CAE 464/517 HVAC Systems Design Spring 2023

March 30, 2023

Hydronic systems: Intro to hydronic systems

Built Environment Research @ IIT

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Building Performance focusing on net

zero design and energy modeling

SPEAKER

Senior Project Manager

WHEN

March 30th, 2023 12:40 pm – 1:40 pm

WHERE

John T. Rettaliata Engineering Center, RE 104

TALK ABOUT

- ✓ Green building work
- Energy performance skill
 Sustainability second state
- ✓ Sustainability consulting
 - ✓ Energy conservation

For more information, feel free to contact ASHRAE and SEES official email ashrae_iit@iit.edu sees@iit.edu

Interested in Joining

 Solution to Assignment 4 will be posted on Blackboard today at 11 am

• Revit Training videos are posted on Blackboard

- Midterm Exam 2
 - Exam will take place next Tuesday, 04/04/23 in class (all students are required to attend in person)
 - Open book / open notes (laptop/tablet is allowed)

PROJECT PART 1 FEEDBACK

• Make sure to use the right construction set

<u>File</u> <u>Preferences</u> <u>Components & Measures</u> <u>Help</u>								
	Constructions Construction Set	s Constructions Materials						
	90.1-2013 - Hospital - ASHRAE 169-2013-1A	Name 90.1-2013 - Hospital - ASHRAE 169-2013-						
		Exterior Surface Constructions Walls Floors						

• Make sure to include heating and cooling setpoints

	0								
HVAC Systems	Cooling Sizing Parameter	Heating Sizing Parameters	Custom						
Name	All	Rendering Color	Turn On Ideal Air Loads	Air Loop Name	Zone Equipment	Cooling Thermostat Schedule	Heating Thermostat Schedule	Humidifying Setpoint Schedule	Dehumidifying Schedul
			Apply to Selected		Apply to Selected	Apply to Selected	Apply to Selected	Apply to Selected	Apply to Sel
Thermal Zone 1									
Thermal Zone 2			V						
Thermal Zone 3			V						
Thermal Zone 4			V						
Thermal Zone 5			V						
Thermal Zone 6			V						
Thermal Zone 7									
Thermal Zone 8			V						CIII
Thermal Zone 9					[]	[]	[]	[]	

9

Pay attention to converting from the Google Sheets to the offline version

• Make sure to use equations and features in Excel

	А	В	С	D	E	F	G
1 Room #		Room Name	Area (SF)	ACH	Volume (ft^3)	Volume flow rate (cfm)	Notes
2 100		Vestibule	46	0	414	=(D2*E2)/60	
3 101		O2 Room	111	0	1443	=(D3*E3)/60	
4 102		Provider	93		1216.75	10.58	Solved For CFM using Vbz equation
5 103		Med Asst.	102		918	11.12	Solved For CFM using Vbz equation
6 104		Telemed	153		1377	14.18	Solved For CFM using Vbz equation
7 105		Social Services	224		2016	23.44	Solved For CFM using Vbz equation
8 106		Corridor	379	2	3411	=(D8*E8)/60	
9 107		Corridor	587	2	5283	=(D9*E9)/60	
10	108A	Intake Room	162	4	1458	=(D10*E10)/60	
11	108E	Intake Room	174	4	1566	=(D11*E11)/60	
12 109		Soiled	78	6	702	=(D12*E12)/60	
13 110		Clean	85	4	765	=(D13*E13)/60	
14 111		Lab	85	6	765	=(D14*E14)/60	
15 112		Staff Toilet	47	0	423	=(D15*E15)/60	
16 113		Patient Toilet	48	0	432	=(D16*E16)/60	
17 114		Exam	119	4	1071	=(D17*E17)/60	
18 115		Exam	119	4	1071	=(D18*E18)/60	
19 116		Exam	118	4	1062	=(D19*E19)/60	
20 117		Corridor	191	2	1719	=(D20*E20)/60	
21 118		Exam	118	4	1062	=(D21*E21)/60	
22 119		Exam	118	4	1062	=(D22*E22)/60	
23 120		Exam	118	4	1062	=(D23*E23)/60	
24 121		Exam	118	4	1062	=(D24*E24)/60	
25 122		Exam	118	4	1062	=(D25*E25)/60	
26 123		Exam	118	4	1062	=(D26*E26)/60	
27 124		Corridor	429	2	3861	=(D27*E27)/60	
28 125		IT	69		948.75	='Room Schedule'!I28*(5)+'Room Sc	hedule IC28 Solved For CFM using Vbz equation
29 126		Elec.	75	0	1006.25	=(D29*E29)/60	
30 127		Exam	131	4	1179	=(D30*E30)/60	
31 128		Staff Toilet	51	0	408	=(D31*E31)/60	

