CAE 464/517 HVAC Systems Design Spring 2023

March 23, 2023

Air distribution systems: Fan selection

Built Environment Research @ IIT] 🗫 🕣 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

RECAP

• There are a couple of components required for the design of an air distribution

• First identify the zones being served by the air handling unit and color code the zones being served

 Then, add the schematic of the ductwork for zones being served by each AHU

- Using the calculated CFM, you need another value to start the equal friction method:
 - Duct diameter
 - □ Allowable velocity

• Construct a tabular format for the sections

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Velocity (fpm)

 Calculate all the duct diameters, velocities and the section duct losses for the straight ductwork

Section	Air Flow Rate (cfm)	Duct (in Rectangular)	D _e (in)	Friction Loss (in/100 ft)	Length (ft)	Section Loss (in. w.c.)

• Identify the fittings and calculate the all the fitting losses

Section	Fitting No	Fitting Type	ASHRAE Fitting No.	Parameters	Loss Coefficient	Velocity (fpm)	P _∨ (in. w.c.)	P _t (in. w.c.)

 Identify the pressure loss summary for different paths and then size the fan best on the highest pressure drop and include balancing dampers for the other paths

Path	Note	Duct	Тее	Duct	Тее	Damper	Duct	Outlet	Total	Differe ntial
1	Path/Fitting Duct									
2	Path/Fitting Duct									
3	Path/Fitting Duct									

ΔP (in. w.c.)

• Overall system resistance can be written as:

$$\Delta P_{total} = \sum \Delta P_{Ductwork} + \sum \Delta P_{fittings} =$$

$$= \sum f \frac{L}{D} \left(\frac{\rho V^2}{2g_c} \right) + \sum K \left(\frac{\rho V^2}{2g_c} \right)$$

$$\Delta P_{total} = (Constant) \times \dot{Q}^2$$

 This relationship defines the flow versus pressure characteristics of a system

• System curve vs the fan curve

ANNOUNCEMENTS

Announcements

- Assignment 4 is posted (this coming Tuesday)
- Do not forget to work on Project Part 2

	IIT-BIM Collaborate • CAE 464_sp23 Group 5
Welcome to CA	E 464_sp23 Group 5
Mohammad Heidarin Mohammad Heidarin	ejad, ejad added you as a project admin to CAE 464_sp23 Group 5.
If you can't access th who invited you to th	e project, <u>contact Mohammad Heidarinejad</u> , the project administrator is project.
	Go to your project

Announcements

• Adding interesting and daily application of HVAC systems:

https://docs.google.com/presentation/d/15bvvZ0VVm9SgonCzZ5N07MBvI0Yd VRYaph6Z3evveJA/edit#slide=id.g1f2938fcdac_0_0

Announcements

CENTRIFUGAL FANS

• Fans are categorized as:

□ Radial (Centrifugal)

Centrifugal Blower

- Air enters the impeller axially, passes through the impeller radially
- The blades drag the air in a circular motion and centrifugal forces accelerate the airflow radially outward

• Centrifugal fan flow patterns

Airflow Rate (cfm)

Centrifugal fan terminology

- Centrifugal fans are categorized as:
 - Backward inclined
 - Radial
 - □ Forward curved

- One type of a centrifugal fans is "Forward-curved blades" or forward centrifugal fans:
 - □ Low pressure applications
 - □ Lowest efficiency
 - □ Selection to be well to the right of the peak pressure point

• Forward centrifugal fans:

- "Backward-inclined" or "backward-inclined centrifugal airfoil" or "Backward centrifugal fans" are other types of centrifugal fans:
 - □ General HVAC system applications
 - □ Highest efficiency
 - Operate at highest speed
 - □ Load-limiting horsepower characteristics
 - Used in industrial applications

• Backward centrifugal fans:

• "Radial" and "Radial-tip" are other types of centrifugal fans:

ltem	Backward	Radial	Forward
Efficiency	High (80% to 86%)	Medium (50% to 77%)	Medium (50% to 70%)
Space required	High	Medium	Small
Speed for a given pressure rise	High	Medium	Low
Noise	Good	Fair	Poor
Number of blades	10 to 16	6 to 10	24 to 64
Horsepower	Limiting	Rising	Rising

