CAE 464/517 HVAC Systems Design Spring 2023

April 06, 2023

Hydronic systems: Intro to hydronic systems and pipe design

Built Environment Research @ IIT] 🐋 🕣 🎮 🥣

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

 Do not forget about our Alumni Panel Event:

Alumni Panel Event

Communicate with guests who were IIT alumni and previous ASHRAE IIT Student Branch!

ASHRAE Illinois Institute of Technology Student Branch

SPEAKERs Practice Leader (ESC **Saagar Patel TOPICs Assistant Project Manager** Blinderman **Erica Acton** ✓ Introducing each company ~ Experiences **Mechanical Designer** FANNING Careers ~ **Jacob Sorenson** HOWEY Q&A ~ Account Engineer CEPRO, inc. **Ibrane R. Jaurez**

WHEN April 6th, 2023 12:40 pm – 1:40 pm WHERE Peristein Hall, PH 131

For more information, feel free to contact ASHRAE official email **ashrae_iit@iit.edu**

Lunch will be provided

- How is the project Part 2 coming along?
- Revit Training videos are posted on Blackboard:

□ Any new topic(s)?

□ Are you using the AutoDesk Construction Cloud (BIM 360)?

• The Midterm Exam 2 is graded, and the solution is posted.

Assignment 5 will be posted next week:
 Remember best of four will be used for grading

RECAP

• There are two main component types:

□ Thermal components:

- Heat source(s)
- Heat load(s)
- Expansion tank
- □ Hydraulic components
 - Piping
 - Pump
 - Expansion tank

- There are different temperature ranges:
 - □ Chilled Water (CHW):
 - Temperature range: 39 °F to 50 °F
 - □ Condenser Water (CW):
 - Temperature range: 55 °F to 100 °F
 - □ Hot Water (HW):
 - Temperature range: 100 °F to 210 °F
 - □ High Temperature Water (HTW):
 - Temperature range: 212 °F to 455 °F

- Three common boiler types are:
 - □ Water tube boilers
 - □ Fire tube boiler
 - Cast iron boilers

Water tube boilers

- Hydronic heating load devices are:
 - Preheat coils in central units
 - □ Convectors
 - Heating coils in central units
 - Unit heaters
 - □ Zone or central unit reheat coils
 - □ Fan-coil units
 - □ Induction unit and chilled beam coils
 - Finned-tube radiation
 - Baseboard radiation
 - □ Water-to-Water heat exchangers
 - Radiant heating panels

HYDRONIC COOLING SYSTEMS

Hydronic Cooling Systems

- Hydronic cooling source devices are:
 - □ Electric compression chiller
 - Thermal absorption chiller
 - Heat pump evaporator
 - Air-to-water heat exchanger (heat recovery coil)
 - □ Water-to-water heat exchanger

Hydronic Cooling Systems

- Hydronic cooling load devices are:
 - Coils in central units
 - □ Fan-coil units
 - Induction unit and chilled beam coils
 - Radiant cooling panels
 - □ Water-to-water heat exchangers

HYDRONIC SYSTEM DISTRIBUTION CIRCUITS

- The system between the source (boiler or chiller) and the terminal units (or devices) in rooms/zones can have the following configurations:
 - Series
 - One pipe main
 - Two pipe (Direct or reverse return)
 - □ Three pipe
 - □ Four pipe

- There are many piping arrangements, particularly for hot water systems
- Closed-loop systems are commonly classified as two-or four-pipe

• Simple series circuit is one approach:

Basic of Hydronic Systems

• Another approach is to use a pump in this configuration:

 Another approach is the series circuit with distributed load pumps:

- One-pipe hydronic systems:
 - Have a single pipe that acts as the supply pipe and return pipe for the flow loop
 - □ Connects one terminal unit to the next terminal unit

• One-pipe hydronic systems:

One-pipe hydronic systems:

Vacuum Breaker

Control Valve

Always installed at the bottom, this allows the steam to enter and the condensate to exit. The control valve should always be left fully open. Counter-intuitively, the way to control the heat from a one-pipe steam radiator is by regulating the air as it exits the radiator rather than the steam as it enters..