 Include a summary of each thermal zone heating and cooling loads for both the OpenStudio and the spreadsheet

Thermal Zone	OpenStudio		Spreadshee	t	Difference	
	Heating (kBtu/hr)	Cooling (Ton or kBtu/hr)	Heating (kBtu/hr)	Cooling (Ton or kBtu/hr)	Heating (kBtu/hr)	Cooling (Ton or kBtu/hr)
1						
2						
3						

- Fix all the comments for the final submission of the project in May
- Do not forget about the contribution page

INTRODUCTION TO HYDRONIC SYSTEMS

- A system that uses water as the heat transfer medium in heating and cooling applications
- A system in which the heat carrier is neither consumed nor rejected after use but is used repeatedly by recirculation
- Heat carriers are then circulated throughout a series of pipes or tubes to produce a desired room temperature

• Boilers

- Hydronic vs electric baseboards considerations:
 Initial cost
 - □ Energy efficiency
 - □ Performance (e.g., warm up, duration)

Hot Water Storage Tanks

Residential

- Vertical (40 gallons)
- 34,000 40,000 Btu

Commercial

- Vertical (150 gallons to 4,000 gallons)
- Horizontal (250 gallons to 4,000 gallons)

Tankless water heater

Advantages and setbacks?

• Chilled water Cooling Tower Condenser Water Strainer Pump Chilled Water Pump **Chilled Water Network**

- We used a few of chapters of ASHRAE Systems Handbook:
 - □ Chapter 13: Hydronic Heating and Cooling
 - □ Chapter 32: Boiler
 - □ Chapter 36: Radiators

BASIC OF HYDRONIC SYSTEMS

• There are two main component types:

□ Thermal components:

- Heat source(s)
- Heat load(s)
- Expansion tank
- □ Hydraulic components
 - Piping
 - Pump
 - Expansion tank

Is this an open or closed loop system?

An example is a closed-loop system is a solar hot water system

- There are different temperature ranges:
 - □ Chilled Water (CHW):
 - Temperature range: 39 °F to 50 °F
 - □ Condenser Water (CW):
 - Temperature range: 55 °F to 100 °F
 - □ Hot Water (HW):
 - Temperature range: 100 °F to 210 °F
 - □ High Temperature Water (HTW):
 - Temperature range: 212 °F to 455 °F

- Another important considerations for selecting hydronic systems are:
 - □ Amps / voltage / power (kW)
 - □ Water temperature range
 - □ Capacity (MBH, Ton, …)
 - □ Fuel type
 - □ Application (residential, commercial, ...)

- Water expand as it is heated, meaning the pressure in the system changes
- In the installation, we use expansion tank or expansion chamber vessel to accommodate the increase in the pressure of the system:
 - Look similar to a mini tank or boiler
 - Located typically on top of or next to the water heater
 - □ Sized based on the water pressure in the system
 - □ Avoid failure or bursting

- Three common expansion tank types are:
 - Closed tank
 - Open tank
 - Diaphragm tank

An example of installing expansion tanks in a hydronic systems:

A. TANK ON PUMP SUCTION SIDE

IIT HYDRONIC SYSTEMS

IIT Hydronic Systems

• Alumni Hall and Herman Hall buildings steam system

IIT Hydronic Systems

• Alumni Hall and Herman Hall buildings steam system

HYDRONIC HEATING SYSTEMS

Hydronic Heating Systems

- Common temperature range of hydronic hot water systems are:
 - □ Low temperature hot water systems (LTHW)
 - □ Medium temperature hot water systems (MTHW)
 - □ High temperature hot water systems (HTHW)
- Low temperature hot water systems (LTHW):
 - Most widely used for residential and smaller commercial/institutional buildings (Loads less than 1.5 MW or 5x10⁶ Btu/h or 5,000 MBH)
 - □ Used for space heating loads and domestic hot water
 - □ Maximum temperature < 120 °C (250 °F)
 - □ Maximum pressure < 1,100 kPa (160 psia)
 - □ Steam-to-water or water-to-water heat exchanger often used
 - System temperature drop (supply to return) is usually 6 °C to 24 °C (10 °F to 40 °F)

- Medium temperature hot water systems (MTHW):
 - Commonly used for space heating in commercial/institutional buildings and in industrial applications (Loads range from 1.45 to 1.75 MW or 5x10⁶ to 6x10⁶ Btu/h)
 - □ Design supply temperatures: 120 °C to 175 °C (250 °F to 350 °F)
 - □ Pressure ratings for boilers/ piping: about 1,030 kPa (150 psia)

- High temperature hot water systems (HTHW):
 - Generally limited to campus-type district heating applications
 - Supply temperatures in the range of 175 °C to 230 °C (350 °F to 400 °F)
 - □ System temperature drop can be up to 55 °C (100 °F)
 - Pressure rating is about 300-350 psia

- Hydronic heating source devices are:
 - □ Hot water generator or boiler
 - Steam-to-water heat exchanger
 - Water-to-water heat exchanger
 - □ Solar heating panels
 - Heat recovery or salvage heat device
 - Exhaust gas heat exchanger
 - □ Incinerator heat exchanger
 - □ Heat pump condenser
 - □ Air-to-water heat exchanger (heat recovery coil)

- Hydronic heating load devices are:
 - Preheat coils in central units
 - Convectors
 - □ Heating coils in central units
 - Unit heaters
 - Zone or central unit reheat coils
 - □ Fan-coil units
 - □ Induction unit and chilled beam coils
 - Finned-tube radiation
 - Baseboard radiation
 - □ Water-to-Water heat exchangers
 - Radiant heating panels

• For example, induction units:

• For example, finned tube

- For example, unit heaters:
 - □ Able to provide a high heating capacity in a compact casting
 - □ The ability to project air in a controlled manner to a far distance
 - □ Inexpensive compared to the output

- Three common boiler types are:
 - □ Water tube boilers
 - □ Fire tube boiler
 - Cast iron boilers

Water tube boilers

• Water tube boiler vs fire tube boilers

water tube boiler

fire tube boiler

• Cast iron boilers

Cast iron boiler

Cast iron boilers

Cast iron boiler

• A completely hydronic heating system

□ Used to be installed in commercial buildings

- □ Is well-suited for perimeter spaces with seasonal needs
- Because of their limited space requirements, it used to suitable for retrofit applications:
 - Take up little to no space in the central machine room
 - Do not need ducts
- □ They can provide individual room control, and can be coupled with heat recovery and solar heating systems

• A completely hydronic heating system

□ Not suited for interior spaces and for spaces requiring

- Close control of humidity
- Requiring proper ventilation air
- □ High maintenance
- □ Repair needs to be done in occupied spaces

Can these systems be connected to an AHU?

