CAE 464/517 HVAC Systems Design Spring 2023

March 28, 2023

Air distribution systems: Fan selection example and air handling unit

Built Environment Research @ IIT] 🐋 🎧 🍂 🥂

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Building Performance focusing on net

zero design and energy modeling

SPEAKER

Senior Project Manager

WHEN

March 30th, 2023 12:40 pm – 1:40 pm

WHERE

John T. Rettaliata Engineering Center, RE 104

TALK ABOUT

- ✓ Green building work
- Energy performance skill
 Sustainability second state
- ✓ Sustainability consulting
 - ✓ Energy conservation

For more information, feel free to contact ASHRAE and SEES official email ashrae_iit@iit.edu sees@iit.edu

Interested in Joining

Assignment 4 is due tonight (the solution will be posted tomorrow morning)

• Project 1 will be graded, and feedback will be provided.

- Midterm Exam 2
 - Exam will take place next Tuesday, 04/04/23 in class (all students are required to attend in person)
 - Open book / open notes (laptop is allowed)

How did you study for exam 1?

RECAP

Recap

ltem	Backward	Radial	Forward
Efficiency	High (80% to 86%)	Medium (50% to 77%)	Medium (50% to 70%)
Space required	High	Medium	Small
Speed for a given pressure rise	High	Medium	Low
Noise	Good	Fair	Poor
Number of blades	10 to 16	6 to 10	24 to 64
Horsepower	Limiting	Rising	Rising

Recap

- Fan Laws "or Affinity Laws":
 - Q: Fan volume (cfm)
 - □ *N*: Rotational speed (rpm)
 - □ *P*: Total pressure (in. w.c.)
 - □ *W*: Brake Horsepower
 - \Box ρ : Fan density (lb/ft³)

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \cdot \frac{\rho_1}{\rho_2}$$

$$\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^2 \cdot \frac{\rho_1}{\rho_2}$$

$$\frac{W_1}{W_2} = \left(\frac{N_1}{N_2}\right)^3 \cdot \frac{\rho_1}{\rho_2}$$

Recap

• The total fan power is defined as:

$$W_t = \frac{Q_s \times \Delta P_t}{6,356 \times \eta_f \times \eta_c \times \eta_m}$$

CLASS ACTIVITY

- The given information is given:
 - Ductwork needs to be rectangular at maximum depth of 12"
 - □ All ductwork sizes are in even inches
 - □ Use tees with 45-degree entry branches (e.g., SR5-13)
 - □ Use elbow radius ratio of r/D = 1.5 (e.g., CR3-1)
 - Outlet losses in outlets are 0.10 in w.c.

- Calculate the following information:
 - □ Pressure drop in each branch
 - Draw the system characteristics curve and the fan curve and select a fan option

Solution:

□ Add labels for different branches and fittings

• Solution:

Estimate the equal friction method

 $Q_{main} = 900 \ cfm + 800 \ cfm + 1300 \ cfm = 3000 \ cfm$ $V_{max} = 1400 \ fpm$

• Solution:

□ Find the friction losses at 0.13 in/100 ft

Section	Air Flow Rate (cfm)	D _e (in)	Length (ft)	Section Loss (in. w.c.)
A-B	3,000	20	50	$0.13 \times \left(\frac{50}{100}\right) = 0.065$
B-C	2,100	18	8	$0.13 \times \left(\frac{8}{100}\right) = 0.010$
C-D	1,300	14	160	$0.13 \times \left(\frac{160}{100}\right) = 0.208$
B-E	900	13	10	$0.13 \times \left(\frac{10}{100}\right) = 0.013$
C-F	800	12	20	$0.13 \times \left(\frac{20}{100}\right) = 0.026$

• Solution:

□ Find square duct sizes

										0										
Circular							Le	ngth of	One Si	ide of F	Rectangi	ılar Du	ıct (a), i	n.						
Duct	4	5	6	7	8	9	10	12	14	16	18	20	22	24	26	28	30	32	34	36
Diameter,							Len	oth Adi	iacent 9	Side of	Rectand	mlar D	uct (b)	in						
<u> </u>							Len	gtil Auj	Jacene	side of	Rectang	gulai D	uci (<i>b</i>),							
5	5																			
5.5	6	5																		
6	8	6																		
6.5	9	7	6																	
7	11	8	7																	
7.5	13	10	8	7																
8	15	11	9	8																
8.5	17	13	10	9																
9	20	15	12	10	8															
9.5	22	17	13	11	9															
10	25	19	15	12	10	9														
10.5	29	21	16	14	12	10														
11	32	23	18	15	13	11	10													
11.5		26	20	17	14	12	11													
12		29	22	18	15	13	12													
12.5		32	24	20	17	15	13	10				. D								
13		35	27	22	18	16	14	12				➡ B	-E							
13.5		38	29	24	20	17	15	13					СГ							
14			32	26	22	19	17	14	_				0-L)						
14.5			35	28	24	20	18	15	14											
15			38	30	25	22	19	10	14											
10			45	30	30	25	22	18	15	16										
19				41	34	22	20	20	17	17				`						
10				54	39	38	29	25	22	10	18		B-(Ĵ.						
20				54	50	13	33	20	24	21	10									
20					50	45	57 41	22	27	22	20			-	4-B					
21					57	48	41	33	27	23	20									

• Solution:

□ Add the duct sizes to the schematic

• Solution:

□ Add the rectangular values to the table

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Area (ft ²)	Velocity (fpm)
A-B	3,000	20	30 / 12	2.50	
B-C	2,100	18	24 /12	2.00	
C-D	1,300	14	14 / 12	1.17	
B-E	900	13	12 / 12	1.00	
C-F	800	12	10 / 12	0.83	

Question: How do we calculate the velocity?

• Solution:

□ Method 1: Friction losses (in/100 ft) for round ducts

• Solution:

□ Method 1: Velocity using the chart for the round ducts

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Area (ft ²)	Velocity (fpm)
A-B	3,000	20	30 / 12	2.50	1,300
B-C	2,100	18	24 /12	2.00	1,230
C-D	1,300	14	14 / 12	1.17	1,250
B-E	900	13	12 / 12	1.00	950
C-F	800	12	10 / 12	0.83	1,000

• Solution:

Method 2: Velocity using the cfm and area for the rectangular ducts

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Area (ft²)	Velocity (fpm)
A-B	3,000	20	30 / 12	2.50	(3,000)/(2.5)=1,200
B-C	2,100	18	24 /12	2.00	(2,100)/(2.0)=1,050
C-D	1,300	14	14 / 12	1.17	(1,300)/(1.17)=1,114
B-E	900	13	12 / 12	1.00	(900)/(1.0)=900
C-F	800	12	10 / 12	0.83	(800)/(0.83)=960

If I use the rectangular, can I use the chart?

• Solution:

□ Find the fitting losses (F1)

SR5-13 Tee, 45 Degree Entry Branch, Diverging

10				0	C _b Value	s			
					Q_b/Q_c				
A_b/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.73	0.34	0.32	0.34	0.35	0.37	0.38	0.39	0.40
0.2	3.10	0.73	0.41	0.34	0.32	0.32	0.33	0.34	0.35
0.3	7.59	1.65	0.73	0.47	0.37	0.34	0.32	0.32	0.32
0.4	14.20	3.10	1.28	0.73	0.51	0.41	0.36	0.34	0.32
0.5	22.92	5.08	2.07	1.12	0.73	0.54	0.44	0.38	0.35
0.6	33.76	7.59	3.10	1.65	1.03	0.73	0.56	0.47	0.41
0.7	46.71	10.63	4.36	2.31	1.42	0.98	0.73	0.58	0.49
0.8	61.79	14.20	5.86	3.10	1.90	1.28	0.94	0.73	0.60
0.9	78.98	18.29	7.59	4.02	2.46	1.65	1.19	0.91	0.73
				0	C _s Value	s			84
					Q_s/Q_c				
A_s/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.04								64
0.2	0.98	0.04							
0.3	3.48	0.31	0.04						
0.4	7.55	0.98	0.18	0.04					
0.5	13.18	2.03	0.49	0.13	0.04				
0.6	20.38	3.48	0.98	0.31	0.10	0.04			
0.7	29.15	5.32	1.64	0.60	0.23	0.09	0.04		
0.8	39.48	7.55	2.47	0.98	0.42	0.18	0.08	0.04	
0.9	51.37	10.17	3.48	1.46	0.67	0.31	0.15	0.07	0.04