CENTRIFUGAL FAN PERFORMANCE CURVES

$$L_{w,f} = K_w + 10 \log Q_f + 20 \log P_t + C$$

- \Box L_{w,f}: Fan sound power level (dB)
- \Box K_w : Specific sound power level (dB)
- \Box Q_f : Fan airflow rate (ft³/min)
- \square *P_t*: Fan total pressure (in. w.c.)
- □ C: Fan efficiency correction

% WOV = (CFM X 100) / (RPM X 2.08)

Sound Power	[dB Ref	10 ⁻¹² watts]
-------------	---------	--------------------------

			Inlet	Soun	d Po	wer, L	·Wi						(Outlet	t Sou	nd Po	wer,	Lwo			
RPM	%wov	1	2	3	4	5	6	7	8	L _{wi} A	RPM	%wov	1	2	3	4	5	6	7	8	L _{wo} A
500	100	80	76	76	78	69	62	57	52	77	500	100	92	79	75	69	67	59	52	48	73
1	80	78	74	73	75	67	60	55	51	74		80	92	78	72	65	64	54	48	46	71
1	60	77	71	72	76	67	60	55	51	74		60	84	74	68	64	62	54	48	46	68
1	50	77	70	72	76	67	60	55	51	75		50	83	73	68	64	63	54	49	46	67
	40	76	70	71	76	67	60	54	51	75		40	84	74	68	64	63	54	49	46	68
700	100	82	90	83	81	75	71	63	60	83	700	100	94	93	82	77	76	69	62	56	82
	80	81	88	80	77	71	66	58	53	79		80	91	90	80	73	70	63	56	52	79
	60	78	82	76	76	71	66	59	54	77		60	87	83	76	72	68	62	57	53	75
	50	77	79	75	75	71	66	59	54	76		50	86	81	74	71	68	62	57	54	74
	40	77	78	74	76	70	66	59	54	76		40	88	81	73	71	67	61	57	54	73
1000	100	87	94	92	90	86	82	75	70	91	1000	100	100	95	91	87	86	81	74	67	90
	80	85	90	89	87	82	77	70	65	88		80	96	93	89	84	81	74	67	61	87
	60	84	86	85	84	80	76	70	66	85		60	92	89	84	79	78	72	66	62	83
	50	81	85	83	83	79	76	70	66	85		50	92	88	82	78	77	71	66	62	82
	40	81	85	83	83	79	76	71	67	85		40	92	88	81	77	76	71	67	63	81
1400	100	91	95	98	95	92	88	83	77	97	1400	100	104	98	98	94	93	89	83	76	97
	80	89	92	96	93	90	85	79	75	95		80	101	96	96	92	91	86	80	72	95
	60	87	89	93	89	86	82	77	74	91		60	98	92	92	88	87	82	76	72	91
	50	87	89	91	88	85	82	78	75	90		50	98	93	91	87	85	81	76	72	90
	40	88	89	90	87	85	81	78	75	90		40	99	93	91	86	84	80	76	72	89
2000	100	99	101	105	106	99	96	92	88	106	2000	100	110	106	108	110	102	98	94	88	109
	80	97	99	102	103	96	93	88	85	103		80	107	102	104	105	99	94	89	83	105
	60	93	95	99	99	94	91	87	85	100		60	103	98	98	100	96	91	86	81	101
	50	94	95	98	98	93	91	87	85	99		50	104	98	97	98	94	90	86	81	99
0000	40	96	97	99	98	93	91	89	87	100	0000	40	107	101	96	96	93	89	86	82	98
2892	100	107	109	111	115	110	106	102	98	116	2892	100	119	115	114	119	113	108	104	99	119
	80	105	107	108	112	107	103	98	90	113		80	116	112	110	115	110	104	100	94	115
	60	101	103	106	108	104	101	97	94	110		60	112	108	105	108	106	102	97	92	110
	50	103	103	107	107	103	100	97	94	109		50	113	109	105	106	104	100	96	92	109
	40	105	105	107	10/	103	100	98	96	109		40	117	112	106	104	103	99	96	92	108

24 BIDW

Wheel Diameter = 241/2 in.