Air Vent

• Two-pipe hydronic systems:

□ Have a separate supply pipe and return pipe at each terminal unit

• Two-pipe hydronic systems:

• Two-pipe hydronic systems:

- Three-pipe hydronic systems:
 - Have a hot-water loop and a cold-water loop so that hot or cold water can be introduced to any terminal unit at any time

- Four-pipe hydronic system:
 - Uses supply and return heating piping and supply and return cooling piping

• Four-pipe hydronic system (common loads):

• Four-pipe hydronic system (independent loads):

- Four-pipe hydronic system:
 - □ Respond quickly to load changes
 - □ Simultaneously operation of heating and cooling system
 - □ Higher efficiency
 - □ Lower operating cost but higher initial cost

RETURN TYPES (REVERSE VS DIRECT)

Return Types

Return Types

- Direct return:
 - □ Water enters the first unit from supply
 - □ Water leaves the first unit and returns directly to the source
 - □ Unequal pressure drop
 - □ The first unit supplied is the first unit returned
 - Balancing vales are required

• Direct return:

Return Types

- Reverse return:
 - □ Return direction is the same direction as the supply flow
 - Water leaves the first unit and goes all the way around in returning to the source
 - Equal pressure drop
 - □ The first unit supplied is the last unit returned
 - □ Balancing vales may be eliminated

• Reverse return:

PIPE DESIGN

 Similar to the duct design, we rely on the ASHRAE Handbook

CHAPTER 22

PIPE DESIGN

FUNDAMENTALS	22.1
Codes and Standards	22.1
Design Considerations	22.1
General Pipe Systems	22.1
Design Equations	22.5
Sizing Procedure	22.10
Pipe-Supporting Elements	22.10
Pipe Expansion and Flexibility	22.11
Pipe Bends and Loops	22.12
PIPE AND FITTING MATERIALS	22.14
Pipe	22.14

Fittings	22.18
Joining Methods	22.18
Expansion Joints and Expansion Compensating Devices	22.20
APPLICATIONS	22.22
Water Piping	22.22
Service Water Piping	22.23
Steam Piping	22.29
Low-Pressure Steam Piping	22.33
Steam Condensate Systems	22.34
Gas Piping	22.37
Fuel Oil Piping	22.38

 In hydronic systems pressure drop is calculated at feet per 100 feet of pipe at a given velocity

Pipe Size	Velocity (fps)
Large (≥ 12 ′′)	6-8
Medium (Between 2" and 12 $^{\prime\prime}$)	3-4
Small (≤ 12 $^{\prime\prime}$)	2

• Common pipe types are:

□ M is used for very thin walls

Optimal for interior hot and cold supply lines

L is used for medium thickness

Optimal for interior hot and cold supply lines

□ K is used for thickest walls

Optimal for underground service lines

□ Schedule 40

□ Has a wall thickness of 0.1333" and ID of 1.049"

- Some common fitting types are:
 - □ Welded
 - □ Threaded

Butt Weld Elbow	Socket Weld Elbow	Threaded Elbow www.theprocesspiping.com

- The schedule number represents the thickness of the wall on the pipe (e.g., Schedule 40 vs Schedule 80)
- As the schedule number increases, the thicker the wall thickness becomes
- The Nominal Pipe Size (NPS) represents the approximate inside diameter (not outside) of the pipe
- If the schedule number of a set size is changed, it affects the inside diameter (ID) but not the outside diameter (OD)

• For steel pipes:

Nominal	Pine	Schedule Number	Wall	Inside	Surface	e Area	Cross S	Section	We	ight	Work ASTM	ing Press A53 B to	ure ^c 400°F
Size, in.	OD, in.	or Weight ^a	Thickness <i>t</i> , in.	Diameter <i>d</i> , in.	Outside, ft ² /ft	Inside, ft ² /ft	Metal Area, in ²	Flow Area, in ²	Pipe, lb/ft	Water, lb/ft	Mfr. Process	Joint Type ^b	psig
1/4	0.540	40 ST	0.088	0.364	0.141	0.095	0.125	0.104	0.424	0.045	CW	Т	188
		80 XS	0.119	0.302	0.141	0.079	0.157	0.072	0.535	0.031	CW	Т	871
3/8	0.675	40 ST	0.091	0.493	0.177	0.129	0.167	0.191	0.567	0.083	CW	Т	203
		80 XS	0.126	0.423	0.177	0.111	0.217	0.141	0.738	0.061	CW	Т	820
1/2	0.840	40 ST	0.109	0.622	0.220	0.163	0.250	0.304	0.850	0.131	CW	Т	214
		80 XS	0.147	0.546	0.220	0.143	0.320	0.234	1.087	0.101	CW	Т	753
3/4	1.050	40 ST	0.113	0.824	0.275	0.216	0.333	0.533	1.13	0.231	CW	Т	217
		80 XS	0.154	0.742	0.275	0.194	0.433	0.432	1.47	0.187	CW	Т	681
1	1.315	40 ST	0.133	1.049	0.344	0.275	0.494	0.864	1.68	0.374	CW	Т	226
		80 XS	0.179	0.957	0.344	0.251	0.639	0.719	2.17	0.311	CW	Т	642
1 1/4	1.660	40 ST	0.140	1.380	0.435	0.361	0.669	1.50	2.27	0.647	CW	Т	229
		80 XS	0.191	1.278	0.435	0.335	0.881	1.28	2.99	0.555	CW	Т	594
1 1/2	1.900	40 ST	0.145	1.610	0.497	0.421	0.799	2.04	2.72	0.881	CW	Т	231
		80 XS	0.200	1.500	0.497	0.393	1.068	1.77	3.63	0.765	CW	Т	576
2	2.375	40 ST	0.154	2.067	0.622	0.541	1.07	3.36	3.65	1.45	CW	Т	230
		80 XS	0.218	1.939	0.622	0.508	1.48	2.95	5.02	1.28	CW	Т	551
2 1/2	2.875	40 ST	0.203	2.469	0.753	0.646	1.70	4.79	5.79	2.07	CW	W	533
		80 XS	0.276	2.323	0.753	0.608	2.25	4.24	7.66	1.83	CW	W	835

Table 16Steel Pipe Data

• For copper pipes:

Nominal		Wall Thick- Diameter		Surface	Surface Area		Cross Section		Weight		Working Pressure ^{a,b,c} ASTM B88 to 250°F	
Diameter, in.	Туре	ness <i>t</i> , in.	Outside D, in.	Inside <i>d</i> , in.	Outside, ft ² /ft	Inside, ft ² /ft	Metal Area, in ²	Flow Area, in ²	Tube, lb/ft	Water, lb/ft	Annealed, psig	Drawn, psig
1/4	K	0.035	0.375	0.305	0.098	0.080	0.037	0.073	0.145	0.032	851	1596
	L	0.030	0.375	0.315	0.098	0.082	0.033	0.078	0.126	0.034	730	1368
3/8	Κ	0.049	0.500	0.402	0.131	0.105	0.069	0.127	0.269	0.055	894	1676
	L	0.035	0.500	0.430	0.131	0.113	0.051	0.145	0.198	0.063	638	1197
	Μ	0.025	0.500	0.450	0.131	0.118	0.037	0.159	0.145	0.069	456	855
1/2	Κ	0.049	0.625	0.527	0.164	0.138	0.089	0.218	0.344	0.094	715	1341
	L	0.040	0.625	0.545	0.164	0.143	0.074	0.233	0.285	0.101	584	1094
	Μ	0.028	0.625	0.569	0.164	0.149	0.053	0.254	0.203	0.110	409	766
5/8	K	0.049	0.750	0.652	0.196	0.171	0.108	0.334	0.418	0.144	596	1117
	L	0.042	0.750	0.666	0.196	0.174	0.093	0.348	0.362	0.151	511	958
3/4	Κ	0.065	0.875	0.745	0.229	0.195	0.165	0.436	0.641	0.189	677	1270
	L	0.045	0.875	0.785	0.229	0.206	0.117	0.484	0.455	0.209	469	879
	Μ	0.032	0.875	0.811	0.229	0.212	0.085	0.517	0.328	0.224	334	625
1	Κ	0.065	1.125	0.995	0.295	0.260	0.216	0.778	0.839	0.336	527	988
	L	0.050	1.125	1.025	0.295	0.268	0.169	0.825	0.654	0.357	405	760
	Μ	0.035	1.125	1.055	0.295	0.276	0.120	0.874	0.464	0.378	284	532

