) Leaving dry bulb (°F) Face velocity (ft/min) Air pressure drop (in of water) Air fouling factor (h-ft ^{2, o} F/Btu) Fluid Entering fluid temp. (°F) Leaving fluid temp. (°F) Fluid flow rate (GPM) Fluid velocity (ft/s) Fluid pressure drop (ft of water) Fluid fouling factor (h-ft ^{2, o} F/Btu) Fluid flow rate (GPM) Fluid reezing temp. (°F) Fluid flow rate (GPM) Fluid pressure drop (ft of water) Fluid flow rate (GPM) Fluid flow rate (GPM) Fluid pressure drop (ft of water) Fluid flow rate (GPM) Fluid flow rate (GPM) Fluid pressure drop (ft of water) Fluid flow rate (GPM) Fluid pressure drop (ft of water) Fluid flow rate (GPM) Fluid pressing temp. (°F) Coil type Fin height (in) Fin material Fin material Fin thickness (in) Turbulators <th>C-1 67335 0 2489.5 55.0 89.1 416 0.12 0.00000 W 180.0 95.7 60.0 2.73 5.8 0.00000 32.0 83.3 12 5/8 0.00000 32.0 83.3 12 5/8 0.00000 162.00 1 1 4 4 AI Sine 0.006 0.020 No 2 2</th>	C-1 67335 0 2489.5 55.0 89.1 416 0.12 0.00000 W 180.0 95.7 60.0 2.73 5.8 0.00000 32.0 83.3 12 5/8 0.00000 32.0 83.3 12 5/8 0.00000 162.00 1 1 4 4 AI Sine 0.006 0.020 No 2 2
Fin thickness (in) Tube wall thickness (in)	0.006

Footnotes

(a) Certified in accordance with the AHRI Forced-Circulation Air-Cooling and Air-Heating Coils Certification Program which is based on AHRI Standard-410 within the Range of Standard Rating Conditions listed in Table 1 of the Standard. Certified units may be found in the AHRI Directory at www.ahridirectory.com.

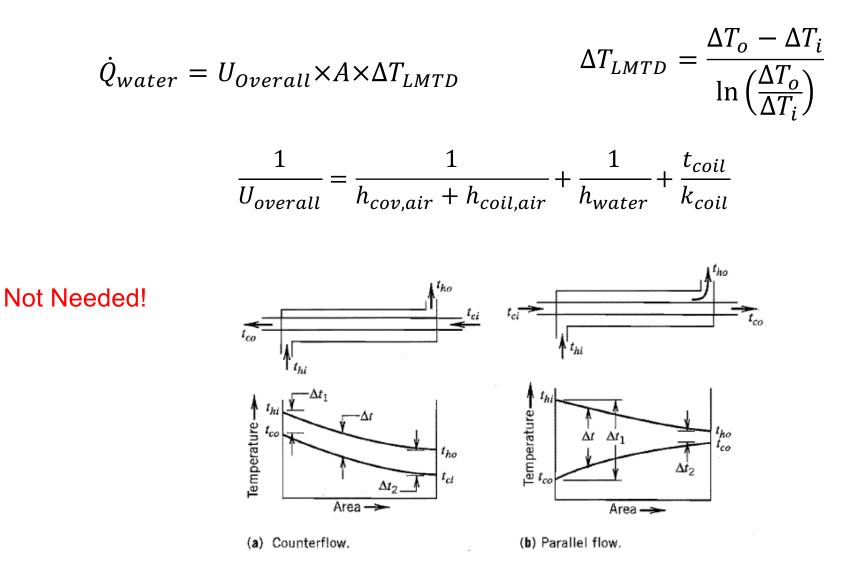
- Let's look at some simple strategy
- Sensible heat transfer from any fluid can be written as:

$$\dot{Q} = \dot{m}c_p \Delta T$$

• For air, we can write:

 $SCFM = (ACFM) \times (Density of measured air \left[\frac{lb}{ft^3}\right] / 0.075 \left[\frac{lb}{ft^3}\right])$

$$\dot{Q}_{air} = (SCFM)(1.08)(LAT - EAT)$$


- Let's look at some simple strategy
- Sensible heat transfer from any fluid can be written as:

$$\dot{Q} = \dot{m}c_p \Delta T$$

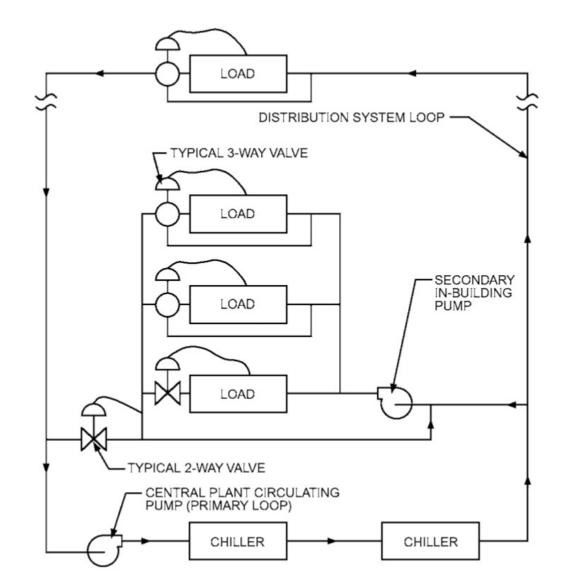
• For water, we can write:

$$\dot{Q}_{water} = (500)(GPM)(LWT - EWT)$$

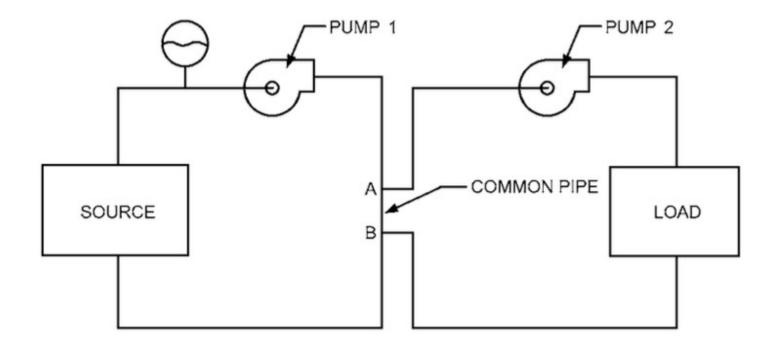
 Consider a little bit more complicated approach (e.g., Log Mean Temperature Difference (LMTD)):

• Common numbers for the pressure drops are fine:

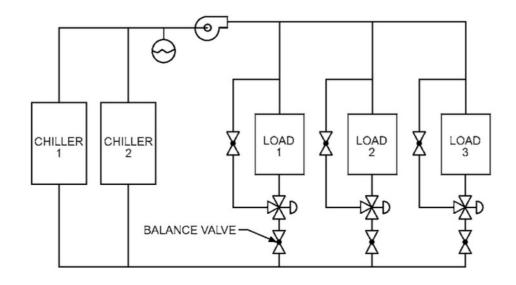
				Coil Typ	e (Style)								
			Cus	stom			Boo	oster					
	Chilled Water	Hot Water	Direct Expansion	Condenser	Standard Steam	Steam Distributing	Hot Water	Standard Steam					
Tube Diamete	er (inches)												
5/16			✓	✓									
3/8	✓	✓	✓	✓									
1/2	\checkmark	✓	✓	✓									
5/8	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓					
1					\checkmark	✓							
Rows													
Min Rows	1	1	1	1	1	1	1	1					
Max Rows	12	12	12	12	2*	2*	2	2					
Fin Height (in	ches)												
Min	6 6												
Max	Fin hei	Fin height is dependent on tube diameter (see Tube Diameter chart)											
Increments of		ge					3	3					
Fin Length (in	ches)												
Min		1	Minimum fin I	ength is 1 incl	1		6	6					
Max				hes (144 inche rts every 50 in			48**	48**					
Increments of		No re	striction on fi	n length increi	ments		1	1					
Recommende	ed Face Veloci	ity (FPM)											
Min	400	500	400	600	500	500	500	500					
Max	550	800	550	750	850	850	800	850					
Recommende	ed Fluid Veloci	ity (FPS - for w	ater coils)										
Min	1.5	1.5	NA	NA	NA	NA	1.5	NA					
Max	4.0	4.0	NA	NA	NA	NA	4.0	NA					
Recommende	ed Pressure Dr	rop (ft. of H ₂ O	or psi)										
Min	1	1	NA	NA	1	1	1	1					
Max	20 Row of one fe	10	NA	NA	125***	125***	10	125***					

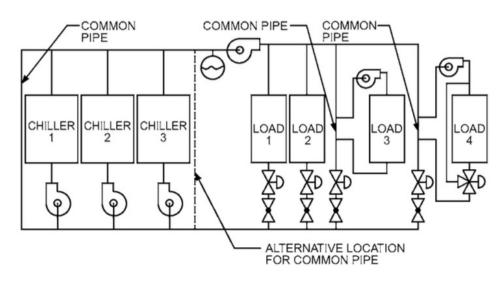

* Maximum Row of one for 1 inch tube diameter.

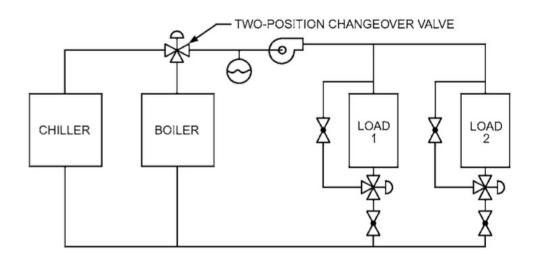
** Booster coil fin lengths are dependent on fin height.

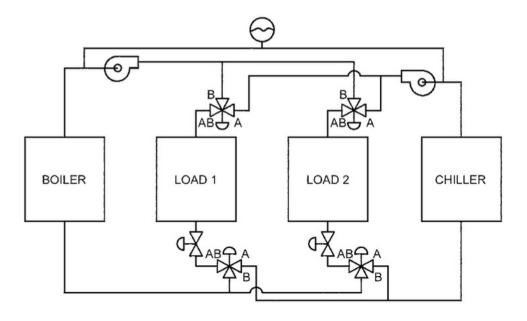

*** Higher steam pressures will require heavier tube wall thicknesses.

PRIMARY AND SECONDARY SYSTEMS


• Constant-flow primary distribution with secondary pumping:


Compound pumping


 Constant flow chilled water system


 Variable flow chilled water system

 Simplified two pipe diagram



• Simplified four pipe diagram (common loads)

OTHER ITEMS

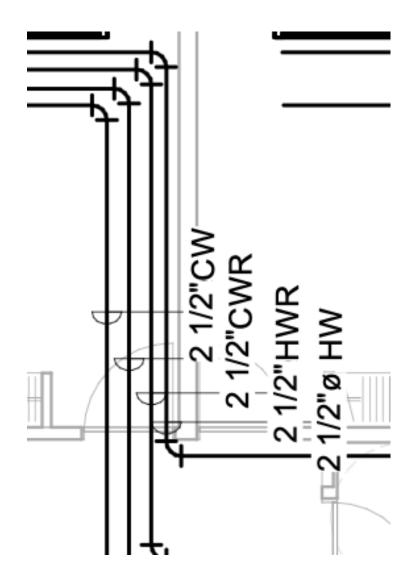
Account for all the head losses

Account for all the head losses

		Dam	npers	Face &	BP face	Face & B	P by-pass	Ple	num		E	Blende	r**	A	ttenuat	or
Unit Size	CFM	МХВ	Econ.	Int.	External	Int.	External	Тор	Тор	Diffuser	One	Two	Three	3 ft.	4 ft.	5 ft.
5126			LCOII.	med.	Large	med.	Large	inlet	outlet		One	1.00	IIIIee	5 11.	4 10.	511.
	29100	0.08	0.08	0.02	0.02	0.21	0.11	0.06	0.01	0.15	0.03	0.17	-	0.02	0.02	0.02
	38750	0.08	0.08	0.03	0.02	0.38	0.11	0.05	0.01	0.15	0.05	0.30	-	0.03	0.04	0.05
107	48400	0.08	0.08	0.05	0.03	0.59	0.17	0.06	0.02	0.15	0.08	0.47	-	0.05	0.07	0.08
	58100	0.08	0.08	0.07	0.05	0.85	0.24	0.06	0.03	0.15	0.11	-	-	0.07	0.10	0.11
	33600	0.07	0.07	0.02	0.01	0.21	0.06	0.06	0.01	0.15	0.02	0.09	0.33	0.02	0.02	0.03
	44800	0.07	0.07	0.04	0.02	0.43	0.12	0.06	0.02	0.15	0.04	0.18	-	0.03	0.05	0.06
124	55900	0.07	0.07	0.05	0.03	0.57	0.16	0.06	0.02	0.15	0.05	0.25	-	0.04	0.07	0.08
	67100	0.08	0.08	0.07	0.04	0.82	0.23	0.06	0.03	0.15	0.07	0.35	-	0.06	0.10	0.12
	40300	0.07	0.07	0.02	0.01	0.16	0.06	0.06	0.01	0.15	0.03	0.14	-	0.02	0.03	0.03
	53650	0.07	0.07	0.04	0.02	0.29	0.11	0.06	0.02	0.15	0.05	0.24	-	0.03	0.05	0.05
141	67100	0.08	0.08	0.06	0.03	0.45	0.17	0.06	0.02	0.15	0.08	0.38	-	0.05	0.08	0.09
	80600	0.08	0.08	0.09	0.05	0.64	0.24	0.06	0.03	0.15	0.11	-	-	0.07	0.11	0.13
	45600	0.08	0.08	0.02	0.01	0.16	0.06	0.06	0.01	0.15	0.04	0.12	0.35	0.02	0.03	0.03
	60900	0.08	0.08	0.04	0.02	0.28	0.10	0.06	0.02	0.15	0.07	0.21	-	0.03	0.05	0.05
160	76100	0.08	0.08	0.06	0.03	0.43	0.16	0.06	0.02	0.15	0.11	0.33	-	0.05	0.08	0.09
	91400	0.08	0.08	0.09	0.05	0.62	0.24	0.06	0.04	0.15	0.16	0.48	-	0.07	0.12	0.13
	48400	0.08	0.08	0.02	0.01	0.18	0.06	0.06	0.01	0.15	0.05	0.09	0.29	0.02	0.03	0.03
	64500	0.08	0.08	0.04	0.02	0.31	0.10	0.06	0.02	0.15	0.08	0.16	-	0.03	0.05	0.05
169	80600	0.08	0.08	0.06	0.03	0.49	0.16	0.06	0.02	0.15	0.13	0.25	-	0.05	0.08	0.09
	96700	0.07	0.07	0.08	0.04	0.71	0.23	0.06	0.04	0.15	0.18	0.36	-	0.07	0.11	0.13

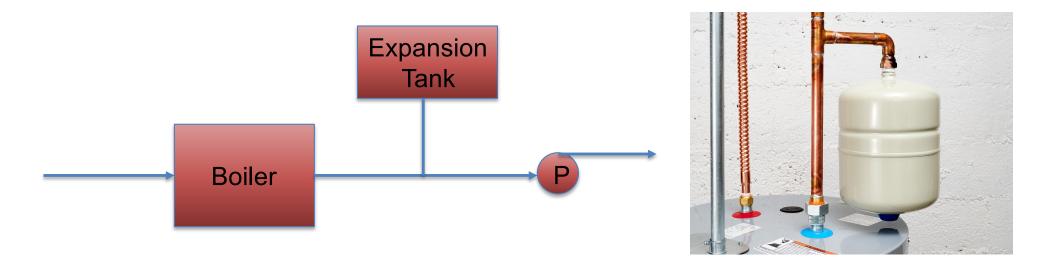
Table 6: Component Pressure Drops (Inches of Water)

• Account for all flow rate (both chiller and boiler)


5 CHILLED WATER	COIL(24 ins)			SECTION		3
Coil model	5WM1005C		Number of coils	2		
Total capacity	1937893	Btu/h	Number of rows	5		
Sensible capacity	1351492	Btu/h	Fins per inch	10		
Air volume	48400	cfm				
Entering db/wb	80.0 / 67.0	F	Entering water	45.0	F	
Leaving db/wb	54.5 / 54.0	F	Leaving water	55.0	F	
Finned height x length	45 x 155	ins	Water flow rate	387.60	gpm	1
Face area	96.88	ft2	Water pressure drop	18.90	ftHD	
Face velocity	500	ft/m	Water velocity	4.60	ft/s	
Coil air pressure drop	1.00	ins WC	· · · · ·			
· · ·			Fluid volume	62.0	gal	
			Fluid weight	523.00	lb	
Connection type	Threaded		Fin material	Aluminum (.0075)		
Connection Qty x size	2 x 3.00	ins	Tube material	Copper (.020)		
Connection location	Drive side		Header material	Copper		
Connection material	Carbon steel		Case material	Galv. steel		
Glycol type (%)	- (0 %)		Drain pan	Stainless steel		
Fouling Factor	0		Drain pan side	Drive side		
T			Turbospirals	None		
Coil code	5WM1005C		Electro-fin coat	None		
DOOR DATA	•					
Door location	Drive side		Window size	None		
Door width	8	ins	Light	Marine light kit and s	witch on	ly
Door opening	Outward					

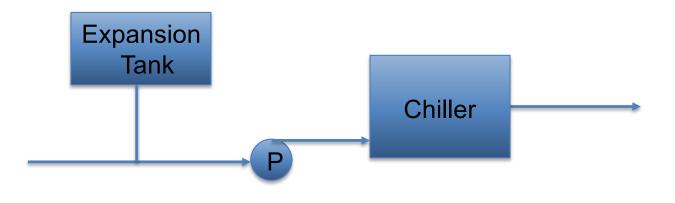
 Make sure to adjust your flow rate (i.e., chiller or boiler) based on the requirements of boilers, chillers

ITEM					MINI	мим	MAXIMUM		
Cooler Leaving Water Temperature*					40 F (60 F (15 C) 70 F (21.1 C)		
	Cooler Entering Water Temperature†					7.2 C)			
30XA	Nominal I	Flow Rate		Number of		low Rate**		Flow Rate	
UNIT SIZE	(gpm) (L/s)		Cooler	er Passes	(gpm)	(L/s)	(gpm)	(L/s)	
	(0) /		Standard, Flooded	2	134	8.5	538	33.9	
140			Plus One Pass, Flooded	3	73	4.6	293	18.5	
	20000100000	202000-00000	Minus One Pass, Flooded	1	324	20.4	1296	81.8	
142	303.5	19.1	DX Cooler	-	152	9.6	607	38.2	
			Standard, Flooded	2	165	10.4	660	41.6	
160	365.1	23	Plus One Pass, Flooded	3	98	6.2	391	24.7	
		1000	Minus One Pass, Flooded	1	354	22.3	1418	89.5	
162	347	21.9	DX Cooler	_	174	10.9	694	43.7	
			Standard, Flooded	2	202	12.7	807	50.9	
180	409.6	25.8	Plus One Pass, Flooded	3	73	4.6	391	24.7	
			Minus One Pass, Flooded	1	416	26.2	1662	104.9	
182	401.7	25.3	DX Cooler		201	12.6	803	50.6	
			Standard, Flooded	2	223	14.1	892	56.3	
200	463.9	29.3	Plus One Pass, Flooded	3	98	6.2	391	24.7	
			Minus One Pass, Flooded	1	458	28.9	1833	115.6	
202	447.1	28.2	DX Cooler	-	224	14.1	894	56.3	
			Standard, Flooded	2	235	14.8	941	59.4	
220 505.9	31.9	Plus One Pass, Flooded	3	122	7.7	489	30.9		
	000.0	0110	Minus One Pass, Flooded	1	501	31.6			
222	493	31.1	DX Cooler	<u> </u>	246	15.5	950	126.4 59.9	
240 545.8	100		Standard, Flooded	2	266	16.8	1063	67.1	
	34.4	Plus One Pass. Flooded	3	147	9.3	587	37.0		
240	040.0	01.1	Minus One Pass, Flooded	1	538	33.9	2151	135.7	
242	530	33.5	DX Cooler		265	16.7	950	59.9	
2.12	000	00.0	Standard, Flooded	2	257	16.2	1027	64.8	
260 600.3	37.9	Plus One Pass, Flooded	3	141	8.9	562	35.5		
	00010	0.110	Minus One Pass, Flooded	1	584	36.8	2334	147.3	
262	583	36.8	DX Cooler	-	292	18.4	950	59.9	
		0010	Standard, Flooded	2	293	18.5	1173	74.0	
280	280 642.2 40.5	Plus One Pass, Flooded	3	141	8.9	562	35.5		
200	012.2	10.0	Minus One Pass, Flooded	1	620	39.1	2481	156.5	
282	627	39.5	DX Cooler	<u> </u>	313	19.8	950	59.9	
202	UL1	00.0	Standard, Flooded	2	327	20.6	1308	82.5	
300	687.5	43.4	Plus One Pass, Flooded	3	174	11	697	44.0	
000	007.0	40.4	Minus One Pass, Flooded	1	687	43.3	2750	173.5	
302	665	42.0	DX Cooler		333	21.0	1331	83.9	
502	000	72.0	Standard, Flooded	2	361	22.8	1442	91.0	
325	733.4	46.3	Plus One Pass, Flooded	3	211	13.3	843	53.2	
520	/00.4	40.0	Minus One Pass, Flooded	1	724	45.7	2897	182.8	
327	720	45.4	DX Cooler		360	22.7	1440	90.8	
521	120	40.4	Standard, Flooded	2	379	23.9	1516	90.8	
350	775.4	48.9	Plus One Pass. Flooded	3	244	15.4	978	61.7	
330	775.4	40.3	Minus One Pass, Flooded	1	767	48.4	3068	193.6	
352	757	47.8	DX Cooler		379	23.9	1514	95.5	