Outlet Area = 6.21 ft.²

Tip Speed = 6.41 x RPM

Maximum BHP = (RPM/599)³

Minimum Starting HP = 1 Maximum RPM Class I = 1568 Maximum RPM Class II = 2045 Maximum RPM Class III = 2577

			STATIC PRESSURE (in. wg)																		
CFM	ov	0.	25	0.	50	0.	75	1.	00	1.	25	1.	50	1.	75	2.	00	2.	25	2.	50
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
5000	805	416	0.34	504	0.58	585	0.85	656	1.14												
6000	966	462	0.46	542	0.74	613	1.04	681	1.36	744	1.71	801	2.06								
7000	1127	512	0.62	586	0.94	650	1.26	711	1.62	769	1.99	826	2.39	878	2.79	927	3.20	972	3.63		
8000	1288	564	0.82	632	1.17	692	1.54	748	1.92	801	2.32	851	2.74	903	3.18	951	3.64	997	4.10	1040	4.57
9000	1449	619	1.07	679	1.46	737	1.87	789	2.28	838	2.70	886	3.16	931	3.62	977	4.11	1022	4.61	1065	5.11
10000	1610	675	1.36	730	1.79	783	2.23	833	2.70	879	3.15	923	3.62	968	4.12	1009	4.63	1049	5.16	1090	5.70
11000	1771	731	1.72	782	2.19	831	2.66	879	3.16	924	3.68	965	4.17	1005	4.68	1046	5.23	1085	5.78	1122	6.35
12000	1932	789	2.14	836	2.64	882	3.16	925	3.69	969	4.24	1009	4.80	1048	5.34	1084	5.88	1122	6.47	1159	7.08
13000	2093	848	2.63	891	3.17	933	3.73	975	4.29	1015	4.87	1055	5.47	1092	6.08	1128	6.66	1162	7.25	1196	7.86
14000	2254	907	3.20	947	3.76	986	4.37	1025	4.97	1063	5.58	1101	6.21	1137	6.86	1172	7.51	1205	8.14	1237	8.78
15000	2415	967	3.85	1003	4.44	1040	5.08	1077	5.73	1113	6.37	1148	7.03	1183	7.71	1217	8.41	1250	9.11	1281	9.79
16000	2576	1027	4.58	1060	5.21	1095	5.88	1129	6.57	1164	7.26	1198	7.95	1230	8.66	1264	9.39	1295	10.1	1326	10.9
17000	2737	1087	5.41	1118	6.07	1151	6.78	1184	7.50	1216	8.24	1248	8.97	1280	9.71	1310	10.5	1342	11.2	1372	12.0
18000	2898	1147	6.34	1177	7.04	1207	7.77	1239	8.53	1269	9.31	1300	10.1	1330	10.9	1359	11.6	1388	12.4	1418	13.3
19000	3059	1208	7.38	1236	8.11	1264	8.86	1294	9.67	1323	10.5	1352	11.3	1381	12.1	1410	12.9	1437	13.8	1465	14.6
20000	3220	1269	8.52	1295	9.29	1321	10.1	1350	10.9	1378	11.8	1405	12.6	1433	13.5	1460	14.3	1487	15.2	1513	16.1

• Is this a forward or backward?

• Family fans usually specify their classes:

AXIAL FANS

Axial Fans

• Fans are categorized as:

Axial

Axial Blower

□ Flow is in an axial direction (Parallel to the shaft)

- □ The flow is axial at entry and exit
- □ Produce a pressure difference

Axial Fans

• Axial fans are categorized as:

Tube

Vane

□ Propeller

Tube Axial	Vane Axial	Propeller

FAN LAWS OR AFFINITY LAWS

Fan Laws

- Fan Laws "or Affinity Laws":
 - □ Fan capacity is directly *proportional* to the fan speed
 - Pressure (static, velocity or total) is proportional to the square of the fan Speed
 - Power required is proportional to the *cube* of the fan speed

Fan Laws

- Fan Laws "or Affinity Laws":
 - Q: Fan volume (cfm)
 - □ *N*: Rotational speed (rpm)
 - □ *P*: Total pressure (in. w.c.)
 - □ *W*: Brake Horsepower
 - \Box ρ : Fan density (lb/ft³)

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \cdot \frac{\rho_1}{\rho_2}$$

$$\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^2 \cdot \frac{\rho_1}{\rho_2}$$

$$\frac{W_1}{W_2} = \left(\frac{N_1}{N_2}\right)^3 \cdot \frac{\rho_1}{\rho_2}$$

Fan Laws

Flow Rate Reduction	Fan Energy Savings	_	Flow Rate Increase	Increased Fan Energy
10%	27%		10%	33%
20%	47%		20%	73%
30%	66%		30%	120%
40%	78%		40%	174%
50%	87%		50%	237%