Table 17Copper Tube Data

• Common pipe types for a chilled water application are:

- E				is of tipe, Fittings, a			Sustam ^g	
- i -			1 I)			Class (When	Temperature,	Maximum Pressure at
Application	Size, in.	Material	Weight	Joint Type	Fitting Material	Applicable)	°F	Temperature, ^{a,b} psi
Chilled	≤2	Steel Type F (CW)	Schedule 40	Thread	Cast iron	125	250	125
water	2.5 to 12	Steel A or B, Type	Schedule 40	Weld	Wrought steel	Standard	250	400
		(ERW)	i ()	Flange	Wrought steel	150	250	250
					Cast iron	125	250	175
					Cast iron	250	250	400
		Copper, hard or soft	Type K or L	Solder	Wrought or cast Cu		100	370 Type K soft
				Flared (soft)				635 Type-K hard — —
				Rolled groove (2 to 8 in.)				250 Type L soft
				Press-connect (0.5 to 4 in.)	1			435 Type L hard
				Push connect (0.5 to 2 in.)				
				Mechanical formed				
				Braze	Wrought or cast Cu		100	250 Type L soft
				Weld				370 Type K soft
		Copper, hard	Type M	Solder	Wrought or cast Cu		100	395 Type M hard
				Rolled groove (2 to 8 in.)				
				Press-connect (0.5 to 4 in.)	1			
				Push connect (0.5 to 2 in.)				
				Mechanical formed				
				Braze	Wrought or cast Cu		100	230 Type M soft
				Weld				
	0.375 to 1.0	PEX (barrier)	SDR-9	Crimp	Bronze		73	145
				Clamp	Brass			
				Expansion	Copper			
				Compression	Engineered plastic			
				Push fit				
				Proprietary				
	0.5 to 6	PE	Schedule 40, ^f 80,	Thermal fusion,	PE		120 (140 limit	Varies with pipe wall thickness,
			SDR	compression			for some	grade, schedule, size. Check man-
							applications)	utacturer's documentation for 48
								design ratings 30 to 110 at 130°F

• Common pipe types for a heating application are:

Application	Size, in.	Material	Weight	Joint Type	Fitting Material	Class (When Applicable)	System ^g Temperature, °F	Maximum Pressure at Temperature, ^{a,b} psi
Heating and	2 and	Steel Type F (CW)	Schedule 40	Thread	Cast iron	125	250	125
recirculating	smaller	Steel B Type E	Schedule 40	Weld	Wrought steel	Standard	250	400
	0.25 to 12	(ERW)		Flange	Wrought steel	150	250	250
					Cast iron	125	250	125
					Cast iron	250	250	400
	0.25 to 12	Copper, hard or soft Copper, hard	Type K or L Type M	Solder Braze Flared (soft) Rolled groove (2 to 8 in.) Press-connect (0.5 to 4 in.) Push connect (0.5 to 2 in.) Mechanical formed Braze Weld Solder Rolled groove (2 to 8 in.) Press-connect (0.5 to 4 in.) Push connect (0.5 to 2 in.) Mechanical formed	Wrought or cast Cu Wrought or cast Cu Wrought or cast Cu		200 200 200	 300 Type K soft 635 Type K hard 205 Type L soft 435 Type L hard 300 Type K soft 205 Type L soft 395 Type M hard
				Braze Weld	Wrought or cast Cu		200	200 Type M soft
	0.375 to 1.0	PEX (barrier)	SDR-9	Crimp Clamp Expansion Compression Push fit Proprietary	Bronze Brass Copper Engineered plastic		200	79