Table 29 — 30XA Minimum and Maximum Cooler Flow Rates

• Add descriptions:

Design Procedure


• The usual sequence of heating system equipment is the boiler, expansion tank and pump

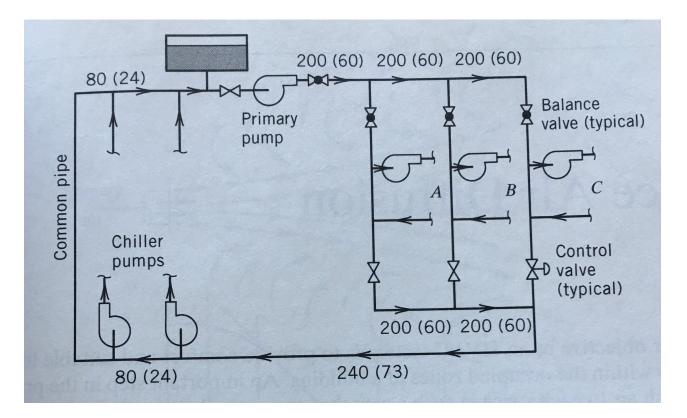
 The one location where the absolute pressure stays constant is at the "expansion tank"

Design Procedure

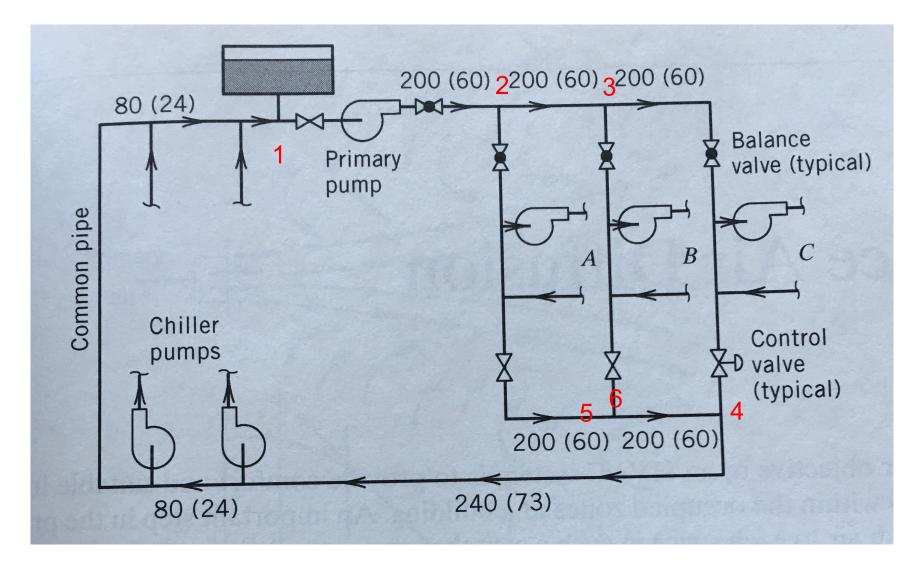
• The usual sequence of cooling system equipment is the expansion tank, pump and chiller

 If the expansion tank is placed after the pump, the outlet pressure remains constant and the inlet pressure drops, which may cause cavitation

Design Procedure


- Point of no pressure change for the expansion chambers:
 - The system connection of an expansion is known as "the point of no pressure change"
 - The pressure will always have the same as the pressure inside the tank
 - □ This is true if the tank is a plain steel or bladder/diaphragm type
 - □ This is also true whether the system pump is on or off
 - This pressure is only changed as water or air are added to or removed from the tank

EXTRA EXAMPLE 1


 Problem: Size the pipe for the system shown below. The lengths shown are the total equivalent lengths for the section exclusive of the control valve. Specify the primary pump performance requirement.

□ Pipes are Schedule 40

Path	GPM	Control valve head loss (ft)
А	60	40
В	70	50
С	70	50

• Solution: Add numbers to the sections

• Solution:

Section	Component	Flow Rate	Pipe size	Pipe Head Loss	Total Pipe and Fitting. Equivalent Length	Fitting/Pip e ΔP
		(gpm)	(in)	(ft/100ft)	(ft)	(ft)
1-2	Pipe/fittings	200	4	2.4	200	4.8
2-3	Pipe/fittings	140	3	4.2	200	8.4
3-4	Pipe/fittings	70	2 1/2	3.5	240	8.4
Control Val. C	Control Val. C	70	n/a	n/a	n/a	50 (Given)
4-1	Pipe/fittings	200	4	2.4	400	9.6
						81.2
2-5	Pipe/fittings	60	2 1/2	2.5	24-	6
Control Val. A	Control Val. A	60	n/a	n/a	n/a	40
5-4	Pipe/fittings	140	3	4.2	200	8.4
						54.4
3-6	Pipe/fittings	70	2 1/2	3.5	40	1.4
Control Val. B	Control Val. B	70	n/a	n/a	n/a	50
						51.4

EXTRA EXAMPLE 2

• **Example:** A closed constant flow two-pipe water system might be found an equipment room. The terminal units, a, b, and c are air handling units that contain air-to-water finned tube heat exchangers. An actual system could contain a hot water generator or a chiller; A chiller is to be considered here. Size the piping and specifying the pumping requirements.

				Tably Sold P		(30)	8 (10) ③ (10)	The start and
Unit	Q (gpm)	Lost head (ft)	<i>c_v</i> 3- way values	Expa tank Makeup	(5)	¥ (10)			
Chiller	60	14		Pres.	(10) ③ (1	(20	<u> </u>	<u> </u>	X
а	30	15	25	req (1-1	Chille	er		$(10) \qquad (10)$	PRESENT GROUP
b	20	10	18			leng	gths in ft.	parentheses	
С	10	10	8				Lost	C _v , 3-Way	
				Vonishall	Unit	Q qpm	head ft	Valves	.873
Parentheses are length in ft			Sue Marine 1	Chiller	60	14 15			
	e comme	_		a b	30 20	10	18		
					C	10	10	8	

Solution:

- Since it is a mechanical room a higher velocity could acceptable 5 ft/s and assume maximum loss to be 7 ft per 100 ft in the main
- Calculate the sizing pipes

Pipe section No	Flow rate (gpm)	Nominal size (in)	Fluid velocity (ft/s)	Lost head per 100 ft (ft/100 ft)	Pipe length (ft)	Fittings equival ent length (ft)	Total length (ft)	3-way valve head loss (ft)	Total head loss (ft)
8-1	60	2 1⁄2	4.0	2.6	55	20	75		1.95
2-3	60	2 1/2	4.0	2.6	35	30	65		1.70
3-4	30	1 ½	4.8	6.5	10	5	15		0.98
7-8	30	1 ½	4.8	6.5	10	5	15		0.98
4-5	10	1	3.8	6.5	10	18	28	3.6	5.42
6-7	10	1	3.8	6.5	16	16	32		2.08
4-7	20	1 1⁄4	4.0	6.2	6	39	45	2.9	5.69
3-8	30	1 1⁄2	4.8	6.5	6	34	40	3.3	5.90
Chiller	60								14.0
Unit a	30								15.0
Unit b	20								10.0
Unit c	10								10.0

Solution:

• The lost head for the three parallel circuits that begin at 3 and end at 8 using the following are

$$H_c = l_{34} + l_{45} + l_c + l_{67} + l_{78} = 0.98 + 5.42 + 10.0 + 2.08 + 0.98 = 19.46 ft$$

$$H_b = l_{34} + l_{47} + l_b + l_{78} = 0.98 + 5.69 + 10.0 + 0.98 = 17.65 ft$$

 $H_a = l_{38} + l_a = 5.69 + 15.0 = 20.9ft$

Solution:

- Among the three parallel paths, they have different head losses with the specified flow rates for each coil
- To balance out the required flow rates, paths b and c require some adjustment using balancing valves to increase their lost head to that for path a, 20.9 ft

$$H_p = l_{81} + l_{45} + l_{ch} + l_{23} + l_{38} + l_a = 1.95 + 14.0 + 1.70 + 5.9 + 15.0 = 38.55 ft$$

• A pump to produce 60 gpm at about 39 ft of head is desirable