# CAE 464/517 HVAC Systems Design Spring 2023

# April 11, 2023

# Hydronic systems: system characteristics and project questions

Built Environment Research @ IIT ] 🗫 🎧 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

# ANNOUNCEMENTS

#### Announcements

- Assignment 5 is posted (optional)
- A new measurement activity will be posted (optional)
- Anyone opposed to change the exam time?

## RECAP

#### Recap

• What are the supply piping layouts (zone level)

## Recap

• What are the supply piping layouts (central)

 Another approach is the series circuit with distributed load pumps:



#### Recap



# **DESIGN PROCEDURE**

#### **Design Procedure**



#### **Design Procedure**

# **FRICTION LOSS IN WATER FITTINGS**

• Friction loss in a water pipe fitting is equal to:

$$H_{lf} = K\left(\frac{V^2}{2g}\right)$$

 Table 3
 K Factors: Threaded Steel Pipe Fittings

| Nominal<br>Pipe<br>Dia., in. | 90°<br>Standard<br>Elbow | 90° Long-<br>Radius<br>Elbow | 45°<br>Elbow | Return<br>Bend | Tee-<br>Line | Tee-<br>Branch | Globe<br>Valve | <mark>Gate</mark><br>Valve | Angle<br>Valve | Swing<br>Check<br>Valve | Bell<br>Mouth<br>Inlet | Square<br>Inlet | Projected<br>Inlet |
|------------------------------|--------------------------|------------------------------|--------------|----------------|--------------|----------------|----------------|----------------------------|----------------|-------------------------|------------------------|-----------------|--------------------|
| 3/8                          | 2.5                      |                              | 0.38         | 2.5            | 0.90         | 2.7            | 20             | 0.40                       |                | 8.0                     | 0.05                   | 0.5             | 1.0                |
| 1/2                          | 2.1                      |                              | 0.37         | 2.1            | 0.90         | 2.4            | 14             | 0.33                       | <u> </u>       | 5.5                     | 0.05                   | 0.5             | 1.0                |
| 3/4                          | 1.7                      | 0.92                         | 0.35         | 1.7            | 0.90         | 2.1            | 10             | 0.28                       | 6.1            | 3.7                     | 0.05                   | 0.5             | 1.0                |
| 1                            | 1.5                      | 0.78                         | 0.34         | 1.5            | 0.90         | 1.8            | 9              | 0.24                       | 4.6            | 3.0                     | 0.05                   | 0.5             | 1.0                |
| 1 1/4                        | 1.3                      | 0.65                         | 0.33         | 1.3            | 0.90         | 1.7            | 8.5            | 0.22                       | 3.6            | 2.7                     | 0.05                   | 0.5             | 1.0                |
| 1 1/2                        | 1.2                      | 0.54                         | 0.32         | 1.2            | 0.90         | 1.6            | 8              | 0.19                       | 2.9            | 2.5                     | 0.05                   | 0.5             | 1.0                |
| 2                            | 1.0                      | 0.42                         | 0.31         | 1.0            | 0.90         | 1.4            | 7              | 0.17                       | 2.1            | 2.3                     | 0.05                   | 0.5             | 1.0                |
| 2 1/2                        | 0.85                     | 0.35                         | 0.30         | 0.85           | 0.90         | 1.3            | 6.5            | 0.16                       | 1.6            | 2.2                     | 0.05                   | 0.5             | 1.0                |
| 3                            | 0.80                     | 0.31                         | 0.29         | 0.80           | 0.90         | 1.2            | 6              | 0.14                       | 1.3            | 2.1                     | 0.05                   | 0.5             | 1.0                |
| 4                            | 0.70                     | 0.24                         | 0.28         | 0.70           | 0.90         | 1.1            | 5.7            | 0.12                       | 1.0            | 2.0                     | 0.05                   | 0.5             | 1.0                |

Source: Engineering Data Book (Hydraulic Institute 1990).

#### Is there a difference between open or close valve?

#### **Friction Loss in Water Fittings**

• Friction loss in a water pipe fitting is equal to:

| Nominal<br>Pipe<br>Dia., in. | 90°<br>Standard<br>Elbow | 90° Long-<br>Radius<br>Elbow | 45° Long-<br>Radius<br>Elbow | Return<br>Bend<br>Standard | Return<br>Bend Long-<br>Radius | Tee-<br>Line | Tee-<br>Branch | Globe<br>Valve | Gate<br>Valve | Angle<br>Valve | Swing<br>Check<br>Valve |
|------------------------------|--------------------------|------------------------------|------------------------------|----------------------------|--------------------------------|--------------|----------------|----------------|---------------|----------------|-------------------------|
| 1                            | 0.43                     | 0.41                         | 0.22                         | 0.43                       | 0.43                           | 0.26         | 1.0            | 13             |               | 4.8            | 2.0                     |
| 1 1/4                        | 0.41                     | 0.37                         | 0.22                         | 0.41                       | 0.38                           | 0.25         | 0.95           | 12             |               | 3.7            | 2.0                     |
| 1 1/2                        | 0.40                     | 0.35                         | 0.21                         | 0.40                       | 0.35                           | 0.23         | 0.90           | 10             |               | 3.0            | 2.0                     |
| 2                            | 0.38                     | 0.30                         | 0.20                         | 0.38                       | 0.30                           | 0.20         | 0.84           | 9              | 0.34          | 2.5            | 2.0                     |
| 2 1/2                        | 0.35                     | 0.28                         | 0.19                         | 0.35                       | 0.27                           | 0.18         | 0.79           | 8              | 0.27          | 2.3            | 2.0                     |
| 3                            | 0.34                     | 0.25                         | 0.18                         | 0.34                       | 0.25                           | 0.17         | 0.76           | 7              | 0.22          | 2.2            | 2.0                     |
| 4                            | 0.31                     | 0.22                         | 0.18                         | 0.31                       | 0.22                           | 0.15         | 0.70           | 6.5            | 0.16          | 2.1            | 2.0                     |
| 6                            | 0.29                     | 0.18                         | 0.17                         | 0.29                       | 0.18                           | 0.12         | 0.62           | 6              | 0.10          | 2.1            | 2.0                     |
| 8                            | 0.27                     | 0.16                         | 0.17                         | 0.27                       | 0.15                           | 0.10         | 0.58           | 5.7            | 0.08          | 2.1            | 2.0                     |
| 10                           | 0.25                     | 0.14                         | 0.16                         | 0.25                       | 0.14                           | 0.09         | 0.53           | 5.7            | 0.06          | 2.1            | 2.0                     |
| 12                           | 0.24                     | 0.13                         | 0.16                         | 0.24                       | 0.13                           | 0.08         | 0.50           | 5.7            | 0.05          | 2.1            | 2.0                     |

 Table 4
 K Factors: Flanged Welded Steel Pipe Fittings

Source: Engineering Data Book (Hydraulic Institute 1990).

#### **Friction Loss in Water Fittings**

• Friction loss in a water pipe fitting is equal to:

|                                                |                                  | A     | SHRAE Research | b,c    |
|------------------------------------------------|----------------------------------|-------|----------------|--------|
|                                                | Past <sup>a</sup>                | 4 fps | 8 fps          | 12 fps |
| 2 in. S.R. <sup>e</sup> ell $(R/D = 1)$ thread | 0.60 to 1.0 (1.0) <sup>d</sup>   | 0.60  | 0.68           | 0.736  |
| 4 in. S.R. ell $(R/D = 1)$ weld                | 0.30 to 0.34                     | 0.37  | 0.34           | 0.33   |
| 1 in. L.R. ell $(R/D = 1.5)$ weld              | to 1.0                           | _     |                |        |
| 2 in. L.R. ell $(R/D = 1.5)$ weld              | 0.50 to 0.7                      | _     | _              | _      |
| 4 in. L.R. ell $(R/D = 1.5)$ weld              | 0.22 to 0.33 (0.22) <sup>d</sup> | 0.26  | 0.24           | 0.23   |
| 6 in. L.R. ell $(R/D = 1.5)$ weld              | 0.25                             | 0.26  | 0.24           | 0.24   |
| 8 in. L.R. ell $(R/D = 1.5)$ weld              | 0.20 to 0.26                     | 0.22  | 0.20           | 0.19   |
| 10 in. L.R. ell $(R/D = 1.5)$ weld             | 0.17                             | 0.21  | 0.17           | 0.16   |
| 12 in. L.R. ell ( $R/D = 1.5$ ) weld           | 0.16                             | 0.17  | 0.17           | 0.17   |
| 16 in. L.R. ell $(R/D = 1.5)$ weld             | 0.12                             | 0.12  | 0.12           | 0.11   |
| 20 in. L.R. ell ( $R/D = 1.5$ ) weld           | 0.09                             | 0.12  | 0.10           | 0.10   |
| 24 in. L.R. ell $(R/D = 1.5)$ weld             | 0.07                             | 0.098 | 0.089          | 0.089  |
| Reducer (2 by 1.5 in.) thread                  | _                                | 0.53  | 0.28           | 0.20   |
| (4 by 3 in.) weld                              | 0.22                             | 0.23  | 0.14           | 0.10   |
| (6 by 4 in.) weld                              |                                  | 0.62  | 0.54           | 0.53   |
| (8 by 6 in.) weld                              |                                  | 0.31  | 0.28           | 0.26   |
| (10 by 8 in.) weld                             |                                  | 0.16  | 0.14           | 0.14   |
| (12 by 10 in.) weld                            | _                                | 0.14  | 0.14           | 0.14   |
| (16 by 12 in.) weld                            | _                                | 0.17  | 0.16           | 0.17   |
| (20 by 16 in.) weld                            | _                                | 0.16  | 0.13           | 0.13   |
| (24 by 20 in.) weld                            | —                                | 0.053 | 0.053          | 0.055  |
| Expansion (1.5 by 2 in.) thread                |                                  | 0.16  | 0.13           | 0.02   |
| (3 by 4 in.) weld                              | _                                | 0.11  | 0.11           | 0.11   |
| (4 by 6 in.) weld                              | —                                | 0.28  | 0.28           | 0.29   |
| (6 by 8 in.) weld                              | _                                | 0.15  | 0.12           | 0.11   |
| (8 by 10 in.) weld                             | _                                | 0.11  | 0.09           | 0.08   |
| (10 by 12 in.) weld                            | _                                | 0.11  | 0.11           | 0.11   |
| (12 by 16 in.) weld                            | _                                | 0.073 | 0.076          | 0.073  |
| (16 by 20 in.) weld                            | _                                | 0.024 | 0.021          | 0.022  |
| (20 by 24 in.) weld                            | _                                | 0.020 | 0.023          | 0.020  |

 Table 6
 Summary of K Values for Steel Ells, Reducers, and Expansions

Source: Rahmeyer (2003a). <sup>a</sup>Published data by Crane Co. (1988), Freeman (1941), and Hydraulic Institute (1990). <sup>b</sup>Rahmeyer (1999a, 2002a). <sup>c</sup>Ding et al. (2005)

<sup>d</sup>() Data published in 1993 *ASHRAE Handbook—Fundamentals*. <sup>e</sup>S.R.—short radius or regular ell; L.R.—long-radius ell. • We also sometimes define equivalent length:

Head loss in a pipe = 
$$f \frac{L}{D} \frac{V^2}{2g}$$
  
 $K = f \frac{L}{D}$   
Head loss in a fitting =  $K \frac{V^2}{2g}$ 

•  $\frac{L}{D}$  is the equivalent length in pipe diameters of straight pipe that will cause the same pressure drop as the valve or fitting under the same flow conditions

#### **Friction Loss in Water Fittings**

• ASHRAE Chapter 22 has some list of equivalent lengths:

| elocity,_ |     | Pipe Size |     |       |       |     |       |     |       |      |      |      |      |      |      |
|-----------|-----|-----------|-----|-------|-------|-----|-------|-----|-------|------|------|------|------|------|------|
| fps       | 1/2 | 3/4       | 1   | 1 1/4 | 1 1/2 | 2   | 2 1/2 | 3   | 3 1/2 | 4    | 5    | 6    | 8    | 10   | 12   |
| 1         | 1.2 | 1.7       | 2.2 | 3.0   | 3.5   | 4.5 | 5.4   | 6.7 | 7.7   | 8.6  | 10.5 | 12.2 | 15.4 | 18.7 | 22.2 |
| 2         | 1.4 | 1.9       | 2.5 | 3.3   | 3.9   | 5.1 | 6.0   | 7.5 | 8.6   | 9.5  | 11.7 | 13.7 | 17.3 | 20.8 | 24.8 |
| 3         | 1.5 | 2.0       | 2.7 | 3.6   | 4.2   | 5.4 | 6.4   | 8.0 | 9.2   | 10.2 | 12.5 | 14.6 | 18.4 | 22.3 | 26.5 |
| 4         | 1.5 | 2.1       | 2.8 | 3.7   | 4.4   | 5.6 | 6.7   | 8.3 | 9.6   | 10.6 | 13.1 | 15.2 | 19.2 | 23.2 | 27.6 |
| 5         | 1.6 | 2.2       | 2.9 | 3.9   | 4.5   | 5.9 | 7.0   | 8.7 | 10.0  | 11.1 | 13.6 | 15.8 | 19.8 | 24.2 | 28.8 |
| 6         | 1.7 | 2.3       | 3.0 | 4.0   | 4.7   | 6.0 | 7.2   | 8.9 | 10.3  | 11.4 | 14.0 | 16.3 | 20.5 | 24.9 | 29.6 |
| 7         | 1.7 | 2.3       | 3.0 | 4.1   | 4.8   | 6.2 | 7.4   | 9.1 | 10.5  | 11.7 | 14.3 | 16.7 | 21.0 | 25.5 | 30.3 |
| 8         | 1.7 | 2.4       | 3.1 | 4.2   | 4.9   | 6.3 | 7.5   | 9.3 | 10.8  | 11.9 | 14.6 | 17.1 | 21.5 | 26.1 | 31.0 |
| 9         | 1.8 | 2.4       | 3.2 | 4.3   | 5.0   | 6.4 | 7.7   | 9.5 | 11.0  | 12.2 | 14.9 | 17.4 | 21.9 | 26.6 | 31.6 |
| 10        | 1.8 | 2.5       | 3.2 | 4.3   | 5.1   | 6.5 | 7.8   | 9.7 | 11.2  | 12.4 | 15.2 | 17.7 | 22.2 | 27.0 | 32.0 |