 Common pipe types for a steam and condensate application are:

Application	Size, in.	Material	Weight	Joint Type	Fitting Material	System ^g Class (When Tempera Applicable) °F	ature, Maximum Pressure at Temperature, ^{a,b} psi
Steam and	2 and	Steel Type F (CW)	Schedule 40 ^d	Thread	Cast iron	125	90
condensate	smaller	or S		Thread	Malleable iron	150	90
				Socket	Forged steel	3000	90
		Steel B Type E	Schedule 40 ^d	Thread	Cast iron	125	100
		(ERW) or S		Thread	Malleable iron	150	125
				Socket	Forged steel	3000	400
		Steel B Type E	Schedule 80	Thread	Cast iron	250	200
		(ERW) or S		Socket			
				Thread	Malleable iron	300	250
				Socket	Forged steel	3000	400
	2 to 12	Steel B Type E	Schedule 40	Weld	Wrought steel	Standard	250
		(ERW) or S		Flange	Wrought steel	150	200

- Common standards and codes are:
 - □ ASME B&PV: Boiler and Pressure Vessel Code
 - □ ASME B31.1: Power Piping
 - □ ASME B31.5: Refrigerant Piping
 - □ ASME B31.8: Gas Piping
 - □ ASME B31.9: Building Services Piping
 - □ NFPA 13: Installation of Sprinkler Systems
 - □ NFPA 54: National Fuel Gas Code
 - □ International, national, and local building codes

FRICTION LOSS IN WATER PIPES

Friction Loss in Water Pipes

• We can write the friction loss in the system as:

$$H_{lf} = f\left(\frac{L}{D}\right)\left(\frac{V^2}{2g}\right) + \sum_{fittings} K\left(\frac{V^2}{2g}\right)$$

Friction Loss in Water Pipes

 In hydronic systems, the general range of pipe friction loss used for design is between 1 and 4 ft. of water per 100 ft. of pipe

Fig. 4 Friction Loss for Water in Commercial Steel Pipe (Schedule 40)

Friction Loss in Water Pipes

• For Types K, L, M, we can use this chart:

Fig. 15 Friction Loss for Water in Copper Tubing (Types K, L, M)

CLASS ACTIVITY

Class Activity

- **Example:** Using the commercial steel pipe (Schedule 40) answer the following pipe sizing questions.
 - □ Find the maximum capacity of 2" schedule 40 steel
 - Size and find the velocity for the upper and lower bound when gpm is 1000
 - □ Find the pipe diameter when gpm is 3000 and the maximum velocity is 10 ft/s

Class Activity

• Solution: In hydronic systems, the general range of pipe friction loss used for design is

Between 1 and 4 ft. of water per 100 ft. of pipe

FRICTION LOSS IN WATER FITTINGS

• Friction loss in a water pipe fitting is equal to:

$$H_{lf} = K\left(\frac{V^2}{2g}\right)$$

 Table 3
 K Factors: Threaded Steel Pipe Fittings

Nominal Pipe Dia., in.	90° Standard Elbow	90° Long- Radius Elbow	45° Elbow	Return Bend	Tee- Line	Tee- Branch	Globe Valve	<mark>Gate</mark> Valve	Angle Valve	Swing Check Valve	Bell Mouth Inlet	Square Inlet	Projected Inlet
3/8	2.5	1	0.38	2.5	0.90	2.7	20	0.40		8.0	0.05	0.5	1.0
1/2	2.1		0.37	2.1	0.90	2.4	14	0.33		5.5	0.05	0.5	1.0
3/4	1.7	0.92	0.35	1.7	0.90	2.1	10	0.28	6.1	3.7	0.05	0.5	1.0
1	1.5	0.78	0.34	1.5	0.90	1.8	9	0.24	4.6	3.0	0.05	0.5	1.0
1 1/4	1.3	0.65	0.33	1.3	0.90	1.7	8.5	0.22	3.6	2.7	0.05	0.5	1.0
1 1/2	1.2	0.54	0.32	1.2	0.90	1.6	8	0.19	2.9	2.5	0.05	0.5	1.0
2	1.0	0.42	0.31	1.0	0.90	1.4	7	0.17	2.1	2.3	0.05	0.5	1.0
2 1/2	0.85	0.35	0.30	0.85	0.90	1.3	6.5	0.16	1.6	2.2	0.05	0.5	1.0
3	0.80	0.31	0.29	0.80	0.90	1.2	6	0.14	1.3	2.1	0.05	0.5	1.0
4	0.70	0.24	0.28	0.70	0.90	1.1	5.7	0.12	1.0	2.0	0.05	0.5	1.0

Source: Engineering Data Book (Hydraulic Institute 1990).

Is there a difference between open or close valve?

Friction Loss in Water Fittings

• Friction loss in a water pipe fitting is equal to:

Nominal Pipe Dia., in.	90° Standard Elbow	90° Long- Radius Elbow	45° Long- Radius Elbow	Return Bend Standard	Return Bend Long- Radius	Tee- Line	Tee- Branch	Globe Valve	Gate Valve	Angle Valve	Swing Check Valve
1	0.43	0.41	0.22	0.43	0.43	0.26	1.0	13		4.8	2.0
1 1/4	0.41	0.37	0.22	0.41	0.38	0.25	0.95	12		3.7	2.0
1 1/2	0.40	0.35	0.21	0.40	0.35	0.23	0.90	10		3.0	2.0
2	0.38	0.30	0.20	0.38	0.30	0.20	0.84	9	0.34	2.5	2.0
2 1/2	0.35	0.28	0.19	0.35	0.27	0.18	0.79	8	0.27	2.3	2.0
3	0.34	0.25	0.18	0.34	0.25	0.17	0.76	7	0.22	2.2	2.0
4	0.31	0.22	0.18	0.31	0.22	0.15	0.70	6.5	0.16	2.1	2.0
6	0.29	0.18	0.17	0.29	0.18	0.12	0.62	6	0.10	2.1	2.0
8	0.27	0.16	0.17	0.27	0.15	0.10	0.58	5.7	0.08	2.1	2.0
10	0.25	0.14	0.16	0.25	0.14	0.09	0.53	5.7	0.06	2.1	2.0
12	0.24	0.13	0.16	0.24	0.13	0.08	0.50	5.7	0.05	2.1	2.0

 Table 4
 K Factors: Flanged Welded Steel Pipe Fittings

Source: Engineering Data Book (Hydraulic Institute 1990).

Friction Loss in Water Fittings

• Friction loss in a water pipe fitting is equal to:

		A	SHRAE Research	b,c
	Past ^a	4 fps	8 fps	12 fps
2 in. S.R. ^e ell $(R/D = 1)$ thread	0.60 to 1.0 (1.0) ^d	0.60	0.68	0.736
4 in. S.R. ell $(R/D = 1)$ weld	0.30 to 0.34	0.37	0.34	0.33
1 in. L.R. ell $(R/D = 1.5)$ weld	to 1.0	_		
2 in. L.R. ell $(R/D = 1.5)$ weld	0.50 to 0.7	_		
4 in. L.R. ell $(R/D = 1.5)$ weld	0.22 to 0.33 (0.22) ^d	0.26	0.24	0.23
6 in. L.R. ell $(R/D = 1.5)$ weld	0.25	0.26	0.24	0.24
8 in. L.R. ell $(R/D = 1.5)$ weld	0.20 to 0.26	0.22	0.20	0.19
10 in. L.R. ell $(R/D = 1.5)$ weld	0.17	0.21	0.17	0.16
12 in. L.R. ell $(R/D = 1.5)$ weld	0.16	0.17	0.17	0.17
16 in. L.R. ell $(R/D = 1.5)$ weld	0.12	0.12	0.12	0.11
20 in. L.R. ell ($R/D = 1.5$) weld	0.09	0.12	0.10	0.10
24 in. L.R. ell $(R/D = 1.5)$ weld	0.07	0.098	0.089	0.089
Reducer (2 by 1.5 in.) thread	_	0.53	0.28	0.20
(4 by 3 in.) weld	0.22	0.23	0.14	0.10
(6 by 4 in.) weld		0.62	0.54	0.53
(8 by 6 in.) weld		0.31	0.28	0.26
(10 by 8 in.) weld		0.16	0.14	0.14
(12 by 10 in.) weld	—	0.14	0.14	0.14
(16 by 12 in.) weld	—	0.17	0.16	0.17
(20 by 16 in.) weld	—	0.16	0.13	0.13
(24 by 20 in.) weld	—	0.053	0.053	0.055
Expansion (1.5 by 2 in.) thread	_	0.16	0.13	0.02
(3 by 4 in.) weld	_	0.11	0.11	0.11
(4 by 6 in.) weld	—	0.28	0.28	0.29
(6 by 8 in.) weld	_	0.15	0.12	0.11
(8 by 10 in.) weld	—	0.11	0.09	0.08
(10 by 12 in.) weld	_	0.11	0.11	0.11
(12 by 16 in.) weld	—	0.073	0.076	0.073
(16 by 20 in.) weld	_	0.024	0.021	0.022
(20 by 24 in.) weld		0.020	0.023	0.020

 Table 6
 Summary of K Values for Steel Ells, Reducers, and Expansions

Source: Rahmeyer (2003a). ^aPublished data by Crane Co. (1988), Freeman (1941), and Hydraulic Institute (1990). ^bRahmeyer (1999a, 2002a). ^cDing et al. (2005)

^d() Data published in 1993 *ASHRAE Handbook—Fundamentals*. ^eS.R.—short radius or regular ell; L.R.—long-radius ell. • We also sometimes define equivalent length:

Head loss in a pipe =
$$f \frac{L}{D} \frac{V^2}{2g}$$

 $K = f \frac{L}{D}$
Head loss in a fitting = $K \frac{V^2}{2g}$

• $\frac{L}{D}$ is the equivalent length in pipe diameters of straight pipe that will cause the same pressure drop as the valve or fitting under the same flow conditions

Friction Loss in Water Fittings

• ASHRAE Chapter 22 has some list of equivalent lengths:

Velocity.		Pipe Size													
fps	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	3 1/2	4	5	6	8	10	12
1	1.2	1.7	2.2	3.0	3.5	4.5	5.4	6.7	7.7	8.6	10.5	12.2	15.4	18.7	22.2
2	1.4	1.9	2.5	3.3	3.9	5.1	6.0	7.5	8.6	9.5	11.7	13.7	17.3	20.8	24.8
3	1.5	2.0	2.7	3.6	4.2	5.4	6.4	8.0	9.2	10.2	12.5	14.6	18.4	22.3	26.5
4	1.5	2.1	2.8	3.7	4.4	5.6	6.7	8.3	9.6	10.6	13.1	15.2	19.2	23.2	27.6
5	1.6	2.2	2.9	3.9	4.5	5.9	7.0	8.7	10.0	11.1	13.6	15.8	19.8	24.2	28.8
6	1.7	2.3	3.0	4.0	4.7	6.0	7.2	8.9	10.3	11.4	14.0	16.3	20.5	24.9	29.6
7	1.7	2.3	3.0	4.1	4.8	6.2	7.4	9.1	10.5	11.7	14.3	16.7	21.0	25.5	30.3
8	1.7	2.4	3.1	4.2	4.9	6.3	7.5	9.3	10.8	11.9	14.6	17.1	21.5	26.1	31.0
9	1.8	2.4	3.2	4.3	5.0	6.4	7.7	9.5	11.0	12.2	14.9	17.4	21.9	26.6	31.6
10	1.8	2.5	3.2	4.3	5.1	6.5	7.8	9.7	11.2	12.4	15.2	17.7	22.2	27.0	32.0

 Table 27
 Equivalent Length in Feet of Pipe for 90° Elbows

Friction Loss in Water Fittings

• ASHRAE Chapter 22 has some list of equivalent lengths:

Iron Pipe	Copper Tubing 1.0		
1.0			
0.7	0.7		
0.5	0.5		
0.5	0.5		
0.4	0.4		
1.0	1.0		
2.0	3.0		
3.0	4.0		
3.0	4.0		
0.5	0.7		
12.0	17.0		
	Iron Pipe 1.0 0.7 0.5 0.5 0.4 1.0 2.0 3.0 0.5 1.2.0		

 Table 28
 Iron and Copper Elbow Equivalents*

Sources: Giesecke (1926) and Giesecke and Badgett (1931, 1932a).

*See Table 10 for equivalent length of one elbow.

Equivalent Length

• ASHRAE Chapter 22 has some list of equivalent lengths:

Schedule 80 PVC Fittin	g	K	<i>L</i> , ft			
Injected molded elbow,	2 in.	0.91 to 1.00	8.4 to 9.2			
	4 in.	0.86 to 0.91	18.3 to 19.3			
	6 in.	0.76 to 0.91	26.2 to 31.3			
	8 in.	0.68 to 0.87	32.9 to 42.1			
8 in. fabricated elbow, Type I, components		0.40 to 0.42	19.4 to 20.3			
Type II, mitered		0.073 to 0.76	35.3 to 36.8			
6 by 4 in. injected molde	d reducer	0.12 to 0.59	4.1 to 20.3			
Bushing type		0.49 to 0.59	16.9 to 20.3			
8 by 6 in. injected molded reducer		0.13 to 0.63	6.3 to 30.5			
Bushing type		0.48 to 0.68	23.2 to 32.9			
Gradual reducer typ	be	0.21	10.2			
4 by 6 in. injected molde	d expansion	0.069 to 1.19	1.5 to 25.3			
Bushing type		0.069 to 1.14	1.5 to 24.2			
6 by 8 in. injected molde	d expansion	0.95 to 0.96	32.7 to 33.0			
Bushing type		0.94 to 0.95	32.4 to 32.7			
Gradual reducer typ	be	0.99	34.1			

Table 8Test Summary for Loss Coefficients K and
Equivalent Loss Lengths

HYDRONIC DRAWINGS

Hydronic Drawings

<u>GENERAL</u>	PIPING SYMBOLS	1	FINNED TUBE RADIATION
	2-WAY CONTROL VALVE		FLEX CONNECTOR
Ŕ	3-WAY CONTROL VALVE	۱Ľ۱	FLOW METER
Ť	AIR VENT	G	PIPE DROP
Ø	BALL VALVE	0	PIPE RISER
_		\bullet	POINT OF NEW CONNECTION
щ	BUTTERFLY VALVE	CR	STEAM CONDENSATE RETURN
	CABINET HEATER	LPS	LOW PRESSURE STEAM
]	CAP	PCR	PUMPED CONDENSATE RETURN
$[\square]$	GATE VALVE	— HWS —	HEATING HOT WATER SUPPLY
	CHECK VALVE	— HWR —	HEATING HOT WATER RETURN
	CIRCUIT SETTER	BHWR	BASEBOARD HOT WATER RETURN
	CIRCUIT SETTER	BHWS	BASEBOARD HOT WATER SUPPLY
		—— HPS ——	HIGH PRESSURE STEAM
	CONTINUATION	CHWS	CHILLED WATER SUPPLY
	DIRECTION OF FLOW ARROWS	CHWR	CHILLED WATER RETURN
	EXPANSION JOINT	— D —	CONDENSATE DRAIN

DESIGN PROCEDURE

Design Procedure of a Hot Water Heating System

PROJECT PART 2