HYDRONIC COOLING SYSTEMS

Hydronic Cooling Systems

- Hydronic cooling source devices are:
 - □ Electric compression chiller
 - Thermal absorption chiller
 - Heat pump evaporator
 - Air-to-water heat exchanger (heat recovery coil)
 - □ Water-to-water heat exchanger

Hydronic Cooling Systems

- Hydronic cooling load devices are:
 - Coils in central units
 - □ Fan-coil units
 - Induction unit and chilled beam coils
 - Radiant cooling panels
 - □ Water-to-water heat exchangers

HYDRONIC SYSTEM DISTRIBUTION CIRCUITS

- The system between the source (boiler or chiller) and the terminal units (or devices) in rooms/zones can have the following configurations:
 - Series
 - One pipe main
 - Two pipe (Direct or reverse return)
 - □ Three pipe
 - □ Four pipe

- There are many piping arrangements, particularly for hot water systems
- Closed-loop systems are commonly classified as two-or four-pipe

• Simple series circuit is one approach:

Basic of Hydronic Systems

• Another approach is to use a pump in this configuration:

 Another approach is the series circuit with distributed load pumps:

- One-pipe hydronic systems:
 - Have a single pipe that acts as the supply pipe and return pipe for the flow loop
 - □ Connects one terminal unit to the next terminal unit

• One-pipe hydronic systems:

• Two-pipe hydronic systems:

Have a separate supply pipe and return pipe at each terminal unit

• Two-pipe hydronic systems:

- Three-pipe hydronic systems:
 - Have a hot-water loop and a cold-water loop so that hot or cold water can be introduced to any terminal unit at any time

- Four-pipe hydronic system:
 - Uses supply and return heating piping and supply and return cooling piping

• Four-pipe hydronic system (common loads):

• Four-pipe hydronic system (independent loads):

- Four-pipe hydronic system:
 - □ Respond quickly to load changes
 - □ Simultaneously operation of heating and cooling system
 - □ Higher efficiency
 - □ Lower operating cost but higher initial cost

RETURN TYPES (REVERSE VS DIRECT)
Return Types

Return Types

- Direct return:
 - □ Water enters the first unit from supply
 - □ Water leaves the first unit and returns directly to the source
 - □ Unequal pressure drop
 - □ The first unit supplied is the first unit returned
 - □ Balancing vales are required

• Direct return:

Return Types

- Reverse return:
 - □ Return direction is the same direction as the supply flow
 - Water leaves the first unit and goes all the way around in returning to the source
 - Equal pressure drop
 - □ The first unit supplied is the last unit returned
 - □ Balancing vales may be eliminated

• Reverse return:

INTRO TO PIPE DESIGN

Intro to Pipe Design

 Similar to the duct design, we rely on the ASHRAE Handbook

CHAPTER 22

PIPE DESIGN

FUNDAMENTALS	
Codes and Standards	22.1
Design Considerations	22.1
General Pipe Systems	22.1
Design Equations	22.5
Sizing Procedure	22.10
Pipe-Supporting Elements	22.10
Pipe Expansion and Flexibility	22.11
Pipe Bends and Loops	22.12
PIPE AND FITTING MATERIALS	22.14
Pipe	

Fittings	22.18
Joining Methods	22.18
Expansion Joints and Expansion Compensating Devices	22.20
APPLICATIONS	22.22
Water Piping	22.22
Service Water Piping	22.23
Steam Piping	22.29
Low-Pressure Steam Piping	22.33
Steam Condensate Systems	22.34
Gas Piping	22.37
Fuel Oil Piping	22.38

Intro to Pipe Design

 In hydronic systems pressure drop is calculated at feet per 100 feet of pipe at a given velocity

Pipe Size	Velocity (fps)
Large (≥ 12 ′′)	6-8
Medium (Between 2" and 12 $^{\prime\prime}$)	3-4
Small (≤ 12 $^{\prime\prime}$)	2

Intro to Pipe Design

Similar to the duct design, we have similar head loss figures:

