CAE 464/517 HVAC Systems Design Spring 2023

March 21, 2023 Air distribution systems: Duct design

Built Environment Research @ IIT] 🗫 🕣 🍂 🦯

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 4 is posted (due next week)
- Do not forget to work on Project Part 2

IIT-BIM Collaborate • CAE 464_sp23 Group 5
Welcome to CAE 464_sp23 Group 5
Mohammad Heidarinejad, Mohammad Heidarinejad added you as a project admin to CAE 464_sp23 Group 5.
If you can't access the project, <u>contact Mohammad Heidarinejad</u> , the project administrator who invited you to this project.
Go to your project

Announcements

- Final project presentation:
 May 4, 8 am to 10 am
 Location: Hermann Hall
 - □ All students are are required to present

Announcements

• Do not forget to review the Q&A file:

	SUMMARY -	+
	OUTLINE	
_	CAE 464/517 Spring 2023 Q&As	
	Project Part 1	
	Assignment 3	
	Assignment 2	
	Assignment 1	
	Midterm Exam 1	

CAE 464/517 Spring 2023 Q&As

Project Part 1

Question: After class when we spoke with you, you mentioned that the maximum amount of space types we should use is 4. We came up with: Corridor/Transition Operating/Patient Room Office Lounge/Recreation as per ASHRAE common space types for hospitals.

https://docs.google.com/document/d/1m6ezSI6Bi9wGQcjnaYj i AXY2kzRICPYWkKfayNp5WE/edit#heading=h.7xv0zdhfny5a

Ductwork in Practice

• Adding interesting and daily application of HVAC systems:

https://docs.google.com/presentation/d/15bvvZ0VVm9SgonCzZ5N07MBvI0Yd VRYaph6Z3evveJA/edit#slide=id.g1f2938fcdac_0_0

RECAP

• Pressure drop calculations (elbows and transitions)

Recap

$$p_{\nu,o} = \left(\frac{V_o}{4,005}\right)^2$$

Duct velocity V _o (fpm)	Duct pressure p_{v} (in w.c.)
4,000	1.00
3,000	0.56
2,000	0.25
1,000	0.06

Recap

• See Table 12 for the recommended maximum airflow velocities:

	NC or RC Rating	Maximum Airflow Veloci fpm				
Duct Location	in Adjoining Occupancy	Rectangular Duct	Round Duct			
1	2	3	4			
In shaft or above	45	3500	5000			
solid drywall ceiling	35	2500	3500			
	25 or less	1500	2500			
Above suspended	45	2500	4500			
acoustical ceiling	35	1750	3000			
	25 or less	1000	2000			
Duct within occupied	45	2000	3900			
space	35	1450	2600			
	25 or less	950	1700			

 Table 12
 Recommended Maximum Airflow Velocities to Achieve

 Specified Acoustic Design Criteria*

Ductwork in Practice

• The air distribution includes various components:

Recap

- You can use other resources (e.g., Chapter 8 of the Price Industries Handbook)
- Older version of ASHRAE Handbook

• Some common fitting terminology are:

Fitting Function	Geometry	Category	Sequential Number
S: S upply	D: Round (D iameter)	1. Entries	1, 2, 3,
		2. Exits	
E: Exhaust / Return	R: R ectangular	3. Elbows	
		4. Transitions	
C: C ommon (supply/ return)	F: F lat oval	5. Junctions	
		6. Obstructions	
		7. Fan and system interactions	
		8. Duct-mounted equipment	
		9. Dampers	
		10. Hoods	

DUCT DESIGN METHODS

- Codes & standards
- Airflow rates
- Single line ductwork
- Size ductwork
- Calculate pressure drop
- Establish system total pressure

- There are different duct design methods:
 - Equal friction: Size based on chosen friction loss rate (per 100 ft) for each duct section to balance the pressure gradient (commonly used)
 - Equal velocity: Size based on maintaining a constant velocity for duct sections (applicable for simple or industrial systems to carry particles out)
 - Balanced capacity: Equal pressure drops from fan to outlets of each branch (e.g., VAV systems)
 - Static regain: Duct size at the fan is selected using the friction chart to get the starting velocity. Other main ducts are sized to achieve static regain from section to section, meaning keep static pressure same throughout a system

• The velocity classifications are important:

Method	Velocity	Velocity Range	Pressure Drop		
Equal friction		Less than 0.1			
Equal velocity		in./100 ft			
	Low Velocity	Less than 2500 tpm (13 m/s)	(1 Pa/m)		
Balanced capacity			[0.1 in./100 ft is a common value]		
Static regain	High Velocity	Up to 4500 fpm (23 m/s)	Less than 0.7 in./100 ft (4.7 Pa/m)		

• When do we use high velocity design?

