CAE 464/517 HVAC Systems Design Spring 2023

April 11, 2023
 Hydronic systems: system characteristics and project questions

Built
Environment
Research
@ IIT

Advancing energy, environmental, and sustainability research within the built environment Civil, Architectural and Environmental Engineering www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 5 is posted (optional)
- A new measurement activity will be posted (optional)
- Anyone opposed to change the exam time?

RECAP

Recap

- What are the supply piping layouts (zone level)

Recap

- What are the supply piping layouts (central)

Recap

- Another approach is the series circuit with distributed load pumps:

Recap

DESIGN PROCEDURE

Design Procedure

Design Procedure

FRICTION LOSS IN WATER FITTINGS

Friction Loss in Water Fittings

- Friction loss in a water pipe fitting is equal to:

$$
H_{l f}=K\left(\frac{V^{2}}{2 g}\right)
$$

Table 3 K Factors: Threaded Steel Pipe Fittings

Nominal Pipe Dia., in.	90° Standard Elbow	90° LongRadius Elbow	$\begin{gathered} \mathbf{4 5}^{\circ} \\ \text { Elbow } \end{gathered}$	Return Bend	TeeLine	TeeBranch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valve	Bell Mouth Inlet	Square Inlet	Projected Inlet
3/8	2.5	-	0.38	2.5	0.90	2.7	20	0.40	-	8.0	0.05	0.5	1.0
1/2	2.1	-	0.37	2.1	0.90	2.4	14	0.33	-	5.5	0.05	0.5	1.0
3/4	1.7	0.92	0.35	1.7	0.90	2.1	10	0.28	6.1	3.7	0.05	0.5	1.0
1	1.5	0.78	0.34	1.5	0.90	1.8	9	0.24	4.6	3.0	0.05	0.5	1.0
$11 / 4$	1.3	0.65	0.33	1.3	0.90	1.7	8.5	0.22	3.6	2.7	0.05	0.5	1.0
$11 / 2$	1.2	0.54	0.32	1.2	0.90	1.6	8	0.19	2.9	2.5	0.05	0.5	1.0
2	1.0	0.42	0.31	1.0	0.90	1.4	7	0.17	2.1	2.3	0.05	0.5	1.0
$21 / 2$	0.85	0.35	0.30	0.85	0.90	1.3	6.5	0.16	1.6	2.2	0.05	0.5	1.0
3	0.80	0.31	0.29	0.80	0.90	1.2	6	0.14	1.3	2.1	0.05	0.5	1.0
4	0.70	0.24	0.28	0.70	0.90	1.1	5.7	0.12	1.0	2.0	0.05	0.5	1.0

Source: Engineering Data Book (Hydraulic Institute 1990).

Is there a difference between open or close valve?

Friction Loss in Water Fittings

- Friction loss in a water pipe fitting is equal to:

Table $4 \quad K$ Factors: Flanged Welded Steel Pipe Fittings

Nominal Pipe Dia., in.	$\begin{gathered} 90^{\circ} \\ \text { Standard } \\ \text { Elbow } \end{gathered}$	$\mathbf{9 0}^{\circ}$ LongRadius Elbow	45° LongRadius Elbow	Return Bend Standard	Return Bend LongRadius	Tee- Line	TeeBranch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valve
1	0.43	0.41	0.22	0.43	0.43	0.26	1.0	13	-	4.8	2.0
$11 / 4$	0.41	0.37	0.22	0.41	0.38	0.25	0.95	12	-	3.7	2.0
$11 / 2$	0.40	0.35	0.21	0.40	0.35	0.23	0.90	10	-	3.0	2.0
2	0.38	0.30	0.20	0.38	0.30	0.20	0.84	9	0.34	2.5	2.0
$21 / 2$	0.35	0.28	0.19	0.35	0.27	0.18	0.79	8	0.27	2.3	2.0
3	0.34	0.25	0.18	0.34	0.25	0.17	0.76	7	0.22	2.2	2.0
4	0.31	0.22	0.18	0.31	0.22	0.15	0.70	6.5	0.16	2.1	2.0
6	0.29	0.18	0.17	0.29	0.18	0.12	0.62	6	0.10	2.1	2.0
8	0.27	0.16	0.17	0.27	0.15	0.10	0.58	5.7	0.08	2.1	2.0
10	0.25	0.14	0.16	0.25	0.14	0.09	0.53	5.7	0.06	2.1	2.0
12	0.24	0.13	0.16	0.24	0.13	0.08	0.50	5.7	0.05	2.1	2.0

[^0]
Friction Loss in Water Fittings

- Friction loss in a water pipe fitting is equal to:

Table 6 Summary of \boldsymbol{K} Values for Steel Ells, Reducers, and Expansions

	Past ${ }^{\text {a }}$	ASHRAE Research ${ }^{\text {b,c }}$		
		4 fps	8 fps	12 fps
2 in. S.R. ${ }^{\text {e }}$ ell $(R / D=1)$ thread	0.60 to $1.0(1.0)^{\text {d }}$	0.60	0.68	0.736
4 in. S.R. ell $(R / D=1)$ weld	0.30 to 0.34	0.37	0.34	0.33
1 in. L.R. ell $(R / D=1.5)$ weld	to 1.0	-	-	-
2 in. L.R. ell $(R / D=1.5)$ weld	0.50 to 0.7	-	-	-
4 in. L.R. ell $(R / D=1.5)$ weld	0.22 to $0.33(0.22)^{\text {d }}$	0.26	0.24	0.23
6 in. L.R. ell $(R / D=1.5)$ weld	0.25	0.26	0.24	0.24
8 in. L.R. ell $(R / D=1.5)$ weld	0.20 to 0.26	0.22	0.20	0.19
10 in. L.R. ell $(R / D=1.5)$ weld	0.17	0.21	0.17	0.16
12 in . L.R. ell $(R / D=1.5)$ weld	0.16	0.17	0.17	0.17
16 in. L.R. ell $(R / D=1.5)$ weld	0.12	0.12	0.12	0.11
20 in. L.R. ell $(R / D=1.5)$ weld	0.09	0.12	0.10	0.10
24 in. L.R. ell $(R / D=1.5)$ weld	0.07	0.098	0.089	0.089
Reducer (2 by 1.5 in .) thread	-	0.53	0.28	0.20
(4 by 3 in.) weld	0.22	0.23	0.14	0.10
(6 by 4 in .) weld		0.62	0.54	0.53
(8 by 6 in.) weld		0.31	0.28	0.26
(10 by 8 in.) weld		0.16	0.14	0.14
(12 by 10 in .) weld	-	0.14	0.14	0.14
(16 by 12 in .) weld	-	0.17	0.16	0.17
(20 by 16 in.) weld	-	0.16	0.13	0.13
(24 by 20 in .) weld	-	0.053	0.053	0.055
Expansion (1.5 by 2 in.) thread	-	0.16	0.13	0.02
(3 by 4 in.) weld	-	0.11	0.11	0.11
(4 by 6 in.) weld	-	0.28	0.28	0.29
(6 by 8 in.) weld	-	0.15	0.12	0.11
(8 by 10 in .) weld	-	0.11	0.09	0.08
(10 by 12 in .) weld	-	0.11	0.11	0.11
(12 by 16 in.) weld	-	0.073	0.076	0.073
(16 by 20 in .) weld	-	0.024	0.021	0.022
(20 by 24 in .) weld	-	0.020	0.023	0.020

${ }^{\text {ap }}$ Published data by Crane Co. (1988), Freeman (1941), and Hydraulic Institute (1990).
${ }^{\text {b }}$ Rahmeyer (1999a, 2002a).
${ }^{\text {CDing et al. (2005) }}$
d () Data published in 1993 ASHRAE Handbook-Fundamentals.
${ }^{\text {e }}$ S.R.-short radius or regular ell; L.R.-long-radius ell.

Friction Loss in Water Fittings

- We also sometimes define equivalent length:

$$
\begin{aligned}
& \text { Head loss in a pipe }=f \frac{L}{D} \frac{V^{2}}{2 g} \quad K=f \frac{L}{D}
\end{aligned}
$$

Head loss in a fitting $=K \frac{V^{2}}{2 g}$

- $\frac{L}{D}$ is the equivalent length in pipe diameters of straight pipe that will cause the same pressure drop as the valve or fitting under the same flow conditions

Friction Loss in Water Fittings

- ASHRAE Chapter 22 has some list of equivalent lengths:

Table 27 Equivalent Length in Feet of Pipe for 90° Elbows

Velocity, fps	$\mathbf{1 / 2}$	$\mathbf{3} / \mathbf{4}$	$\mathbf{1}$	$\mathbf{1 1 / 4}$	$\mathbf{1 1 / 2}$	$\mathbf{2}$	$\mathbf{2 ~ 1 / 2}$	$\mathbf{3}$	$\mathbf{3 1 / 2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$
	1.2	1.7	2.2	3.0	3.5	4.5	5.4	6.7	7.7	8.6	10.5	12.2	15.4	18.7
2	1.4	1.9	2.5	3.3	3.9	5.1	6.0	7.5	8.6	9.5	11.7	13.7	17.3	20.8
3	1.5	2.0	2.7	3.6	4.2	5.4	6.4	8.0	9.2	10.2	12.5	14.6	18.4	22.3
4	1.5	2.1	2.8	3.7	4.4	5.6	6.7	8.3	9.6	10.6	13.1	15.2	19.2	23.2
5	1.6	2.2	2.9	3.9	4.5	5.9	7.0	8.7	10.0	11.1	13.6	15.8	19.8	24.2
6	1.7	2.3	3.0	4.0	4.7	6.0	7.2	8.9	10.3	11.4	14.0	16.3	20.5	24.9
7	1.7	2.3	3.0	4.1	4.8	6.2	7.4	9.1	10.5	11.7	14.3	16.7	21.0	25.5
8	1.7	2.4	3.1	4.2	4.9	6.3	7.5	9.3	10.8	11.9	14.6	17.1	21.5	20.3
9	1.8	2.4	3.2	4.3	5.0	6.4	7.7	9.5	11.0	12.2	14.9	17.4	21.9	26.6
10	1.8	2.5	3.2	4.3	5.1	6.5	7.8	9.7	11.2	12.4	15.2	17.7	22.2	27.0

Friction Loss in Water Fittings

- ASHRAE Chapter 22 has some list of equivalent lengths:

Table 28 Iron and Copper Elbow Equivalents*

Fitting	Iron Pipe	Copper Tubing
Elbow, 90°	1.0	1.0
45°	0.7	0.7
90° long-radius	0.5	0.5
90° welded	0.5	0.5
Reduced coupling	0.4	0.4
Open return bend	1.0	1.0
Angle radiator valve	2.0	3.0
Radiator or convector	3.0	4.0
Boiler or heater	3.0	4.0
Open gate valve	0.5	0.7
Open globe valve	12.0	17.0

Sources: Giesecke (1926) and Giesecke and Badgett (1931, 1932a).
*See Table 10 for equivalent length of one elbow.

Equivalent Length

- ASHRAE Chapter 22 has some list of equivalent lengths:

Table 8 Test Summary for Loss Coefficients K and
Equivalent Loss Lengths

Schedule 80 PVC Fitting	K	L, ft
Injected molded elbow, 2 in.	0.91 to 1.00	8.4 to 9.2
4 in.	0.86 to 0.91	18.3 to 19.3
6 in.	0.76 to 0.91	26.2 to 31.3
8 in.	0.68 to 0.87	32.9 to 42.1
8 in. fabricated elbow, Type I, components	0.40 to 0.42	19.4 to 20.3
Type II, mitered	0.073 to 0.76	35.3 to 36.8
6 by 4 in. injected molded reducer	0.12 to 0.59	4.1 to 20.3
Bushing type	0.49 to 0.59	16.9 to 20.3
8 by 6 in. injected molded reducer	0.13 to 0.63	6.3 to 30.5
Bushing type	0.48 to 0.68	23.2 to 32.9
Gradual reducer type	0.21	10.2
4 by 6 in. injected molded expansion	0.069 to 1.19	1.5 to 25.3
Bushing type	0.069 to 1.14	1.5 to 24.2
6 by 8 in. injected molded expansion	0.95 to 0.96	32.7 to 33.0
Bushing type	0.94 to 0.95	32.4 to 32.7
Gradual reducer type	0.99	34.1

CLASS ACTIVITY

Class Activity

- Example: Size the pipe for the water distribution system shown below. The pipe is type L copper. Notice that the lengths given are the total equivalent lengths excluding the coil and control valves.

Coil	Flow rate, gpm (L/s)	Lost head, ft (m)	
		Coil	Control valve
A	$40(2.5)$	$12(3.7)$	$10(3)$
B	$40(2.5)$	$15(4.6)$	$12(3.7)$
C	$50(3.2)$	$18(5.5)$	$15(4.6)$

Class Activity

- Solution:
\square Consider all the routes

Class Activity

- Solution:

Calculate the flow rate in each section:

Pipe Section No.
Flow rate(gpm)
1-2
2-3
3-4
4-5
Common pipe
2-6
3-7
7-8

Class Activity

- Solution:

Calculate the flow rate in each section:

Pipe Section No.
1-2

$$
Q_{\text {total }}=Q_{A}+Q_{B}+Q_{C}=40+40+50=130
$$

2-3

$$
Q_{\text {total }}-Q_{A}=130-40=90
$$

3-4
4-5

$$
\begin{gathered}
Q_{C}=50 \\
Q_{\text {total }}=130
\end{gathered}
$$

Common pipe

0

2-6
$Q_{A}=40$
3-7
$Q_{B}=40$
7-8

$$
Q_{A}+Q_{B}=80
$$

Class Activity

- Solution:

Identify the pipe diameter and head loss ft/100-ft of each section (Figure 15 - Chapter 22):

Pipe section No.	Flow rate $(\mathbf{g p m})$	Nominal size (in)	Lost head per 100 ft $(\boldsymbol{f t} / \mathbf{1 0 0 f t})$
$\mathbf{1 - 2}$	130		
$\mathbf{2 - 3}$	90		
$\mathbf{3 - 4}$	50		
$\mathbf{4 - 5}$	130		
Common pipe	0		
$\mathbf{2 - 6}$	40		
$\mathbf{3 - 7}$	40		
$\mathbf{7 - 8}$	80		

Class Activity

- Solution:
\square Identify the pipe diameter and head loss $\mathrm{ft} / 100-\mathrm{ft}$ of each section (Figure 15 - Chapter 22):

Fig. 15 Friction Loss for Water in Copper Tubing (Types K, L, M)

Class Activity

- Solution:
\square Identify the pipe diameter and head loss ft/100-ft of each section (Figure 15 - Chapter 22):

Pipe section No.	Flow rate (gpm)	Nominal size (in)	Lost head per 100 ft $(\boldsymbol{f t} / \mathbf{1 0 0} \boldsymbol{f t})$
$\mathbf{1 - 2}$	130	3	3.7
$\mathbf{2 - 3}$	90	$21 / 2$	4.8
$\mathbf{3 - 4}$	50	2	5.0
$\mathbf{4 - 5}$	130	3	3.7
Common pipe	0	3	$\ldots .$.
$\mathbf{2 - 6}$	40	2	3.4
$\mathbf{3 - 7}$	40	2	3.4
$\mathbf{7 - 8}$	80	$21 / 2$	3.9

Class Activity

- Solution:

Calculate the head loss for each path:

Pipe section No.	Flow rate (gpm)	Nominal size (in)	$\begin{aligned} & \text { Lost head per } \\ & 100 \mathrm{ft}(\mathrm{ft} / \\ & 100 \mathrm{ft}) \end{aligned}$	Pipe equivalent length ($L_{e}(\mathrm{ft})$)	Lost head of pipe, coil and control valve (ft)	Total loss head (ft)
1-2	130	3	3.7	60	$60 \times 3.7 / 100=2.2$	39.2
2-3	90	$21 / 2$	4.8	20	$20 \times 4.8 / 100=1.0$	
3-4	50	2	5.0	30	$30 \times 5.0 / 100=1.5$	
Coil C	\ldots	\ldots	\ldots	\ldots	18	
Con. C	\ldots	\ldots	\ldots	15	
4-5	130	3	3.7	40	$40 \times 3.7 / 100=1.5$	
Common pipe	0	3	\ldots	\ldots	0	
2-6	40	2	3.4	30	$30 \times 3.4 / 100=1.0$	23
Coil A	\ldots	\ldots	\ldots	\ldots	12	
Con. A	\ldots.	.	\ldots	.	10	
3-7	40	2	3.4	10	$10 \times 3.4 / 100=0.5$	28.3
Coil B	15	
Con. B	\ldots	\ldots	\ldots	\ldots	12	
7-8	80	$21 / 2$	3.9	20	$20 \times 3.9 / 100=0.8$	

MORE ON FITTINGS

More on Fittings

- Unfortunately, ASHRAE Chapter 22 does not have all the fittings. We can rely on different resources. For example:
\square Source 1: Engineering Toolbox
\square Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, $5^{\text {th }}$ Edition
Source 3: Reddy et al., Heating and Cooling of Buildings, 3rd Edition

More on Fittings

- Source 1: Engineering Toolbox

Equivalent Length of Straight Pipe for Valves and Fittings (feet)												
Screwed Fittings		Pipe Size										
		1/4	3/8	1/2	3/4	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4
Elbows	Regular 90 deg	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Long radius 90 deg	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 deg	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tees	Line flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
	Branch flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Retum Bends	Regular 180 deg	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Valves	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

engineeringtoolbox.com

More on Fittings

- Source 1: Engineering Toolbox

Equivalent Length of Straight Pipe for Valves and Fittings (feet)														
Flanged Fittings		Pipe Size												
		1/2	3/4	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4	5	6	8	10
Elbows	Regular 90 deg	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12	14
	Long radius 90 deg	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5	5.7	7	8
	Regular 45 deg	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.6	3.5	4.5	5.6	7.7	9
Tees	Line flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2
	Branch flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15	18	24	30
Retum Bends	Regular 180 deg	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12	14
	Long radius 180 deg	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5	5.7	7	8
Valves	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150	190	260	310
	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	28.0	38.0	50	63	90	120

engineeringtoolboxcom

More on Fittings

- Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition

Globe and angle valves

Gate valves
wedge disc, double disc or plug type

If: $\beta-1, \theta=0, K_{1}=8 f t$
$\beta<1$ and $\theta<45^{\circ}, K_{2}=$ Formula 1
$\beta<1$ and $\theta>45^{\circ}<180^{\circ}, K_{2}=$ Formula 2

If: $\beta-1, K_{1}=340 \times f_{t}$

$$
\text { If: } \begin{aligned}
& \beta=1, \theta=0, K_{1}=3 \times f_{t} \\
& \beta<1 \text { and } \theta<45^{\circ}, K_{2}=\text { Formula 1 } \\
& \beta<1 \text { and } \theta>45^{\circ}<180^{\circ}, K_{2}=\text { Formula } 2
\end{aligned}
$$

More on Fittings

- Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition
Pipe enxit

Sharp-edged

Rounded

$$
K=1.0
$$

$$
K=1.0
$$

$$
K=1.0
$$

Standard elbows

$K=30 f t$

$K=16 \mathrm{ft}$

90° Pipe bends and flanged or butt-welding 90° elbows

The resistance coefficient K_{B} for pipe bends other than 90° may be determined as follows:

$$
K_{B}=(n-1)\left(0.25 \pi f_{T} \frac{r}{D}+0.5 K\right)+K
$$

$n=$ number of 90° bends
$K=$ resistance coefficient for one 90° bend (per table)

More on Fittings

- Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition

More on Fittings

- Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition

Table 10-2 Formulas, Definition of Terms, and Values of ft for
Fig. 10-22

$$
\begin{aligned}
& \text { Formula 1: } K_{2}=\frac{K_{1}+\left(\sin \frac{\theta}{2}\right) 0.8\left(1-\beta^{2}\right)+2.6\left(1-\beta^{2}\right)^{2}}{\beta^{4}} \\
& \text { Formula 2: } K_{2}=\frac{K_{1}+0.5\left(\sin \frac{\theta}{2}\right)\left(1-\beta^{2}\right)+\left(1-\beta^{2}\right)^{2}}{\beta^{4}} \\
& \beta=\frac{D_{1}}{D_{2}} ; \quad \beta^{2}=\left(\frac{D_{1}}{D_{2}}\right)^{2}=\frac{A_{1}}{A_{2}} ; \quad \begin{array}{l}
D_{1}=\text { smaller diameter } \\
A_{1}=\text { smaller area }
\end{array}
\end{aligned}
$$

Nominal Size, in.	Friction Factor f_{t}	Nominal Size, in.	Friction Factor f_{t}
$\frac{1}{2}$	0.027	4	0.017
$\frac{3}{4}$	0.025	5	0.016
1	0.023	6	0.015
$1 \frac{1}{4}$	0.022	$8-10$	0.014
$1 \frac{1}{2}$	0.021	$12-16$	0.013
2	0.019	$18-24$	0.012
$2 \frac{1}{2}, 3$	0.018		

More on Fittings

- Source 3: Reddy et al. Heating and Cooling of Buildings, 3rd Edition

	Nominal Pipe Size (in)										
	1/2	$3 / 4$	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4	5	6
45 elbow	0.8	0.9	1.3	1.7	2.2	2.8	3.3	4.0	5.5	6.6	8.0
90 elbow (Standard)	1.6	2.0	2.6	3.3	4.3	5.5	6.5	8.0	11.0	13.0	16.0
90 elbow (long)	1.0	1.4	1.7	2.3	2.7	3.5	4.2	5.2	7.0	8.4	10.4
Gate valve open	0.7	0.9	1.0	1.5	1.8	2.3	2.8	3.2	4.5	6.0	7.0
Globe valve open	17	22	27	36	43	55	67	82	110	134	164
Angle valve	7	9	12	15	18	24	-	-	-	-	-
Tee-side flow	3	4	5	7	9	12	14	17	22	28	34
Swing check valve	6	8	10	14	16	20	25	30	40	50	60
Tee-straight throughflow	1.6	2.0	2.6	3.3	4.3	5.5	6.5	8.0	11.0	13.0	16.0
Radiator angle valve	3	6	8	10	13	-	-	-	-	-	-
Diverting tee	-	20	14	11	12	14	14	14	-	-	-
Flow check valve	-	27	42	60	63	83	104	125	126		

PRIMARY - SECONDARY PUMPING

Primary Secondary Pumping

- Was developed by Bell \& Gossett in 1954 as a method to increase system temperature drops, decrease total pump power requirements and increase system controllability
- Systems utilizing low or medium temperatures were allowed due to Primary - Secondary pumping
- Most modern systems utilize some variation of Primary Secondary pumps

Primary Secondary Pumping

- Common Piping:
- Interconnects the primary to the secondary circuit
- Should have minimal to no pressure drop
- Hydraulically disconnects the two piping loops
- Flow in one loop will not cause flow in the other loop

Primary Secondary Pumping

- Secondary pipe pump sized for pressure drops A-B, BC, C-D, D-E, E-G, G-H, H-I
- I-A should have no pressure drop

Primary Secondary Pumping

- In hydronic systems, we use this strategy:

Primary Secondary Pumping

- In hydronic systems, we use this strategy:

Primary flow equal to secondary flow

PUMPS

Intro to Pumps

- Pumps provide differential pressure by converting electrical energy to move water

Intro to Pumps

- Positive displacement pumps
\square Rotary-type pumps
\square Reciprocating-type pump

- Rotodynamic pumps
- Centrifugal pump
- Radial flow pump
- Axial flow pump
- Mixed flow pump

Figure 2. Volute case design

Centrifugal Pumps

Centrifugal Pumps

- Most common use in HVAC industry
- Chilled water
- Cooling tower

Figure 2. Volute case design

- Basic Principle
\square Water enters impeller at low velocity \& pressure
\square Water thrown outward by centrifugal force
\square Water leaves at high velocity \& pressure

Centrifugal Pumps

- Impeller types

Figure 1. Impeller Types (I to r): Open, Semi-Enclosed (or Semi-Open), Enclosed.

Centrifugal Pumps

- It needs to be base mounted:

SYSTEM CURVE

System Curve

- Assume there is only friction and no change in elevation (no static lift)

- How is the system curve?

System Curve

- How is the system curve for this one?

System Curve

- System curve can change over time

System Curve

- System curve can change over time

Figure 4
Flow (GPM)

PROJECT

Project

[^0]: Source: Engineering Data Book (Hydraulic Institute 1990).