FAN POWER (HORSEPOWER)

- Theoretical air power:
 - □ Use the first Law of Thermodynamics
 - □ Cancel the terms to reach to this equation:

$$W_f = \dot{m} \frac{(p_i - p_o)}{\rho}$$

• Theoretical air power is equal to:

$$W_t = \frac{Q_s \times \Delta p_t}{6,356}$$

- \Box Q_s : is in CFM
- $\Box \Delta p_t$: is the pressure drop in "in w.c."
- \square W_t : is in HP

- The fan power is impacted by different inefficiencies:
 - \square η_f : Fan total efficiency
 - \square η_c : Coupling efficiency (1-drive losses)
 - \square η_m : Motor efficiency

• Consider the losses, the fan efficiency is:

$$\eta_f = \frac{W_t}{W_{shaft}}$$

$$\eta_f = \frac{Q_s \times \Delta P_t}{6,356 \times W_{shaft}}$$

• The total fan power is defined as:

$$W_t = \frac{Q_s \times \Delta P_t}{6,356 \times \eta_f \times \eta_c \times \eta_m}$$

 ASHRAE 90.1-2019 Appendix G recommends: Each HVAC system at fan system design conditions shall not exceed the allowable fan system motor nameplate horsepower (Option 1) or fan system bhp (Option 2) as shown in Table 6.5.3.1-1

Table 6.5.3.1-1 Fan Power Limitation^a

	Limit	Constant Volume	Variable Volume
Option 1: Fan system motor nameplate hp	Allowable motor nameplate hp	$hp \leq cfm_{\mathcal{S}} \times 0.0011$	$hp \le cfm_{\mathcal{S}} \times 0.0015$
Option 2: Fan system bhp	Allowable fan system bhp	$bhp \le cfm_S \times 0.00094 + A$	$bhp \le cfm_S \times 0.0013 + A$

a. where

cfm_S=maximum design supply airflow rate to conditioned spaces served by the system in cubic feet per minute

hp=maximum combined motor nameplate horsepower

bhp= maximum combined fan-brake horsepower

A =sum of (PD \times cfm_D/4131)

where

PD=each applicable pressure drop adjustment from Table 6.5.3.1-2 in in. of water

cfm_D=the design airflow through each applicable device from Table 6.5.3.1-2 in cubic feet per minute

CLASS ACTIVITY

- Example: A fan delivers 8,000 cfm of air at 70 F and 29.92 in. Hg (density is 0.0750 lb_m/ft³) against a static pressure of 2.0 in. w.c. when speed is 600 rpm and the power input is 5.0 bhp
- Find: If the inlet air temperature is raised to 200 F (density is 0.0602 lb_m/ft³) but fan speed stays the same. What are the new static pressure and horsepower?

• Solution:

$$\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^2 \left(\frac{\rho_1}{\rho_2}\right)$$

$$P_2 = (1)^2 \left(\frac{\rho_2}{\rho_1}\right) = (2.0) \left(\frac{0.0602}{0.0750}\right) = 1.6 \text{ in. w. c.}$$

• Solution:

$$\frac{W_1}{W_2} = \left(\frac{N_1}{N_2}\right)^2 \left(\frac{\rho_1}{\rho_2}\right)$$

$$W_2 = W_1 \left(\frac{\rho_2}{\rho_1}\right) = (5) \left(\frac{0.0602}{0.0750}\right) = 4.0 \ bhp$$

CLASS ACTIVITY

 Example: Estimate the capacity, total pressure, power requirement when the speed is increased to 1,050 rpm. The initial power requirement is 2 hp.

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \cdot \frac{\rho_1}{\rho_2}$$

$$Q_2 = Q_1 \frac{N_3}{N_1} = (5,000) \left(\frac{1,050}{900}\right) = 5,833 \frac{ft^3}{min}$$

$$\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^2 \cdot \frac{\rho_1}{\rho_2}$$

$$P_2 = P_1 \left(\frac{N_2}{N_1}\right)^2 = (1.5) \left(\frac{1,050}{900}\right)^2 = 2.04 \text{ in. w. c.}$$

$$\frac{W_1}{W_2} = \left(\frac{N_1}{N_2}\right)^3 \cdot \frac{\rho_1}{\rho_2}$$

$$W_2 = W_1 \left(\frac{N_2}{N_1}\right)^3 = 2\left(\frac{1,050}{900}\right)^3 = 3.2 hp$$

APP (FAN LAW)

App (Fan Law)

• We can also use the GreenHeck App

K Fan Law
GREENHECK Building Value in Air.
i Old Values New Values
Flow 3000
Ps 1 4.00
Power 50 400.00
dBA 10 25
Calculate
Clear Old Clear All Clear New

Try to calculate the examples using equations and the app!