000

 $\frac{Q}{Q}$

Branch

Straight

$$\frac{b}{c} = \left(\frac{900 \ cfm}{3,000 \ cfm}\right) = 0.3$$
$$\frac{A_b}{A_c} = \frac{1.0 \ ft^2}{2.5 \ ft^2} = 0.40$$
$$C_{b1} = 1.28$$

$$\begin{cases} \frac{Q_s}{Q_c} = \left(\frac{2,100 \ cfm}{3,000 \ cfm}\right) = 0.7\\ \frac{A_b}{A_c} = \frac{2.0 \ ft^2}{2.5 \ ft^2} = 0.80 \end{cases} \qquad C_{s1} = 0.08 \end{cases}$$

Branch

Straight

Solution:

□ Find the fitting losses (F2)

SR5-13 Tee, 45 Degree Entry Branch, Diverging C_h Values Q_b/Q_c 0.5 A_b/A_c 0.2 0.4 0.6 0.7 0.8 0.9 0.1 0.3 0.73 0.34 0.35 0.37 0.38 0.39 0.1 0.32 0.34 0.40 3.10 0.73 0.41 0.34 0.32 0.32 0.34 0.2 0.33 0.35 0.3 7.59 1.65 0.73 0.47 0.37 0.34 0.32 0.32 0.32 0.51 0.41 0.36 0.34 0.32 0.4 14.20 3.10 1.28 0.73 22.92 5.08 2.07 0.73 0.54 0.44 0.38 0.35 0.5 1.12 33.76 1.65 0.6 7.59 3.10 1.03 0.73 0.56 0.47 0.41 4.36 2.31 0.98 0.58 0.7 46.71 10.63 1.42 0.73 0.49 0.8 61.79 14.20 5.86 3.10 1.90 1.28 0.94 0.73 0.60 78.98 18.29 7.59 4.02 2.46 1.65 0.91 0.9 1.19 0.73 C_s Values 0 10

					Q_s/Q_c				
A_s/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.04					_			
0.2	0.98	0.04							
0.3	3.48	0.31	0.04						
0.4	7.55	0.98	0.18	0.04					
0.5	13.18	2.03	0.49	0.13	0.04				
0.6	20.38	3.48	0.98	0.31	0.10	0. <mark>04</mark>			
0.7	29.15	5.32	1.64	0.60	0.23	0.09	0.04		
0.8	39.48	7.55	2.47	0.98	0.42	0.18	0.08	0.04	
0.9	51.37	10.17	3.48	1.46	0.67	0.31	0.15	0.07	0.04

$$\begin{cases} \frac{Q_b}{Q_c} = \left(\frac{800 \ cfm}{2,100 \ cfm}\right) = 0.38\\ \frac{A_b}{A_c} = \frac{0.83 \ ft^2}{2.0 \ ft^2} = 0.42 \end{cases} \quad C_{b1} = 0.94 \end{cases}$$

$$\begin{cases} \frac{Q_s}{Q_c} = \left(\frac{1,300 \ cfm}{2,100 \ cfm}\right) = 0.62\\ \frac{A_b}{A_c} = \frac{1.17 \ ft^2}{2.0 \ ft^2} = 0.59 \end{cases} \quad C_{s1} = 0.034 \end{cases}$$

• Solution:

□ Find the fitting losses (F3 and F4)

CR3-1 Elbow, Smooth Radius, Without Vanes

					6	_p Value	es				
r/W	0.25	0.50	0.75	1.0	1.50	<i>H/W</i> 2.00	3.00	4.00	5.00	6.00	8.00
0.50	1.53	1.38	1.29	1.18	1.06	1.00	1.00	1.06	1.12	1.16	1.18
0.75	0.57	0.52	0.48	0.44	0.40	0.39	0.39	0.40	0.42	0.43	0.44
1.00	0.27	0.25	0.23	0.21	0.19	0.18	0.18	0.19	0.20	0.21	0.21
1.50	0.22	0.20	019	0.17	0.15	0.14	0.14	0.15	0.16	0.17	0.17
2.00	0.20	0.18	0.16	0.15	0.14	0.13	0.13	0.14	0.14	0.15	0.15
					Ang	le Fact	or K				
θ	0	20	30	45	60	75	90	110	130	150	180
K	0.00	0.31	0.45	0.60	0.78	0.90	1.00	1.13	1.20	1.28	1.40

F3

$$\frac{H}{W} = \frac{12}{14} = 0.86$$

$$C_{03} = KC_{p3} = (1)(0.18) = 0.18$$

F4

$$\frac{H}{W} = \frac{12}{10} = 1.2$$

$$C_{04} = KC_{p3} = (1)(0.16) = 0.16$$

25

• **Solution:** Compute fittings

Section	Fitting No	Fitting Type	ASHRAE Fitting No.	Airflow rate (Q _c)	Airflow rate (Q _b)	Duct Size	Duct Area	Loss Coefficient	Velocity (fpm)	Pv	Pt
From – To	Number	Туре	ASHRAE	cfm	cfm	W×H	ft^2	C ₀	fpm	in. w.c.	in. w.c.
A-B	F1	Tee Branch	SR5-13	3,000	2,100	24 ×12	2.00	0.08	1,050	0.069	0.0055
	F1	Tee Branch	SR5-13	3,000	900	12 ×12	1.00	1.28	900	0.050	0.646
B-C	F2	Tee Branch	SR5-13	2,100	1,300	14×12	1.17	0.034	1,111	0.077	0.0026
	F2	Tee Branch	SR5-13	2,100	800	10×12	0.83	0.94	960	0.058	0.0541
C-D	F3	Elbow	CR3-1	1,300	1,300	14×12	1.17	0.18	1,111	0.077	0.0139
C-F	F4	Elbow	CR3-1	800	800	10 ×12	0.83	0.16	964	0.058	0.0093

• Solution: Pressure loss summary

Path	Note	Duct	Fitting	Duct	Fitting	Duct	Fitting	Device	Total	Differential Path ∆P
ABCD	Path/Fitting Duct	AB	F1	BC	F2	CD	F3	Outlet	in w.c.	in w.c.
– – Crit	ical Path	0.0650	0.0055	0.0104	0.0026	0.208	0.0139	0.1	0.405	0.000
ABCF	Path/Fitting Duct	AB	F1	BC	F2	CF	F4	Outlet	in w.c.	Path ∆P
		0.0650	0.0055	0.0105	0.0541	0.026	0.0093	0.1	0.370	-0.135
ABE	Path/Fitting Duct	AB	F1	BE				Outlet	in w.c.	Path ∆P
		0.0650	0.0646	0.013				0.1	0.243	-0.163

ΔP (in. w.c.)

• Solution: Select the fan

	eC/ Engineer App	APS [®]												Gue
Basic In	nputs													
Volume (CF 3000	:FM)*		External SP (in. wg)* 0.405	Elevati 594	on (ft)*	Voltage/Cycle/Phase No Preference	Model Group Inline Fans	3 •	Air Stream Temp (F) 55	Start-u	ıp Temp (F)			
Certifica	ations/S	Special Require	ments											
Advanc	ed Input	its												
Static P	Pressure	e Corrections												
Static P Rank ↑	Pressure	Model Name		Actual CFM	Total External SP (in. wg) =	Budget Price (USD)	Operating Cost/yr (USD)	Bhp 	Inlet Sones	Inlet dBA	Fan RPM	Drive Type	Weight (lbs)	АМСА
Static P Rank ↑	Pressure	Model Name = CSP-A3300	-VG +	Actual CFM ᆕ 3,000	Total External SP (in. wg) 긎 0.405	Budget Price (USD) T \$1,610	Operating Cost/yr (USD) ⊋ \$279	Bhp = 1.2	Inlet Sones = 5.2	Inlet dBA = = 45	Fan RPM 	Drive Type 	Weight (lbs) = 122	AMCA 📕
Static P Rank ↑ 1 2	Pressure	Model Name = CSP-A3300 BSQ-180	-VG +	Actual CFM = 3,000 3,000	Total External SP (in. wg) = 0.405 0.405	Budget Price (USD) ₹ \$1,610 \$1,656	Operating Cost/yr (USD)	Bhp = 1.2 0.55	Iniet Sones = 5.2 11.6	Inlet dBA = 45 62	Fan RPM = 1,137 882	Drive Type = Direct Belt	Weight (lbs) 	AMCA S
Static P Rank ↑ 1 2 3	Pressure	Model Name = CSP-A3300 BSQ-180 SQ-160-B	-VG 🗘	Actual CFM = 3,000 3,000 2,916	Total External SP (in. wg) = 0.405 0.405 0.383	Budget Price (USD) ₹ \$1,610 \$1,656 \$1,728	Operating Cost/yr (USD)	Bhp = 1.2 0.55 0.53	Inlet Sones 	Inlet dBA = 45 62 64	Fan RPM = 1,137 882 1,140	Drive Type = Direct Belt Direct	Weight (lbs) = 122 137 144	амса 🔳
Static P Rank ↑ 1 2 3 4	Pressure	A Model Name	-VG • • • • • • • • • •	Actual CFM = 3,000 3,000 2,916 3,000	Total External SP (in. wg) = 0.405 0.383 0.405	Budget Price (USD) = \$1,610 \$1,656 \$1,728 \$1,792	Operating Cost/yr (USD) 2 Ξ \$279 \$183 \$179 \$174 \$174	Bhp = 1.2 0.55 0.53 0.5	Inlet Sones = 5.2 11.6 12.2 11.5	Inlet dBA = 45 62 64 62	Fan RPM = 1,137 882 1,140 715	Drive Type = Direct Belt Direct Belt	Weight (lbs) = 122 137 144 172	AMCA 5 5

• Solution:

□ Select one of the fans from the list. For example:

BSQ-200 Product Information							
Information	Customize						
	Model BSQ centrifugal inline belt drive fans are the ideal selection for clean air applications (intake, exhaust, return, or make-up air systems) where space is a prime consideration. Fan wheels shall be backward inclined and constructed of aluminum. Performance capabilities range from 62 CFM to 26,600 CFM and up to 4 in. wg of static pressure. Maximum operating temperature is 180 F.						

• Solution:

Look at the fan curve

• Solution:

□ Look at the family of fans

BSQ-200 Product Information								
In	formation	Customize						
	Fan Chart Type RPM Family Fan curve Max syste System c 2.7 2.4 2.1 1.8 (% 1.5 0.9 0.6 5 0.9 7 0.6 5 0.3 3	Pe tem curve surve 1212 1047 1047 1047 1047 1047 1047 1047 1047						
	0	1 2 3 4 5 6 7 8 Volume (CFM) x 1000						

• Solution:

□ If you want to use the manufacture datasheets without the software?

https://content.greenheck.com/public/DAMProd/Original/10003/SQBSQ_catalog.pdf

• Solution:

Select the fan that meets your pressure drop and the volume flow rate:

What was the cfm and pressure drop for this example?

• Solution:

□ Select the fan that meets your pressure drop and the volume flow

Model	Motor	Fan					CFM / S	Static Pres	sure in Inc	hes wg				
Number	HP	RPM		0.125	0.250	0.500	0.750	0.875	1.000	1.250	1.500	1.750	2.000	
20	00													ļ
			CFM	2960	2616									
		600	BHP	0.25	0.26				MAX	2M = (rpm/	′937)°			
000.0	1.00		Sones	11.1	10.6				- 1		(ft/min) = 1	= 13/5	5	
200-3	1/3	660	CFM	3315	3018	2042			MAX	NEMA MO	DTOR FRA	ME SIZE =	184T	
			BHP	0.33	0.34	0.33			OUTL	ET VELOO	CITY (ft/mir) = 0.1870	x cfm	
			Sones	11.7	11.2	10.5			L			-		ļ
			CFM	3867	3624	3036								
200-5	1/2	756	BHP	0.49	0.50	0.52								
			Sones	12.7	12.0	11.7								
			CFM	4179	3959	3442	2563							
		811	BHP	0.60	0.62	0.64	0.62							
	3/4		Sones	13.4	12.8	12.3	13.0							
200-7		865	CFM	4484	4285	3812	3239	2516						
			BHP	0.73	0.75	0.77	0.79	0.72						
			Sones	14.1	13.7	13.1	13.0	13.9						
	1	952	CFM	4972	4796	4391	3916	3646	3203					
200-10			BHP	0.96	0.99	1.01	1.04	1.05	1.03					
			Sones	15.7	15.5	15.1	14.9	14.5	14.4					
			CFM	5741	5587	5253	4874	4672	4452	3878				
200-15	1½	1090	BHP	1.43	1.47	1.51	1.53	1.55	1.56	1.56				
			Sones	19.1	18.9	18.7	18.5	18.6	18.7	17.3				
			CFM	6046	5899	5588	5240	5047	4855	4413	3580			
		1145	BHP	1.66	1.69	1.74	1.77	1.79	1.81	1.82	1.73			
	-20 2		Sones	21	20	20	20	20	20	19.2	18.6			
200-20		1200	CFM	6350	6210	5920	5597	5416	5233	4836	4316			
			BHP	1.90	1.94	2.00	2.02	2.04	2.06	2.09	2.08			
			Sones	22	22	21	21	21	21	21	19.8			
	30 3	1287	CFM	6830	6699	6439	6138	5988	5818	5475	5088	4557		1
			BHP	2.34	2.38	2.46	2.49	2.50	2.52	2.56	2.58	2.56		
			Sones	25	24	24	24	23	23	23	23	22		
200-30		1375	CFM	7314	7192	6948	6677	6537	6396	6076	5753	5379	4862	
			BHP	2.85	2.89	2.98	3.02	3.03	3.05	3.09	3.14	3.15	3.13	
			Sones	27	27	26	26	26	26	25	25	25	24	

 See Chapter 21 for another duct design example (Examples 8 and 9)

WHAT ELSE SHOULD WE CONSIDER?
Ductwork in Practice

• The air distribution includes various components:

What was one major recommendation to reopen buildings?

Mechanical Air Filters

- Filters consist of media with porous structures of fibers or stretched membrane material to remove particles from airstreams.
- The fraction of particles removed from air passing through a filter is termed "filter efficiency" and is provided by the <u>Minimum Efficiency Reporting Value (MERV)</u> under standard conditions.
 - -MERV ranges from 1 to 16; <u>higher MERV = higher efficiency</u>
 - $-MERV \ge 13$ (or ISO ePM₁) are efficient at capturing airborne viruses
 - -MERV 14 (or ISO equivalent) filters are preferred
 - -<u>High efficiency particulate air (HEPA) filters</u> are more efficient than MERV 16 filters.

https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-filtration_disinfection-c19-guidance.pdf

• Let's look at some manufacture data

	Nominal Size	Capacity	(CFM)		Price
Model	(L x W x D)	Medium	High	Case Quantity	(Case)
DF13-10x20x1	10x20x1	525	700	6	\$84.00
DF13-12x12x1	12x12x1	375	500	6	214.00
DF13-12x20x1	12x20x1	625	825	6	93.00
DF13-12x24x1	12x24x1	750	1000	6	108.00
DF13-14x20x1	14x20x1	725	975	6	97.00
DF13-14x25x1	14x25x1	900	1200	6	119.00
DF13-15x20x1	15x20x1	775	1050	6	100.00
DF13-16x16x1	16x16x1	650	875	6	228.00
DF13-16x20x1	16x20x1	825	1100	6	99.00
DF13-16x24x1	16x24x1	1000	1325	6	122.00
DF13-16x25x1	16x25x1	1050	1400	6	125.00
DF13-18x20x1	18x20x1	925	1250	6	109.00
DF13-18x24x1	18x24x1	1125	1500	6	129.00
DF13-18x25x1	18x25x1	1175	1550	6	137.00
DF13-20x20x1	20x20x1	1050	1400	6	112.00
DF13-20x24x1	20x24x1	1250	1650	6	140.00
DF13-20x25x1	20x25x1	1300	1750	6	142.00
DF13-20x30x1	20x30x1	1550	2100	6	148.00
DF13-24x24x1	24x24x1	1500	2000	6	152.00
DF13-25x25x1	25x25x1	1625	2150	6	170.00

• Let's look at some manufacture data (MERV 8)

(100 0.30 0.25 0.20 0.15 0.10 0.15 0.00 500 1000 1500 2000 2500 AIR FLOW RATE (cfm)

INITIAL RESISTANCE

Why does it say initial resistance?

• Let's look at some manufacture data (MERV 13)

• Let's look at some manufacture data (MERV 8)

24 x 24 x 2 INITIAL RESISTANCE

PRODUCT	300 FPM	500 FPM	MERV
NOVAPLEAT	0.14" w.g.	0.26" w.g.	8
NOVAPLEAT HC	0.11" w.g.	0.23" w.g.	8

• Let's look at some manufacture data (MERV 13)

• Are there other resources to calculate the pressure drop due to the installation of the filter?

□ Fan manufacture – pay attention to the MERV

					Filter Factor (F)					
Mode	Fan	Filter Box	Filter Size	Filter Quantity	1 inc	ch (25)	2 inch (51)			
	Size	Weight			Aluminum	Paper Filters (MERV 7)	Aluminum	inch (51) Paper Filters (MERV 8) 303.18 35.53 14.21 9.10 9.10 3.41 35.53 14.21 9.10 9.10 1.3 35.53 14.21 9.10 1.21 1.26 1.26		
	60 - 75	40 (18)	10 x 12 (254 x 305)	1	186	318.06	251.1	303.18		
	80 - 95	74 (34)	14 x 25 (356 x 635)	1	21.8	37.28	29.43	35.53		
S	100	88 (40)	16 x 20 (406 x 508)	2	8.72	14.91	11.77	14.21		
del	120	114 (52)	16 x 25 (406 x 635)	2	5.58	9.54	7.53	9.10		
Ň	130	120 (54)	20 x 20 (508 x 508)	2	5.58	9.54	7.53	9.10		
	140	174 (79)	20 x 25 (508 x 635)	2	3.57	6.11	4.82	5.82		
	160	246 (112)	20 x 20 (508 x 508)	4	2.09	3.57	2.82	3.41		
	70 - 80 - 90	117 (53)	14 x 25 (356 x 635)	1	21.8	37.28	29.43	35.53		
	100	120 (54)	16 x 20 (406 x 508)	2	8.72	14.91	11.77	14.21		
	120	144 (79)	16 x 25 (406 x 635)	2	5.58	9.54	7.53	9.10		
	130 - 130HP	140 (64)	20 x 20 (508 x 508)	2	5.58	9.54	7.53	9.10		
	140 - 140HP	181 (82)	20 x 25 (508 x 635)	2	3.57	6.11	4.82	5.82		
	160 - 160HP	294 (133)	20 x 20 (508 x 508)	4	2.09	3.57	2.82	3.41		
ğ	180 - 180HP	344 (156)	20 x 25 (508 x 635)	4	1.34	2.29	1.81	2.18		
Model B	200 - 20040	441	12 x 25 (305 x 635)	3	0.77	1 32	1.04	(MEW 8) 303.18 35.53 14.21 9.10 5.82 3.41 35.53 14.21 9.10 5.82 3.41 35.53 14.21 9.10 5.82 3.41 2.18 1.26 0.67 0.54 0.25 0.21		
	200 - 2001 11	(200)	16 x 25 (406 x 635)	3	0.77	1.52	1.04			
	240 - 240HP	573 (260)	20 x 25 (508 x 635)	4	0.41	0.70	0.55	0.67		
			16 x 25 (406 x 635)	4						
	300 - 300HP	759 (344)	20 x 25 (508 x 635)	8	0.33	0.56	0.45	0.54		
	360 - 360HD	957 (434)	16 x 25 (406 x 635)	10	0.15	0.26	0.20	0.25		
	000 00011		20 x 25 (508 x 635)	5						
	420	1185 <i>(</i> 538)	16 x 25 (406 x 635)	5	0.13	0.22	0.18	0.21		
	420		20 x 25 (508 x 635)	10	0.15					

$$P_t = F \times \left(\frac{cfm}{10,000}\right)^2$$

Note: 24-inch side clearance is recommended for accessing and removing filters. All dimensions in inches (millimeters) and weight in pounds (kilograms).

WHAT ELSE SHOULD WE CONSIDER?

Heating and Cooling Coils

•

Heating and cooling coils: ROWS ROWS 3 4 8 10 12 1 0 20 12 5 1.4 18 10 5.0 080 .80 +1.2 +1.6 +2.0 MAX. FACE VEL. 3.0 Without Water Blowoff 06 -1.4 1.0 = (Does not apply to A) 2.0 -4.0 2.5 3.0 3.6 .60 .90 .1.2 1.8_ .80 • 1.6 3.2 .50 -1.0 2.0 2.5 1.4+1.8-2.8 .70 = .90 12 40 .60 • -.80 .1 (.90 WATEI .70 1.8 1.0 .50 2.0 .80 30 -.60 .90 1.2 1.8 Z .70 1.4 INCHES 40 .80 1.6 .50 10-1.2 .60 .70+.90 DROP, .20 -.30 -.40 -.50 60-.80+1.0+1.2 .90 .70 .25 .80 1.0 SSURE .50 40 .15 .30 .60 .70 .20 .40-.80 W .50-25 .30 .60 Ē AIR 10 +.15 +.20 +.25 .30+.40+.50+.60 .25 .50 .40-.08 .20 15 12 .30_ .20 40 .10 .25 .30 .06 .09 .15 5 .08 Ш .05 .15-.20-.25-.30 .07 --.09 .04 -.06 -.08 -.20-.10 .10-1.15 .20 .09 DEGREE D OF SHR WETNESS 1.0 - .98 .98 - .92 В .92 - .86 С B 86 - 80 D 80 or Less F 200 250 300 400 500 600 700 800 FACE VELOCITY, FPM

Figure 19: Coil Air Pressure Drop—HI-F5 Fin Type (2 Through 12 Rows)

. The letters A,B,C,D or E following the face velocity indicate the degree of wetness at which the coil is operating. • Dry coils are shown by the letter A, wet coils by the letter E. Intermediate conditions are shown by the letters B, C, and D.

· Air pressure drop for odd fin spacings can be found by interpolation.

AIR HANDLING UNIT SELECTION

• Heating and cooling coils:

	Booster Coils									
Туре	Tube Material	Fin Material	Casing Material	Casing Type	Rows	FPI	Circuitry	Tube Diameter (OD)	Connection Type	Optional Corrosion Protection
Hot Water or Steam	Copper	Aluminum or Copper	G90 Galvanized, Aluminum, or 304 Stainless Steel	U–Flange, Slip and Drive or None	Up to 12	Up to 16	Quarter to Double Serpentine, or Steam Distributing	1/2" or 5/8"	Sweat, MPT, or FPT*	Polymer E-Coating

* MPT (Male Pipe Thread) and FPT (Female Pipe Thread)

Let's look at some manufacture: Aaon

• Let's look at some manufacture: Daikin

Catalog 550-14

50

Vision[®] Air Handler

Sizes 003-090

• Let's look at some manufacture: Daikin

51

• Let's look at some manufacture: Daikin

52

HALLWAY VENTILATION

40% x 20% = 8%

INTRODUCTION TO HYDRONIC SYSTEMS

- A system that uses water as the heat transfer medium in heating and cooling applications
- A system in which the heat carrier is neither consumed nor rejected after use but is used repeatedly by recirculation
- Heat carriers are then circulated throughout a series of pipes or tubes to produce a desired room temperature

• Boilers

- Hydronic vs electric baseboards considerations:
 Initial cost
 - □ Energy efficiency
 - □ Performance (e.g., warm up, duration)

Hot Water Storage Tanks

Residential

- Vertical (40 gallons)
- 34,000 40,000 Btu

Commercial

- Vertical (150 gallons to 4,000 gallons)
- Horizontal (250 gallons to 4,000 gallons)

Tankless water heater

Advantages and setbacks?

• Chilled water Cooling Tower Condenser Water Strainer Pump Chilled Water Pump **Chilled Water Network**

- We used a few of chapters of ASHRAE Systems Handbook:
 Chapter 22: Pipe Design
 - □ Chapter 13: Hydronic Heating and Cooling
 - □ Chapter 32: Boiler
 - □ Chapter 36: Radiators

BASIC OF HYDRONIC SYSTEMS

• There are two main component types:

□ Thermal components:

- Heat source(s)
- Heat load(s)
- Expansion tank
- □ Hydraulic components
 - Piping
 - Pump
 - Expansion tank

Is this an open or closed loop system?

An example is a closed-loop system is a solar hot water system

• There are different temperature ranges:

□ Chilled Water (CHW):

- Temperature range: 39 °F to 50 °F
- □ Condenser Water (CW):
 - Temperature range: 55 °F to 100 °F
- □ Hot Water (HW):
 - Temperature range: 100 °F to 210 °F
- □ High Temperature Water (HTW):
 - Temperature range: 212 °F to 455 °F

- Another important considerations for selecting hydronic systems are:
 - □ Amps / voltage / power (kW)
 - □ Water temperature range
 - □ Capacity (MBH, Ton, …)
 - □ Fuel type
 - □ Application (residential, commercial, ...)
Basic of Hydronic Systems

- Water expand as it is heated, meaning the pressure in the system changes
- In the installation, we use expansion tank or expansion chamber vessel to accommodate the increase in the pressure of the system:
 - Look similar to a mini tank or boiler
 - Located typically on top of or next to the water heater
 - □ Sized based on the water pressure in the system
 - □ Avoid failure or bursting

Basic of Hydronic Systems

- Three common expansion tank types are:
 - Closed tank
 - Open tank
 - Diaphragm tank

Basic of Hydronic Systems

An example of installing expansion tanks in a hydronic systems:

A. TANK ON PUMP SUCTION SIDE

B. TANK ON PUMP DISCHARGE SIDE