 Table 27
 Equivalent Length in Feet of Pipe for 90° Elbows

## **Friction Loss in Water Fittings**

• ASHRAE Chapter 22 has some list of equivalent lengths:

| Fitting               | Iron Pipe | <b>Copper Tubing</b> |
|-----------------------|-----------|----------------------|
| Elbow, 90°            | 1.0       | 1.0                  |
| 45°                   | 0.7       | 0.7                  |
| 90° long-radius       | 0.5       | 0.5                  |
| 90° welded            | 0.5       | 0.5                  |
| Reduced coupling      | 0.4       | 0.4                  |
| Open return bend      | 1.0       | 1.0                  |
| Angle radiator valve  | 2.0       | 3.0                  |
| Radiator or convector | 3.0       | 4.0                  |
| Boiler or heater      | 3.0       | 4.0                  |
| Open gate valve       | 0.5       | 0.7                  |
| Open globe valve      | 12.0      | 17.0                 |

Table 28 Iron and Copper Elbow Equivalents\*

Sources: Giesecke (1926) and Giesecke and Badgett (1931, 1932a).

\*See Table 10 for equivalent length of one elbow.

#### **Equivalent Length**

• ASHRAE Chapter 22 has some list of equivalent lengths:

| Equivalent Loss Lengens               |             |               |               |  |  |  |  |  |  |  |
|---------------------------------------|-------------|---------------|---------------|--|--|--|--|--|--|--|
| Schedule 80 PVC Fittin                | g           | K             | <i>L</i> , ft |  |  |  |  |  |  |  |
| Injected molded elbow,                | 2 in.       | 0.91 to 1.00  | 8.4 to 9.2    |  |  |  |  |  |  |  |
|                                       | 4 in.       | 0.86 to 0.91  | 18.3 to 19.3  |  |  |  |  |  |  |  |
|                                       | 6 in.       | 0.76 to 0.91  | 26.2 to 31.3  |  |  |  |  |  |  |  |
|                                       | 8 in.       | 0.68 to 0.87  | 32.9 to 42.1  |  |  |  |  |  |  |  |
| 8 in. fabricated elbow, Ty components | ype I,      | 0.40 to 0.42  | 19.4 to 20.3  |  |  |  |  |  |  |  |
| Type II, mitered                      |             | 0.073 to 0.76 | 35.3 to 36.8  |  |  |  |  |  |  |  |
| 6 by 4 in. injected molde             | d reducer   | 0.12 to 0.59  | 4.1 to 20.3   |  |  |  |  |  |  |  |
| Bushing type                          |             | 0.49 to 0.59  | 16.9 to 20.3  |  |  |  |  |  |  |  |
| 8 by 6 in. injected molde             | d reducer   | 0.13 to 0.63  | 6.3 to 30.5   |  |  |  |  |  |  |  |
| Bushing type                          |             | 0.48 to 0.68  | 23.2 to 32.9  |  |  |  |  |  |  |  |
| Gradual reducer typ                   | be          | 0.21          | 10.2          |  |  |  |  |  |  |  |
| 4 by 6 in. injected molde             | d expansion | 0.069 to 1.19 | 1.5 to 25.3   |  |  |  |  |  |  |  |
| Bushing type                          |             | 0.069 to 1.14 | 1.5 to 24.2   |  |  |  |  |  |  |  |
| 6 by 8 in. injected molde             | d expansion | 0.95 to 0.96  | 32.7 to 33.0  |  |  |  |  |  |  |  |
| Bushing type                          |             | 0.94 to 0.95  | 32.4 to 32.7  |  |  |  |  |  |  |  |
| Gradual reducer typ                   | be          | 0.99          | 34.1          |  |  |  |  |  |  |  |

Table 8Test Summary for Loss Coefficients K and<br/>Equivalent Loss Lengths

## **CLASS ACTIVITY**

 Example: Size the pipe for the water distribution system shown below. The pipe is type L copper. Notice that the lengths given are the total equivalent lengths excluding the coil and control valves.



#### • Solution:

□ Consider all the routes



#### • Solution:

□ Calculate the flow rate in each section:

| Pipe Section No. | Flow rate(gpm) |
|------------------|----------------|
| 1-2              |                |
| 2-3              |                |
| 3-4              |                |
| 4-5              |                |
| Common pipe      |                |
| 2-6              |                |
| 3-7              |                |
| 7-8              |                |

• Solution:

□ Calculate the flow rate in each section:

| Pipe Section No. | Flow rate(gpm)                                     |
|------------------|----------------------------------------------------|
| 1-2              | $Q_{total} = Q_A + Q_B + Q_C = 40 + 40 + 50 = 130$ |
| 2-3              | $Q_{total} - Q_A = 130 - 40 = 90$                  |
| 3-4              | $Q_C = 50$                                         |
| 4-5              | $Q_{total} = 130$                                  |
| Common pipe      | 0                                                  |
| 2-6              | $Q_A = 40$                                         |
| 3-7              | $Q_B = 40$                                         |
| 7-8              | $Q_A + Q_B = 80$                                   |

#### • Solution:

Identify the pipe diameter and head loss ft/100-ft of each section (Figure 15 – Chapter 22):

| Pipe section<br>No. | Flow rate<br>(gpm) | Nominal size<br>(in) | Lost head per 100 ft $(ft/100ft)$ |
|---------------------|--------------------|----------------------|-----------------------------------|
| 1-2                 | 130                |                      |                                   |
| 2-3                 | 90                 |                      |                                   |
| 3-4                 | 50                 |                      |                                   |
| 4-5                 | 130                |                      |                                   |
| Common pipe         | 0                  |                      |                                   |
| 2-6                 | 40                 |                      |                                   |
| 3-7                 | 40                 |                      |                                   |
| 7-8                 | 80                 |                      |                                   |

#### • Solution:

Identify the pipe diameter and head loss ft/100-ft of each section (Figure 15 – Chapter 22):



Fig. 15 Friction Loss for Water in Copper Tubing (Types K, L, M)

#### • Solution:

Identify the pipe diameter and head loss ft/100-ft of each section (Figure 15 – Chapter 22):

| Pipe section<br>No. | Flow rate<br>(gpm) | Nominal size<br>(in) | Lost head per 100 ft<br>( <i>ft</i> /100 <i>ft</i> ) |
|---------------------|--------------------|----------------------|------------------------------------------------------|
| 1-2                 | 130                | 3                    | 3.7                                                  |
| 2-3                 | 90                 | 2 1/2                | 4.8                                                  |
| 3-4                 | 50                 | 2                    | 5.0                                                  |
| 4-5                 | 130                | 3                    | 3.7                                                  |
| Common pipe         | 0                  | 3                    |                                                      |
| 2-6                 | 40                 | 2                    | 3.4                                                  |
| 3-7                 | 40                 | 2                    | 3.4                                                  |
| 7-8                 | 80                 | 2 1/2                | 3.9                                                  |

#### • Solution:

□ Calculate the head loss for each path:

| Pipe<br>section<br>No. | Flow<br>rate<br>(gpm) | Nominal<br>size (in) | Lost head per<br>100 ft ( <i>ft</i> /<br>100 <i>ft</i> ) | Pipe<br>equivalent<br>length ( <i>L<sub>e</sub></i> (ft)) | Lost head of pipe,<br>coil and control<br>valve (ft) | Total loss<br>head (ft) |
|------------------------|-----------------------|----------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------|
| 1-2                    | 130                   | 3                    | 3.7                                                      | 60                                                        | 60×3.7/100=2.2                                       |                         |
| 2-3                    | 90                    | 2 1/2                | 4.8                                                      | 20                                                        | 20×4.8/100=1.0                                       |                         |
| 3-4                    | 50                    | 2                    | 5.0                                                      | 30                                                        | 30×5.0/100=1.5                                       |                         |
| Coil C                 |                       |                      |                                                          |                                                           | 18                                                   | 39.2                    |
| Con. C                 |                       |                      |                                                          |                                                           | 15                                                   | 00.2                    |
| 4-5                    | <b>4-5</b> 130 3      |                      | 3.7                                                      | 40                                                        | 40×3.7/100=1.5                                       |                         |
| Common<br>pipe         | 0                     | 3                    |                                                          |                                                           | 0                                                    |                         |
| 2-6                    | 40                    | 2                    | 3.4                                                      | 30                                                        | 30×3.4/100=1.0                                       |                         |
| Coil A                 |                       |                      |                                                          |                                                           | 12                                                   | 23                      |
| Con. A                 |                       |                      |                                                          |                                                           | 10                                                   |                         |
| 3-7                    | 40                    | 2                    | 3.4                                                      | 10                                                        | 10×3.4/100=0.5                                       |                         |
| Coil B                 |                       |                      |                                                          |                                                           | 15                                                   |                         |
| Con. B                 |                       |                      |                                                          |                                                           | 12                                                   | 28.3                    |
| 7-8                    | 80                    | 2 1/2                | 3.9                                                      | 20                                                        | 20×3.9/100=0.8                                       | 28                      |

# **MORE ON FITTINGS**

• Unfortunately, ASHRAE Chapter 22 does not have all the fittings. We can rely on different resources. For example:

□ Source 1: Engineering Toolbox

- Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5<sup>th</sup> Edition
- □ Source 3: Reddy et al., Heating and Cooling of Buildings, 3<sup>rd</sup> Edition

• Source 1: Engineering Toolbox

|                  | Equivalent Length of Straight Pipe for Valves and Fittings (feet) |      |      |      |      |      |       |       |      |       |      |       |
|------------------|-------------------------------------------------------------------|------|------|------|------|------|-------|-------|------|-------|------|-------|
| Scree            | Pipe Size                                                         |      |      |      |      |      |       |       |      |       |      |       |
| Screwed Fittings |                                                                   | 1/4  | 3/8  | 1/2  | 3/4  | 1    | 1 1/4 | 1 1/2 | 2    | 2 1/2 | 3    | 4     |
|                  | Regular 90 deg                                                    | 2.3  | 3.1  | 3.6  | 4.4  | 5.2  | 6.6   | 7.4   | 8.5  | 9.3   | 11.0 | 13.0  |
| Elbows           | Long radius 90 deg                                                | 1.5  | 2.0  | 2.2  | 2.3  | 2.7  | 3.2   | 3.4   | 3.6  | 3.6   | 4.0  | 4.6   |
|                  | Regular 45 deg                                                    | 0.3  | 0.5  | 0.7  | 0.9  | 1.3  | 1.7   | 2.1   | 2.7  | 3.2   | 4.0  | 5.5   |
| Tees             | Line flow                                                         | 0.8  | 1.2  | 1.7  | 2.4  | 3.2  | 4.6   | 5.6   | 7.7  | 9.3   | 12.0 | 17.0  |
| 1663             | Branch flow                                                       | 2.4  | 3.5  | 4.2  | 5.3  | 6.6  | 8.7   | 9.9   | 12.0 | 13.0  | 17.0 | 21.0  |
| Return Bends     | Regular 180 deg                                                   | 2.3  | 3.1  | 3.6  | 4.4  | 5.2  | 6.6   | 7.4   | 8.5  | 9.3   | 11.0 | 13.0  |
|                  | Globe                                                             | 21.0 | 22.0 | 22.0 | 24.0 | 29.0 | 37.0  | 42.0  | 54.0 | 62.0  | 79.0 | 110.0 |
| Valves           | Gate                                                              | 0.3  | 0.5  | 0.6  | 0.7  | 0.8  | 1.1   | 1.2   | 1.5  | 1.7   | 1.9  | 2.5   |
| valves           | Angle                                                             | 12.8 | 15.0 | 15.0 | 15.0 | 17.0 | 18.0  | 18.0  | 18.0 | 18.0  | 18.0 | 18.0  |
|                  | Swing Check                                                       | 7.2  | 7.3  | 8.0  | 8.8  | 11.0 | 13.0  | 15.0  | 19.0 | 22.0  | 27.0 | 38.0  |
| Strainer         |                                                                   |      | 4.6  | 5.0  | 6.6  | 7.7  | 18.0  | 20.0  | 27.0 | 29.0  | 34.0 | 42.0  |

engineeringtoolbox.com

• Source 1: Engineering Toolbox

| Equivalent Length of Straight Pipe for Valves and Fittings (feet) |                     |           |      |      |       |       |      |       |      |       |     |     |     |     |
|-------------------------------------------------------------------|---------------------|-----------|------|------|-------|-------|------|-------|------|-------|-----|-----|-----|-----|
| Flanged Fittings                                                  |                     | Pipe Size |      |      |       |       |      |       |      |       |     |     |     |     |
|                                                                   |                     | 1/2       | 3/4  | 1    | 1 1/4 | 1 1/2 | 2    | 2 1/2 | 3    | 4     | 5   | 6   | 8   | 10  |
| Elbows                                                            | Regular 90 deg      | 0.9       | 1.2  | 1.6  | 2.1   | 2.4   | 3.1  | 3.6   | 4.4  | 5.9   | 7.3 | 8.9 | 12  | 14  |
|                                                                   | Long radius 90 deg  | 1.1       | 1.3  | 1.6  | 2.0   | 2.3   | 2.7  | 2.9   | 3.4  | 4.2   | 5   | 5.7 | 7   | 8   |
|                                                                   | Regular 45 deg      | 0.5       | 0.6  | 0.8  | 1.1   | 1.3   | 1.7  | 2.0   | 2.6  | 3.5   | 4.5 | 5.6 | 7.7 | 9   |
| Tees                                                              | Line flow           | 0.7       | 0.8  | 1.0  | 1.3   | 1.5   | 1.8  | 1.9   | 2.2  | 2.8   | 3.3 | 3.8 | 4.7 | 5.2 |
|                                                                   | Branch flow         | 2.0       | 2.6  | 3.3  | 4.4   | 5.2   | 6.6  | 7.5   | 9.4  | 12.0  | 15  | 18  | 24  | 30  |
| Return Bends                                                      | Regular 180 deg     | 0.9       | 1.2  | 1.6  | 2.1   | 2.4   | 3.1  | 3.6   | 4.4  | 5.9   | 7.3 | 8.9 | 12  | 14  |
| Return Denus                                                      | Long radius 180 deg | 1.1       | 1.3  | 1.6  | 2.0   | 2.3   | 2.7  | 2.9   | 3.4  | 4.2   | 5   | 5.7 | 7   | 8   |
| Valves                                                            | Globe               | 38.0      | 40.0 | 45.0 | 54.0  | 59.0  | 70.0 | 77.0  | 94.0 | 120.0 | 150 | 190 | 260 | 310 |
|                                                                   | Gate                |           |      |      |       |       | 2.6  | 2.7   | 2.8  | 2.9   | 3.1 | 3.2 | 3.2 | 3.2 |
|                                                                   | Angle               | 15.0      | 15.0 | 17.0 | 18.0  | 18.0  | 21.0 | 22.0  | 28.0 | 38.0  | 50  | 63  | 90  | 120 |

engineeringtoolbox.com

 Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition
 Globe and angle valves



If:  $\beta - 1$ ,  $\theta = 0$ ,  $K_1 = 8$  ft  $\beta < 1$  and  $\theta < 45^\circ$ ,  $K_2 =$  Formula 1  $\beta < 1$  and  $\theta > 45^\circ < 180^\circ$ ,  $K_2 =$  Formula 2  $\begin{array}{c}
\begin{array}{c}
\end{array}
\\
\end{array}
\\
\end{array}
\\
\begin{array}{c}
\end{array}
\\
\end{array}
\\
\end{array}
\\
\begin{array}{c}
\end{array}
\\
\end{array}
\\
\end{array}
\\
\begin{array}{c}
\end{array}
\\
\end{array}
\\
\end{array}$ 

If: 
$$\beta - 1$$
,  $K_1 = 340 \times f_t$ 



If:  $\beta = 1, \theta = 0, K_1 = 3 \times f_t$  $\beta < 1 \text{ and } \theta < 45^\circ, K_2 = \text{Formula } 1$  $\beta < 1 \text{ and } \theta > 45^\circ < 180^\circ, K_2 = \text{Formula } 2$ 

Crane Company, Technical Paper No. 410

 Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition
 Pipe entrance



45°

Standard elbows

90°

 $K = 30 \ ft$ 







The resistance coefficient  $K_B$  for pipe bends other than 90° may be determined as follows:

$$K_B = (n - 1) (0.25 \pi f_T \frac{r}{D} + 0.5 K) + K$$

n = number of 90° bends

 $K = resistance coefficient for one 90^{\circ} bend (per table)$ 

K = 16 ft K = resistance coefficierCrane Company, Technical Paper No. 410

 Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition



Crane Company, Technical Paper No. 410

 Source 2: McQuiston et al. Heating Ventilating and Air Conditioning, 5th Edition

| <b>Table 10-</b> 2<br>Fig. 10-22               | Formulas,                              | Definition of T                                                   | Ferms, and Values of ft for                                        |
|------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| Formula 1:                                     | $K_2 = \frac{K_1 + K_2}{K_1 + K_2}$    | $\left(\sin\frac{\theta}{2}\right)0.8(1-\theta)$                  | $(-\beta^2) + 2.6(1 - \beta^2)^2$<br>$\beta^4$                     |
| Formula 2:                                     | $K_2 = \frac{K_1 + K_2}{K_1 + K_2}$    | $\frac{0.5\left(\sin\frac{\theta}{2}\right)(1-\beta^2)}{\beta^2}$ | $(\frac{-\beta^2}{4}) + (1-\beta^2)^2$                             |
| $\beta = \frac{D_1}{D_2} ;$                    | $\beta^2 = \left( \frac{1}{2} \right)$ | $\left(\frac{D_1}{D_2}\right)^2 = \frac{A_1}{A_2}$                | ; $D_1 = \text{smaller diameter}$<br>; $A_1 = \text{smaller area}$ |
| Nominal                                        | Friction                               | Nominal                                                           | Friction                                                           |
| Size, in.                                      | Factor $f_t$                           | Size, in.                                                         | Factor $f_t$                                                       |
| $\frac{1}{2}$                                  | 0.027                                  | 4                                                                 | 0.017                                                              |
| $\frac{\frac{1}{2}}{\frac{3}{4}}$              | 0.025                                  | 5                                                                 | 0.016                                                              |
|                                                | 0.023                                  | 6                                                                 | 0.015                                                              |
| $1\frac{1}{4}$                                 | 0.022                                  | 8–10                                                              | 0.014                                                              |
| $1\frac{1}{2}$                                 | 0.021                                  | 12–16                                                             | 0.013                                                              |
| 2                                              | 0.019                                  | 18–24                                                             | 0.012                                                              |
| $1\frac{1}{4}$ $1\frac{1}{2}$ $2\frac{1}{2},3$ | 0.018                                  |                                                                   |                                                                    |

Crane Company, Technical Paper No. 410

## **More on Fittings**

 Source 3: Reddy et al. Heating and Cooling of Buildings, 3rd Edition

|                          | Nominal Pipe Size (in) |     |     |       |     |     |            |     |      |      |      |
|--------------------------|------------------------|-----|-----|-------|-----|-----|------------|-----|------|------|------|
|                          | 1⁄2                    | 3⁄4 | 1   | 1 1⁄4 | 1 ½ | 2   | <b>2</b> ½ | 3   | 4    | 5    | 6    |
| 45 elbow                 | 0.8                    | 0.9 | 1.3 | 1.7   | 2.2 | 2.8 | 3.3        | 4.0 | 5.5  | 6.6  | 8.0  |
| 90 elbow (Standard)      | 1.6                    | 2.0 | 2.6 | 3.3   | 4.3 | 5.5 | 6.5        | 8.0 | 11.0 | 13.0 | 16.0 |
| 90 elbow (long)          | 1.0                    | 1.4 | 1.7 | 2.3   | 2.7 | 3.5 | 4.2        | 5.2 | 7.0  | 8.4  | 10.4 |
| Gate valve open          | 0.7                    | 0.9 | 1.0 | 1.5   | 1.8 | 2.3 | 2.8        | 3.2 | 4.5  | 6.0  | 7.0  |
| Globe valve open         | 17                     | 22  | 27  | 36    | 43  | 55  | 67         | 82  | 110  | 134  | 164  |
| Angle valve              | 7                      | 9   | 12  | 15    | 18  | 24  | -          | -   | -    | -    | -    |
| Tee-side flow            | 3                      | 4   | 5   | 7     | 9   | 12  | 14         | 17  | 22   | 28   | 34   |
| Swing check valve        | 6                      | 8   | 10  | 14    | 16  | 20  | 25         | 30  | 40   | 50   | 60   |
| Tee-straight throughflow | 1.6                    | 2.0 | 2.6 | 3.3   | 4.3 | 5.5 | 6.5        | 8.0 | 11.0 | 13.0 | 16.0 |
| Radiator angle valve     | 3                      | 6   | 8   | 10    | 13  | -   | -          | -   | -    | -    | -    |
| Diverting tee            | -                      | 20  | 14  | 11    | 12  | 14  | 14         | 14  | -    | -    | -    |
| Flow check valve         | -                      | 27  | 42  | 60    | 63  | 83  | 104        | 125 | 126  |      |      |

# **PRIMARY – SECONDARY PUMPING**

- Was developed by Bell & Gossett in 1954 as a method to increase system temperature drops, decrease total pump power requirements and increase system controllability
- Systems utilizing low or medium temperatures were allowed due to Primary – Secondary pumping
- Most modern systems utilize some variation of Primary -Secondary pumps

- Common Piping:
  - Interconnects the primary to the secondary circuit
  - Should have minimal to no pressure drop
- Hydraulically disconnects the two piping loops
- Flow in one loop will not cause flow in the other loop



- Secondary pipe pump sized for pressure drops A-B, B-C, C-D, D-E, E-G, G-H, H-I
- I-A should have no pressure drop



Why do not we put the secondary pump at the end of the secondary circuit?

• In hydronic systems, we use this strategy:



• In hydronic systems, we use this strategy:

Primary flow equal to secondary flow



## PUMPS

## Intro to Pumps

 Pumps provide differential pressure by converting electrical energy to move water



### **Intro to Pumps**

- Positive displacement pumps
  - Rotary-type pumps
  - Reciprocating-type pump

- Rotodynamic pumps
  - Centrifugal pump
    - Radial flow pump
    - Axial flow pump
    - Mixed flow pump











K Discharge nozzle

- Most common use in HVAC industry
  - Chilled water
  - Cooling tower



- Basic Principle
  - ❑ Water enters impeller at low velocity & pressure
  - □ Water thrown outward by centrifugal force
  - Water leaves at high velocity & pressure

• Impeller types



Figure 1. Impeller Types (I to r): Open, Semi-Enclosed (or Semi-Open), Enclosed.

• It needs to be base mounted:



## **SYSTEM CURVE**

Assume there is only friction and no change in elevation (no static lift)



• How is the system curve?



• How is the system curve for this one?



• System curve can change over time



• System curve can change over time



## PROJECT

## Project