When the heating or cooling loads are large (e.g., commercial buildings)

Special considerations are required (e.g., balancing and leakage control)

• When do we use low velocity design?

When the low flow rate is adequate, and it is possible to to run large ductwork

□ Can achieve low fan energy use

EQUAL FRICTION METHOD

- The design friction rate per unit length (in. w.c per 100 ft) is maintained
- The aim is to design a well-balanced system
- If the layout is symmetrical and all runs from fan to diffuser approximately the same length this method works well

- However, in most duct systems, there are variety of duct runs from long to short.
- Thus, short runs need to use balancing dampers in order to balance the flow rate to each space, which can cause considerable noise

- The design friction rate depends upon the velocity allowable in the system
- Start from usually know flow rates adjacent to the fan to establish the lost pressure per unit of length
- After sizing the designer need to compute the total pressure loss of the longest run with the consideration of all fittings

• Example:

- □ Loss for each outlet is 0.05 in. w.c.
- □ Maximum velocity mains = 1,300 fpm, branches = 900 fpm
- □ Uniform pressure loss/100 ft and for elbows r/W = 1.0

• Solution:

□ Add labels for different branches and fittings

• Solution:

Estimate the equal friction method

 $Q_{main} = 500 \, cfm + 1500 \, cfm + 1000 \, cfm = 3000 \, cfm$ $V_{max} = 1300 \, fpm$

• Solution:

□ Construct a tabular air flow

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Velocity (fpm)
AB	3,000			
BC	1,500			
B1	1,500			
C2	1,000			
C3	500			

- Solution:
 - □ Find round diameters and velocities

• Solution:

□ Add the duct sizes and velocity rates

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Area (ft ²)	Velocity (fpm)
AB	3,000	21			1,059
BC	1,500	16			1,000
B1	1,500	16			1,000
C2	1,000	14.5			750
C3	500	11			600

• Solution:

□ Find square duct sizes

								•												
Circular							Le	ngth of	One S	ide of F	Rectang	ular D	uct (a)	in.						
Duct	4	5	6	7	8	9	10	12	14	16	18	20	22	24	26	28	30	32	34	36
Diameter,							Len	gth Ad	iacent	Side of	Rectan	gular I	Duct (b). in.						
<u> </u>								8	,			8		,,						
5	5																			
5.5	6	5																		
6	8	6																		
6.5	9	7	6																	
7	11	8	7																	
7.5	13	10	8	7																
8	15	11	9	8																
8.5	17	13	10	9																
9	20	15	12	10	8															
9.5	22	17	13	11	9															
10	25	19	15	12	10	9														
10.5	29	21	16	14	12	10														
11	32	23	18	15	13	11	10				→ (2-3								
11.5		26	20	17	14	12	11													
12		29	22	18	15	13	12													
12.5		32	24	20	17	15	13													
13		35	27	22	18	16	14	12												
13.5		38	29	24	20	17	15	13												
14			32	26	22	19	17	14					0	0						
14.5			35	28	24	20	18	15					<u> </u>	2						
15			38	30	25	22	19	16	14											
16			45	36	30	25	22	18	-15				B-	С						
17				41	34	29	25	20	17	16			_	-						
18				47	39	33	29	23	19	17										
19				54	44	38	33	26	22	19	18									
20					50	43	37	29	24	21	19				_					
21					57	48	41	33	27	23	20			► A·	-В					

• Solution:

□ Add the rectangular values to the table

Section	Air Flow Rate (cfm)	Duct Size (in)	Duct (in Rectangular)	Area (ft ²)	Velocity (fpm)
AB	3,000	21	34 / 12	2.83	1,059
BC	1,500	16	18 /12	1.50	1,000
B1	1,500	16	18 / 12	1.50	1,000
C2	1,000	14.5	16 / 12	1.33	750
C3	500	11	10 / 12	0.83	600

Solution:

□ Add the calculated ductwork sizes to the diagram

• Solution:

Find the friction loss (in/100 ft) since we made slight changes to the duct cross sections

Section	Air Flow Rate (cfm)	Duct (in Rectangular)	D _e (in)	Friction Loss (in/100 ft)	Length (ft)	Section Loss (in. w.c.)
AB	3,000	34 / 12	21.4		40	0.035
BC	1,500	18 /12	16		30	0.03
B1	1,500	18 / 12	16		40	0.04
C2	1,000	16 / 12	15.1		50	0.033
C3	500	10 / 12	12		120	0.067

- Solution:
 - □ Friction losses (in/100 ft)

• Solution:

□ Find the friction losses (in/100 ft)

Section	Air Flow Rate (cfm)	Duct (in Rectangular)	D _e (in)	Friction Loss (in/100 ft)	Length (ft)	Section Loss (in. w.c.)
AB	3,000	34 / 12	21.4	0.088	40	$0.088 \times \left(\frac{40}{100}\right) = 0.035$
BC	1,500	18 /12	16	0.1	30	$0.1 \times \left(\frac{30}{100}\right) = 0.03$
B1	1,500	18 / 12	16	0.1	40	$0.1 \times \left(\frac{40}{100}\right) = 0.04$
C2	1,000	16 / 12	15.1	0.065	50	$0.065 \times \left(\frac{50}{100}\right) = 0.0325$
C3	500	10 / 12	12	0.056	120	$0.056 \times \left(\frac{120}{100}\right) = 0.067$

• Solution:

□ Select fittings

		A 34"x12	2" B	18"x12"
	Plonum	40 ft	F1	30 ft
l	Fiellulli	F6		Balancing
			40 fi	^t 18"x12"
		F7	Ļ.	
			ţ	
			1500 cfm	
	$W_s \times H_s $ A_s	-	1	
H× %				
L = 0.25 W _b , 75 mm min. $Q_b A_b$				

SR5-13 Tee, 45 Degree Entry Branch, Diverging

	C _b Values													
					Q_b/Q_c									
A_b/A_c	_c 0.1 0.2 0.3 0.				0.5	0.6	0.7	0.8	0.9					
0.1	0.73	0.34	0.32	0.34	0.35	0.37	0.38	0.39	0.40					
0.2	3.10	0.73	0.41	0.34	0.32	0.32	0.33	0.34	0.35					
0.3	7.59	1.65	0.73	0.47	0.37	0.34	0.32	0.32	0.32					
0.4	14.20	3.10	1.28	0.73	0.51	0.41	0.36	0.34	0.32					
0.5	22.92	5.08	2.07	1.12	0.73	0.54	0.44	0.38	0.35					
0.6	33.76	7.59	3.10	1.65	1.03	0.73	0.56	0.47	0.41					
0.7	46.71	10.63	4.36	2.31	1.42	0.98	0.73	0.58	0.49					
0.8	61.79	14.20	5.86	3.10	1.90	1.28	0.94	0.73	0.60					
0.9	78.98	18.29	7.59	4.02	2.46	1.65	1.19	0.91	0.73					
	C _s Values													
					Q_s/Q_c									
A_s/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8 0.9						
0.1	0.04													
0.2	0.98	0.04												
0.3	3.48	0.31	0.04											
0.4	7.55	0.98	0.18	0.04										
0.5	13.18	2.03	0.49	0.13	0.04									
0.6	20.38	3.48	0.98	0.31	0.10	0.04								
0.7	29.15	5.32	1.64	0.60	0.23	0.09	0.04							
0.8	39.48	7.55	2.47	0.98	0.42	0.18	0.08	0.04						
0.9	51.37	10.17	3.48	1.46	0.67	0.31	0.15	0.07	0.04					

• **Solution:** Compute fittings

Section	Fitting No	Fitting Type	ASHRAE Fitting No.	Parameters	Loss Coefficient	Velocity (fpm)	P _∨ (in. w.c.)	P _t (in. w.c.)
AB	F1 _b	Tee Branch	SR5-13	$\frac{A_b}{A_c} = \frac{1.5}{2.83} = 0.53 \frac{Q_b}{Q_c} = \frac{1500}{3000} = 0.5$	0.82	1,000	0.062	0.051
	F1 _s	Tee Straight	SR5-13	$\frac{A_b}{A_c} = \frac{1.5}{2.83} = 0.53 \frac{Q_b}{Q_c} = \frac{1500}{3000} = 0.5$	0.06	1,000	0.062	0.004
BC	F2	Tee Branch	SR5-13	$\frac{A_b}{A_c} = \frac{1.33}{1.50} = 0.9 \frac{Q_b}{Q_c} = \frac{1000}{1500} = 0.67$	1.33	752	0.035	0.047
	F2	Tee Straight	SR5-13	$\frac{A_b}{A_c} = \frac{0.83}{1.5} = 0.55 \frac{Q_b}{Q_c} = \frac{500}{1500} = 0.3$	0.58	602	0.023	0.013
B1	F3	Damper	CR9-1	$q = 0^0$	0.19	600	0.022	0.004
	F4	Elbow	CR3-1	$\frac{r}{W} = 1 \frac{H}{W} = 1.2$	0.20	600	0.022	0.004
	F5	Outlet						0.050
C2	F7	Damper	CR9-1	$q = 0^0$	0.19	1,000	0.062	0.012
	F8	Outlet						0.050
C3	F6	Damper	CR9-1	$q = 0^0$	0.19	750	0.035	0.007
	F9	Outlet						0.050

• **Solution:** Pressure loss summary for different paths

Path	Note	Duct	Тее	Duct	Тее	Damper	Duct	Outlet	Total	Differe ntial
ABC	Path/Fitting Duct	AB	F1S	BC	F2S	F3	C3	Value		Path ∆P
3		0.035	0.004	0.03	0.013	0.004	0.067	0.05	0.204	0.000
ABC 2	Path/Fitting Duct	AB	F1	BC	F2	F6	C2	Value		Path ΔP
		0.035	0.004	0.03	0.013	0.007	0.033	0.05	0.171	0.032
AB1	Path/Fitting	AB	F1			F7	B1	Value		Path ∆P
	Duct	0.035	0.051			0.012	0.04	0.05	0.188	0.015

ΔP (in. w.c.)

• Solution (summary):

Another example is presented in this reference:

8.2 Duct Design Fundamentals

Example 8.3 - Duct Sizing

IP

As shown below, a schematic duct layout has been prepared for a building HVAC system that shows dampers, air volumes, duct length, and other information needed to properly size the duct. Note that all supply and return locations are numbered. A friction loss of 0.1 in. w.c./100 ft will be used for the sizing calculations. The total required discharge static pressure needed to supply the duct layout will be estimated.

The ductwork will be rectangular, but is sized as round and then converted to the rectangular format.

 See Chapter 21 – Page 21.24 of the Fundamentals for another example:

Example 8. For the VAV system shown in Figure 26, design the duct system by both the equal friction (EF) and static regain (SR) methods, and compare the section duct sizes, total pressure required for each path, and the unbalance between paths.

The system is located in Denver (5430 ft elevation) and the duct is spiral round, galvanized steel (absolute roughness $\varepsilon = 0.0004$ ft). The duct system is located above a suspended acoustical ceiling, and the allowable background sound in the occupied spaces is NC-35. Terminals T1, T2, T3, and T4 (VAV boxes with a one-row hot-water coil) are 800 cfm. VAV box loss coefficients are 1.68.

BALANCED CAPACITY METHOD

- The balanced design method uses the duct network
 principle
- For all network problems, it satisfies the continuity and the work-energy principles throughout the network

 Based on the continuity equation, the summation of air flow rate into any junction is zero

$$\Sigma \pm Q = 0$$

 Based on the network-energy equation, the total pressure loss around any single loop of the network is zero

$$\Sigma \pm P = 0$$

• Satisfy all the possible pressure drops

 $P_{total} = \Delta p_1 + \Delta p_3 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_5$ $P_{total} = \Delta p_1 + \Delta p_3 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_6$ $P_{total} = \Delta p_1 + \Delta p_3 + \Delta p_4 + \Delta p_9 + \Delta p_8$ $P_{total} = \Delta p_2 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_5$ $P_{total} = \Delta p_2 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_6$ $P_{total} = \Delta p_2 + \Delta p_4 + \Delta p_9 + \Delta p_7$

Satisfy all the possible pressure drops

SYSTEM CHARACTERISTICS CURVE

• There are a couple of components required for the design of an air distribution

• Overall system resistance can be written as:

$$\Delta P_{total} = \sum \Delta P_{Ductwork} + \sum \Delta P_{fittings} =$$

$$= \sum f \frac{L}{D} \left(\frac{\rho V^2}{2g_c} \right) + \sum K \left(\frac{\rho V^2}{2g_c} \right)$$

• Overall system resistance can be written as:

$$\Delta P_{total} = (Constant) \times \dot{Q}^2$$

 Flow through any resistance (i.e., duct and fittings) is proportional to the square root of the pressure causing the flow

This relationship defines the flow versus pressure characteristics of a system

Airflow Rate (cfm)

This relationship defines the flow versus pressure characteristics of a system

 The best operating point varies based on the resistance in the system (i.e., system curves)

FAN PERFORMANCE CURVE

Fan Performance Curve

https://content.greenheck.com/public/DAMProd/Original/10002/CentrifugalDWPerfSuppl_catalog.pdf

•

% WOV = (CFM X 100) / (RPM X 2.08)

Fan Performance Curve

• An example of a fan curve:

24 BIDW

Wheel Diameter = 241/2 in.

Outlet Area = 6.21 ft.²

Tip Speed = 6.41 x RPM

Maximum BHP = (RPM/599)³

Minimum Starting HP = 1

Maximum RPM Class I = 1568

Maximum RPM Class II = 2045

Maximum RPM Class III = 2577

									STA	TIC F	RES	SURE	E (in.	wg)							
CFM	ov	0.25		0.50		0.75		1.00		1.25		1.50		1.75		2.00		2.25		2.50	
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
5000	805	416	0.34	504	0.58	585	0.85	656	1.14												
6000	966	462	0.46	542	0.74	613	1.04	681	1.36	744	1.71	801	2.06								
7000	1127	512	0.62	586	0.94	650	1.26	711	1.62	769	1.99	826	2.39	878	2.79	927	3.20	972	3.63		
8000	1288	564	0.82	632	1.17	692	1.54	748	1.92	801	2.32	851	2.74	903	3.18	951	3.64	997	4.10	1040	4.57
9000	1449	619	1.07	679	1.46	737	1.87	789	2.28	838	2.70	886	3.16	931	3.62	977	4.11	1022	4.61	1065	5.11
10000	1610	675	1.36	730	1.79	783	2.23	833	2.70	879	3.15	923	3.62	968	4.12	1009	4.63	1049	5.16	1090	5.70
11000	1771	731	1.72	782	2.19	831	2.66	879	3.16	924	3.68	965	4.17	1005	4.68	1046	5.23	1085	5.78	1122	6.35
12000	1932	789	2.14	836	2.64	882	3.16	925	3.69	969	4.24	1009	4.80	1048	5.34	1084	5.88	1122	6.47	1159	7.08
13000	2093	848	2.63	891	3.17	933	3.73	975	4.29	1015	4.87	1055	5.47	1092	6.08	1128	6.66	1162	7.25	1196	7.86
14000	2254	907	3.20	947	3.76	986	4.37	1025	4.97	1063	5.58	1101	6.21	1137	6.86	1172	7.51	1205	8.14	1237	8.78
15000	2415	967	3.85	1003	4.44	1040	5.08	1077	5.73	1113	6.37	1148	7.03	1183	7.71	1217	8.41	1250	9.11	1281	9.79
16000	2576	1027	4.58	1060	5.21	1095	5.88	1129	6.57	1164	7.26	1198	7.95	1230	8.66	1264	9.39	1295	10.1	1326	10.9
17000	2737	1087	5.41	1118	6.07	1151	6.78	1184	7.50	1216	8.24	1248	8.97	1280	9.71	1310	10.5	1342	11.2	1372	12.0
18000	2898	1147	6.34	1177	7.04	1207	7.77	1239	8.53	1269	9.31	1300	10.1	1330	10.9	1359	11.6	1388	12.4	1418	13.3
19000	3059	1208	7.38	1236	8.11	1264	8.86	1294	9.67	1323	10.5	1352	11.3	1381	12.1	1410	12.9	1437	13.8	1465	14.6
20000	3220	1269	8.52	1295	9.29	1321	10.1	1350	10.9	1378	11.8	1405	12.6	1433	13.5	1460	14.3	1487	15.2	1513	16.1