SOFTWARE TOOLS

• Greenheck has a good sizing tool:

https://ecaps.greenheck.com/

• Select "Inline Fans"

• Select "Inline Fans"

Engineer Appli	PS [®] cation Suite													Guest 😫
A Pasis Innu														Â
Volume (CFM)*	s Ex	ternal SP (in. wg)* E	Elevation (ft)*	•	/oltage/Cycle/P No Preferen	nase C e	Model Gro	oup ans	•	Air Stream Temp (F)	Start-up⊺ 70	Temp (F)	
Certifications/Sp	ecial Requirem	ents												~
Advanced Inputs														~
Static Pressure C	orrections													~
														\$
Rank 🏌 🕴	fodel Ar lame Ar	ctual CFM E	Total External SP (in. wg)	Budget Price (USD)	Opera Cost (US	tting /yr ? D)	Bhp	Inlet	Sones	Inlet dBA	Fan RPM	Drive Type	Weight (lbs)	AMCA

• Start filling the "CFM", "SP", "Elevation", ...

Er	ngineer App	APS [®] plication Suite												Gues
Basic In Volume (CF 1000	nputs FM)*	External SI	P (in. wg)*	Ele 60	vation (ft)* O	Voltage • 115/6	e/Cycle/Phase 60/1	Model Group Inline Fans		Air Stream Ten	ıp (F)	Start-up Temp	(F)	
Certifica	ations/S	pecial Requirements												
Advance	ed Input	ts												
Static P	ressure	Corrections												
Rank ↑		Model Name		Actual CFM	Total External SP (in. wg)	Budget Price (USD)	Operating Cost/yr (USD)	Bhp	Inlet Sones	Inlet dBA	Fan RPM	Drive Type	Weight (lbs)	AMCA 🔳
Rank 个		Model Name		Actual CFM	Total External SP (in. wg)	Budget Price (USD) =	Operating Cost/yr (USD) -	Bhp =	Inlet Sones —	Inlet dBA	Fan RPM	Drive Type 	Weight (lbs)	AMCA 🗨
Rank 个		Model Name = CSP-A1410	•	Actual CFM = 1,087	Total External SP (in. wg) = 1.182	Budget Price (USD) = \$743	Operating Cost/yr E E \$173	Bhp = 0.3	Inlet Sones 	Inlet dBA = 44	Fan RPM =	Drive Type Type Direct	Weight (ibs) = 59	AMCA 👔
Rank 个		Model Name = CSP-A1410 SQ-100-A	•	Actual CFM = 1,087 956	Total External SP (in. wg) = 1.182 0.913	Budget Price (USD) = \$743 \$876	Operating Cost/yr (USD) = \$173 \$93	Bhp = 0.3 0.24	Inlet Sones = 4.8 10.0	Inlet dBA = 44 60	Fan RPM 	Drive Type Type Direct	Weight (lbs) = 59 56	AMCA
Rank ↑ 1 2 3		Model Name T CSP-A1410 SQ-100-A CSP-A1300	•	Actual CFM 	Total External SP (in. wg) T 1.182 0.913 0.989	Budget Price (USD) T \$743 \$876 \$743	Operating Cost/yr (USD) \$173 \$93 \$251	Bhp 	Inlet Sones 	Inlet dBA 	Fan RPM 	Drive Type Direct Direct Direct	Weight ((bs) 59 56 56	AMCA
Rank ↑ 1 2 3 4		Model Name	•	Actual CFM 	Total External SP (in. wg)	Budget Price (USD)	Operating Cost/yr (USD) ? 〒 \$173 \$93 \$251 \$291 \$291	Bhp 	Inlet Sones 	Inlet dBA 	Fan RPM 	Drive Type Direct Direct Direct Direct	Weight ((bs) 59 56 56 56 59	амса 🗊

• Click on a model, and look at the specs:

