CAE 464/517 HVAC Systems Design Spring 2023

February 28, 2023

Air distribution systems: Diffuser selection examples and intro to pressure loss in ducts

Built Environment Research @ IIT] 🗫 🎧 🎮 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

Commissioning Skills

to Improve Building Performance

SPEAKER

Commissioning Team Technical Leader Jed Starner

WHEN

March 2nd, 2023 12:40 pm – 1:40 pm

WHERE

John T. Rettaliata **Engineering Center, RE 242**

TALK ABOUT

✓ Careers in Commissioning Services ✓ Work Experiences

For more information, feel free to contact ASHRAE official email ashrae_iit@iit.edu

Interested in Joining

Lunch will be provided!

Announcements

HOMEWORK / PROJECT / EXAM

Homework / Project / Exam

 Assignment 3 solution is posted (both the sample solution for OpenStudio and the Excel file for the load calcs)

Homework / Project / Exam

- The first midterm exam is on March 7:
 - □ Exam starts at 8:35 (be on-time)
 - Covers the materials before March 2, 2023
 - Open book and open notes
 - Past exams are posted

Enabled: Statistics Tracking
cae464 517 sp23 lecture12 Air distribution sys Enabled: Statistics Tracking
Resources Statistics Tracking
Past Exams Statistics Tracking

Homework / Project / Exam

- Project is posted
 - Follow the timeline closely (no extension will be granted) Next submission is by the end of next week
 - Highly recommend to start working on that ASAP
 - □ No group composition changes for Part 1 is allowed

RECAP

Recap

								NC	20 3	0			10
	Core Velocit	y fpm	300	400	500	600	700	800	1000	1200	1400	1600	1800
	Velocity Pre	ssure	.006	.010	.016	.022	.030	.040	.062	.090	.122	.159	.202
Size	Total	0°	.014	.024	.038	.052	.071	.094	.146	.212	.287	.374	.475
	Pressure	22 ¹ /2°	.017	.028	.045	.063	.085	.114	.176	.256	.347	.452	.574
		45°	.025	.042	.067	.093	.126	.168	.261	.379	.514	.669	.850
Ac = 0.15 ft ²	cfm		45	60	75	90	105	120	150	180	210	240	270
7 x 4	NC		—	—	—	—	15	19	26	31	36	40	44
0 X 3		0°	4-6-12	5-8-14	7-10-16	8-12-17	9-13-19	11-14-20	13-16-22	14-17-24	15-19-26	16-20-28	17-22-30
	Throw	22 ¹ /2°	3-5-10	4-6-11	6-8-13	6-10-14	7-10-15	9-11-16	10-13-18	11-14-19	12-15-21	13-16-22	14-18-24
	ft	45°	2-3-6	3-4-7	3-5-8	4-6-9	5-7-9	5-7-10	6-8-11	7-9-12	8-9-13	8-10-14	9-11-15
$\Delta c = 0.18 \text{ft}^2$	cfm		55	70	90	110	125	145	180	215	250	290	325
8 x 4	NC		—	—	_	—	16	20	27	32	37	41	45
7 x 5 6 x 6		0°	4-7-13	6-8-15	7-11-17	9-13-19	10-15-20	11-16-22	14-17-24	15-19-26	17-21-29	18-22-31	19-24-33
0 / 0	Throw	22 ¹ /2°	3-6-10	5-6-12	6-9-14	7-10-15	8-12-16	9-13-18	11-14-19	12-15-21	14-17-23	14-18-25	15-19-26
	ft	45°	2-3-7	3-4-8	4-5-9	4-7-10	5-7-10	6-8-11	7-9-12	8-10-13	8-10-14	9-11-15	10-12-16
Δc - 0 22 ft ²	cfm		65	90	110	130	155	175	220	265	310	350	395
10 x 4	NC		_	_	_	_	17	21	27	33	38	42	45
8 x 5 7 x 6		0°	4-7-14	7-10-17	8-12-19	9-15-21	11-16-23	13-17-24	16-19-27	17-21-29	19-23-32	20-25-34	21-26-36
/ / 0	Throw	22 ¹ /2°	3-6-11	6-8-14	6-10-15	7-12-17	9-13-18	10-14-19	13-15-22	14-17-23	15-18-26	16-20-27	17-21-29
	ft	45°	2-4-7	3-5-9	4-6-10	5-7-10	6-8-11	6-9-12	8-10-13	9-11-15	9-12-16	10-12-17	11-13-18
A. 0.26 ft/2	cfm		80	105	130	155	180	210	260	310	365	415	470
$Ac = 0.20 \ R^2$	NC		—	—	_	_	17	21	28	34	38	42	46
10 x 5		0°	5-8-16	7-11-19	9-13-21	10-16-23	12-17-24	14-19-26	17-21-29	19-23-32	20-25-35	22-26-37	23-27-40
0 X 0	Throw	22 ¹ /2°	4-6-13	6-9-15	7-10-17	8-13-18	10-14-19	11-15-21	14-17-23	15-18-26	16-20-28	18-21-30	18-22-32
	ft	45°	3-4-8	4-5-9	4-7-10	5-8-11	6-9-12	7-9-13	8-11-15	9-12-16	10-13-17	11-13-18	12-14-20
	cfm		90	120	150	180	210	240	300	360	420	480	540
Ac = U.3U tt ^z 14 x 4	NC		_		_	_	18	22	29	34	39	43	47
		0°	5-9-17	8-11-20	9-14-22	11-17-24	13-19-26	15-20-28	18-23-31	20-25-34	22-27-37	24-29-40	25-30-42
	Throw	22 ¹ /2°	4-7-14	6-9-16	7-11-18	9-14-19	10-15-21	12-16-22	14-18-25	16-20-27	18-22-30	19-23-32	20-24-34
	ft	45°	3-4-8	4-6-10	5-7-11	6-8-12	7-9-13	8-10-14	9-11-16	10-12-17	11_13_19	12 14 20	12 15 21

Recap

• Various outlet performs differently:

Diffuser Type	Characteristic Length L						
High sidewall grille Adjustable blade Fixed blade Linear bar Nozzle	Distance to wall perpendicular to jet						
Horizontal-throw ceiling diffuser Round Square Perforated Louvered Plaque Swirl	Distance to closest wall, midplane between outlets or intersecting air jet						
Sill grille	Length of room in direction of jet flow						
Ceiling slot diffuser	Distance to wall perpendicular to jet or midplane between outlets						
Light troffer diffusers	Distance to midplane between outlets plus distance from ceiling to top of occupied zone						

Table 5Characteristic Room Length for Several Diffusers
(Measured from Center of Air Outlet)

Recap

Terminal Device in Heating Mode	Installation	Load, Btu/h•ft ²	Max. ADPI T ₅₀ /L	Max. ADPI	<i>T/L</i> Low Limit for ADPI > 80%	<i>T/L</i> High Limit for ADPI > 80%
Adjustable-blade grilles	45° upward blades, High sidewall	10 to 12	1.1	95	0.6	1.9
	0° horizontal blades, High sidewall	10 to 12	1.6	94	1.1	2.4
	45° downward blades, High sidewall	10 to 12	0.7	84	0.6	0.8
Fixed-blade grilles	15° upward blades, High sidewall	10 to 12	1.8	96	1.2	2.8
-	15° downward blades, High sidewall	10 to 12	1.4	88	0.6	2.2
Linear-bar grilles	High sidewall	10 to 12	1.2	94	0.6	1.7
-	Sill	10 to 12	1.2	100	0.7	1.8
Nozzles (high sidewall installation)	High sidewall	10 to 12	1.5	92	1.0	2.0
Round ceiling diffuser	Ceiling	10 to 12	1.4	93	1.0	2.3
Square ceiling diffuser	Ceiling	10 to 12	1.7	91	2.5	3.4
Perforated diffusers, round pattern	Ceiling	10 to 12	2.1	90	2.0	2.8
Perforated diffusers, directional pattern (4-way)	Ceiling	10 to 12	2.5	87	2.5	3.4
Louvered face diffusers, with lip on deflector blade	Ceiling	10 to 12	2.6	88	2.5	4.4
Louvered face diffusers, without lip on deflector blade	Ceiling	10 to 12	2.1	88	2.1	3.2
Plaque face diffusers	Ceiling	10 to 12	2.1	93	2.1	3.0
Linear-slot diffusers	Ceiling	10 to 12	1.7	90	1.7	3.1
T-bar slot diffusers	Ceiling, periphery of a wall	10 to 12	1.6	91	1.3	2.0
Swirl diffusers	Ceiling	10 to 12	1.4	100	1.4	2.1
N-slot diffusers	Ceiling	10 to 12	1.9	100	1.5	2.4

Table 6B Air Diffusion Performance Index (ADPI) Selection Guide for Typical Heating Loads

Source: Data developed by Liu and Novoselac (2015) for this chapter from ASHRAE research project RP-1546 (Liu 2016), and air speed limit (70 fpm) extrapolated from data. Additional data point used to create new regressions for ADPI curves to better represent current diffusers/grilles. Table applies to spaces with maximum 12 ft ceiling.

DIFFUSER SELECTION GUIDELINES (CONSIDERATION OF LOADS)

• How much air do we need for the space?

• Find air flow requirement for the space

$$\dot{V} = rac{\dot{q}_{tot}}{\rho\Delta h} \cong rac{\dot{q}_{sen}}{\rho\Delta t}$$

- \Box \dot{V} : maximum volumetric flow rate (m³/s, ft³/min)
- $\Box \dot{q}_{tot}$: total design load (W, Btu/hr)
- $\Box \dot{q}_{sen}$: sensible design load (W, Btu/hr)
- $\Box \rho$: air density (kg/m³, lbm/ft³) about 1.08
- □ Δh: enthalpy difference between supply and return air (J/kg, Btu/lbm)
- $\Box \Delta t$: Temperature difference between supply and return air (°C, °F)

• Select diffuser type, number, location

- Guideline 1:
 - Determine the air flow requirements (both outdoor air and the load required) and room size
 - □ Obtain reflected ceiling
 - □ Select the type of diffuser to be used
 - Determine room characteristic length
 - □ Select the recommended throw-to-length ratio
 - □ Select the appropriate diffuser from catalog data
 - Make sure that other specifications are met (e.g., noise or total pressure)

- Guideline 2:
 - □ Use equalizing grids on direct diffuser connections
 - □ Locate balancing dampers at branch take-off
 - □ Keep flexible duct bends as gentle as possible
 - □ Flex is a great attenuator of upstream noise sources
 - Keep duct velocities as low as possible but over sizing can result in higher thermal loss

- Guideline 3:
 - Occupants may need to hear diffusers at full load to be assured system is operating
 - □ Noisy diffusers work better at mixing air than quiet ones
 - □ Oversized diffusers may have excessive drop at low flows

CLASS ACTIVITY

For a 20 by 12 ft room, with 9 ft ceiling, with uniform loading of 10 Btu/h·ft² or 2400 Btu/h and air volumetric flow of 1 cfm/ft² or 240 cfm for one outlet, find the size for a 0° deflection horizontal blade, high sidewall grille located at center of 12 ft end wall, 9 in. from ceiling (From ASHAE A19 – Chapter 58).

• Solution:

Characteristics Length = 20 ft

• Solution:

□ Cooling model (Table 6A)

□ Consider maximum condition

Terminal Device in Cooling Mode	Installation	Load, Btu/h•ft ²	Max. ADPI T ₅₀ /L	Max. ADPI	<i>T/L</i> Low Limit for ADPI > 80%	<i>T/L</i> High Limit for ADPI > 80%
Adjustable-blade grilles	45° upward blades, High sidewall	8	0.8	98	0.4	1.3
		16	0.9	96	0.5	1.2
	0° horizontal blades, High sidewall	8	1.7	94	1.2	2.2
i		16	1.8	88	1.4	2.2
	45° downward blades, High sidewall	8	0.9	76	NA	NA
		16	1	70	NA	NA
Fixed-blade grilles (high sidewall	15° upward blades, High sidewall	8	1.4	96	0.5	2.4
installation)		16	2.1	94	1.2	2.9
	15° downward blades, High sidewall	8	1.9	85	1.5	2.2
		16	2	82	1.8	2.2
Linear-bar grilles (high sidewall	High sidewall	8	1.3	92	0.7	1.8
installation)	-	16	1.3	88	1.0	1.6
	Sill	8	1.3	94	0.9	1.7
		16	1.3	90	1.0	1.6

Table 6A Air Diffusion Performance Index (ADPI) Selection Guide for Typical Cooling Loads

$$\frac{T_{50}}{L} = 1.8 \quad \rightarrow T_{50} = 1.8 \times 20 = 36 \, ft$$

• Solution:

□ Heating model (Table 6B)

Consider maximum condition

Terminal Device in Heating Mode	Installation	Load, Btu/h•ft ²	Max. ADPI T ₅₀ /L	Max. ADPI	<i>T/L</i> Low Limit for ADPI > 80%	<i>T/L</i> High Limit for ADPI > 80%
Adjustable-blade grilles	45° upward blades, High sidewall	10 to 12	1.1	95	0.6	1.9
	0° horizontal blades, High sidewall	10 to 12	1.6	94	1.1	2.4
	45° downward blades, High sidewall	10 to 12	0.7	84	0.6	0.8
Fixed-blade grilles	15° upward blades, High sidewall	10 to 12	1.8	96	1.2	2.8
	15° downward blades, High sidewall	10 to 12	1.4	88	0.6	2.2
Linear-bar grilles	High sidewall	10 to 12	1.2	94	0.6	1.7

 Table 6B
 Air Diffusion Performance Index (ADPI) Selection Guide for Typical Heating Loads

$$\frac{T_{50}}{L} = 1.6 \quad \to T_{50} = 1.6 \times 20 = 32 \, ft$$

Then, use the manufacture's catalog

- Solution:
 - To satisfy both models of operation, consider one or pick a common throw distance that resides within the overall ADPI range of both modes

• Solution:

□ Let's look at some manufacture datasheets:

								NC	20 3	0			40
	Core Velocit	y fpm	300	400	500	600	700	800	1000	1200	1400	1600	1800
	Velocity Pre	ssure	.006	.010	.016	.022	.030	.040	.062	.090	.122	.159	.202
Size	Total	0°	.014	.024	.038	.052	.071	.094	.146	.212	.287	.374	.475
	Pressure	221/2°	.017	.028	.045	.063	.085	.114	.176	.256	.347	.452	.574
		45°	.025	.042	.067	.093	.126	.168	.261	.379	.514	.669	.850
Ac = 0.15 ft ²	cfm		45	60	75	90	105	120	150	180	210	240	270
7 x 4	NC		_	_	_	_	15	19	26	31	36	40	44
6 X 5		0°	4-6-12	5-8-14	7-10-16	8-12-17	9-13-19	11-14-20	13-16-22	14-17-24	15-19-26	16-20-28	17-22-30
	Throw	221/2°	3-5-10	4-6-11	6-8-13	6-10-14	7-10-15	9-11-16	10-13-18	11-14-19	12-15-21	13-16-22	14-18-24
	ft	45°	2-3-6	3-4-7	3-5-8	4-6-9	5-7-9	5-7-10	6-8-11	7-9-12	8-9-13	8-10-14	9-11-15
Ac = 0 18 ft ²	cfm		55	70	90	110	125	145	180	215	250	290	325
8 x 4	NC		_	_	_	_	16	20	27	32	37	41	45
7 x 5 6 x 6		0°	4-7-13	6-8-15	7-11-17	9-13-19	10-15-20	11-16-22	14-17-24	15-19-26	17-21-29	18-22-31	19-24-33
0 x 0	Throw	221/2°	3-6-10	5-6-12	6-9-14	7-10-15	8-12-16	9-13-18	11-14-19	12-15-21	14-17-23	14-18-25	15-19-26
	ft	45°	2-3-7	3-4-8	4-5-9	4-7-10	5-7-10	6-8-11	7-9-12	8-10-13	8-10-14	9-11-15	10-12-16
An - 0 22 ft2	cfm		65	90	110	130	155	175	220	265	310	350	395
10 x 4	NC		_	_	_	_	17	21	27	33	38	42	45
8 x 5 7 x 6		0°	4-7-14	7-10-17	8-12-19	9-15-21	11-16-23	13-17-24	16-19-27	17-21-29	19-23-32	20-25-34	21-26-36
/ × 0	Throw	221/2°	3-6-11	6-8-14	6-10-15	7-12-17	9-13-18	10-14-19	13-15-22	14-17-23	15-18-26	16-20-27	17-21-29
	ft	45°	2-4-7	3-5-9	4-6-10	5-7-10	6-8-11	6-9-12	8-10-13	9-11-15	9-12-16	10-12-17	11-13-18
Ac. 0 26 th	cfm		80	105	130	155	180	210	260	310	365	415	470
12×4	NC		—	—			17	21	28	34	38	42	46
10 x 5		0°	5-8-16	7-11-19	9-13-21	10-16-23	12-17-24	14-19-26	17-21-29	19-23-32	20-25-35	22-26-37	23-27-40
0 X 0	Throw	221/2°	4-6-13	6-9-15	7-10-17	8-13-18	10-14-19	11-15-21	14-17-23	15-18-26	16-20-28	18-21-30	18-22-32
	ft	45°	3-4-8	4-5-9	4-7-10	5-8-11	6-9-12	7-9-13	8-11-15	9-12-16	10-13-17	11-13-18	12-14-20
0.20 42	cfm		90	120	150	180	210	240	300	360	420	480	540
$Ac = 0.30 \text{ ft}^2$ 14 x 4	NC		—	_	_	_	18	22	29	34	39	43	47
		0°	5-9-17	8-11-20	9-14-22	11-17-24	13-19-26	15-20-28	18-23-31	20-25-34	22-27-37	24-29-40	25-30-42
	Throw	221/2°	4-7-14	6-9-16	7-11-18	9-14-19	10-15-21	12-16-22	14-18-25	16-20-27	18-22-30	19-23-32	20-24-34
	ft	45°	3-4-8	4-6-10	5-7-11	6-8-12	7-9-13	8-10-14	9-11-16	10-12-17	11-13-19	12-14-20	12-15-21
	cfm		100	135	170	205	240	270	340	410	475	545	610
Ac = 0.34 ft ² 16 x 4	NC		_	_	_	_	19	23	29	35	40	44	47
12 x 5		0°	5-9-18	8-12-21	10-15-24	12-19-26	14-20-28	16-22-30	20-24-33	22-26-37	23-28-40	25-30-42	26-32-45
10 x 6	Throw	221/2°	4-7-14	6-10-17	8-12-19	10-15-21	11-16-22	13-18-24	16-19-26	18-21-30	18-22-32	20-24-34	21-26-36
	ft	45°	3-4-9	4-6-11	5-8-12	6-9-13	7-10-14	8-11-15	10-12-17	11-13-18	12-14-20	12-15-21	13-16-22

Performance Data — Models 510, 520 / 610, 620 / 710, 720 / 910, 920

https://www.priceindustries. com/content/uploads/assets /literature/catalogs/catalogpages/section%20d/500_60 0_supply.pdf

26

SUPPLY AND RETURN FACE VELOCITY

Supply and Return Face Velocity

- Common prescribed face velocities for supplies are:
 - □ Between 500 to 750 fpm for residential buildings
 - Between 500 to 1,000 fpm for commercial buildings (e.g., offices)
 - Between 1000 to 1500 from for stores or the spaces with a high ceiling

Supply and Return Face Velocity

- Consider a low face return velocity
 - □ At maximum value of 400-600 fpm
 - □ At maximum value of 450 fpm with return filter
 - Desirable design value of 300 fpm max for filter grilles and 500 fpm max for nonfilter grilles
 - □ A single point return cannot be oversized like a supply
 - Consider multiple return locations where balancing is more critical to pull in relevant amounts from each room
 - □ Noise is not expected from a return

Supply and Return Face Velocity

- Consider a low face velocity:
 - Place returns in stagnant air locations that need to be reconditioned:
 - □ High for cooling mode (hot air rises)
 - □ Low for heating mode (cold air falls)
 - Do not place returns near a supply register's throw range
 - Desirable to place returns at an opposite corner of the room
 - □ Most of the room air movement is done by supplies

EXAMPLE (DIFFUSER DESIGN)

- Known:
 - □ An office area
 - □ Load = 1,200 Btu/hr
 - □ Supply air and return air temperature difference = 20 F
 - □ Airflow rate = 280 CFM
 - \Box Noise criteria ≤ 35
 - □ Plan to install ceiling diffuser(s)
 - □ Room size 12 ft by 10 ft
 - Cooling calculations are needed only
 - Select diffuser(s) such as Flush-faced perforated, droppedfaced multi-coned, square, flush-faced plaque paneled, flush-faced mitered-louvered

- Place the grid displacement
- Find the throw

 We can assume 5 ft, assuming the 1 ft close to the wall is not in the occupied space

Check ADPI for the perforated and louvered ceiling diffuser

$$\frac{Load}{Area} = \frac{1,200 \frac{Btu}{hr}}{(12 ft \times 10 ft)} = 10 \frac{Btu}{hr - ft^2}$$

Terminal Device in Cooling Mode	Installation	Load, Btu/h•ft ²	Max. ADPI T ₅₀ /L	Max. ADPI	<i>T/L</i> Low Limit for ADPI > 80%	<i>T/L</i> High Limit for ADPI > 80%
Perforated diffusers, round pattern	Ceiling	8	1.9	95	0.5	3.3
		16	2.1	95	0.9	3.4
Perforated diffusers, directional	Ceiling	8	2.1	100	1.2	3.1
pattern (4-way)		16	2	95	1.0	2.9
Louvered face diffusers, with lip	Ceiling	8	2.5	100	0.5	4.4
on deflector blade		16	2.6	100	0.6	4.5
Louvered face diffusers, without	Ceiling	8	2	100	0.5	3.6
lip on deflector blade		16	1.8	100	0.4	3.4
Plaque face diffusers	Ceiling	8	1.6	100	0.3	3.0
		16	1.6	100	0.4	3.2

 Table 6A
 Air Diffusion Performance Index (ADPI) Selection Guide for Typical Cooling Loads

• Check ADPI for the perforated ceiling diffuser (Cooling)

$$\Box \frac{T_{50}}{L} = 2 (Max for 95\%)$$

$$\Box \frac{T_{50}}{L} = 1 to 2.9 (Greater than 80\%)$$

$$\Box \frac{T_{50}}{L} = 1 \times 5 ft = 5 ft$$

$$\Box \frac{T_{50}}{L} = 2 \times 5 = 10 ft (Max ADPI)$$

$$\Box \frac{T_{50}}{L} = 2.9 \times 5 = 14.5 ft$$

• Check ADPI for the perforated ceiling diffuser (Cooling)

PDF/PDN/PDC/PDMC/PDSP

Perforated Face Supply Diffuser

PERFORMANCE DATA

PDF/PDFE - 16 in. x 16 in.

Inlet	Neck Vel	ocity (fpm)	300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pres	ssure (in. w.g.)	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Press	ure (in. w.g.)	.012	.021	.033	.047	.064	.084	.106	.131	.189	.257
	Flow R	ate (cfm)	59	78	98	118	137	157	176	196	235	274
	Sour	id (NC)	-	-	-	19	24	28	32	35	41	46
6 Ø		4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
	Throw	3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
	(ft.)	2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
		1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
	Total Pressure (in. w.g.)		.013	.024	.037	.054	.073	.096	.121	.150	.215	.293
Flow Rate (cfm)		75	100	125	150	175	200	225	250	300	350	
	Sour	id (NC)	-	-	17	22	27	31	35	38	44	48
6 x 6		4 Way	1-1-5	1-2-7	2-4-9	2-5-9	3-6-10	4-7-11	5-8-11	6-9-12	7-9-13	8-10-14
	Throw	3 Way	1-2-6	1-3-8	2-5-10	3-6-11	4-7-12	5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
	(ft.)	2 Way	1-2-8	2-4-11	3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
		1 Way	1-3-11	2-5-14	3-8-17	5-11-19	7-12-20	9-14-22	11-16-23	12-17-24	14-19-26	16-20-29
	Total Press	ure (in. w.g.)	.017	.029	.046	.066	.090	.118	.149	.184	.265	.360
	Flow R	ate (cfm)	105	140	175	209	244	279	314	349	419	489
	Sour	id (NC)	-	-	21	26	31	35	39	42	48	52
8 Ø		4 Way	1-2-7	2-3-9	2-5-10	3-7-11	5-8-12	6-9-13	7-10-14	7-10-14	9-11-16	10-12-17
	Throw	3 Way	1-2-8	2-4-11	3-7-12	4-8-13	6-9-14	7-11-15	8-11-16	9-12-17	11-13-19	12-14-20
	(ft.)	2 Way	1-3-11	2-6-14	4-9-16	6-11-18	8-12-19	9-14-20	11-15-22	12-16-23	14-18-25	16-19-27
		1 Way	2-4-13	3-7-18	5-11-20	7-13-22	10-15-24	12-18-26	13-19-27	15-20-29	18-22-31	19-24-34
Total Pressure (in. w.g.)		.019	.034	.053	.076	.104	.136	.172	.212	.305	.415	
• Remember manufacture report isothermal numbers

Diffuser Type	Isothermal	Non-Isothermal	Decision
		35	
4-Way	13	$= 13 \times 0.75 = 9.75$	Good Option
3-Way	15	$= 15 \times 0.75 = 11.25$	May work
2-Way	20	$= 20 \times 0.75 = 15.00$	
	Diffuser Type 4-Way 3-Way 2-Way	Diffuser TypeIsothermal4-Way133-Way152-Way20	Diffuser TypeIsothermalNon-Isothermal 35 279 $4-Way$ 13 $= 13 \times 0.75 = 9.75$ $3-Way$ 15 $= 15 \times 0.75 = 11.25$ $2-Way$ 20 $= 20 \times 0.75 = 15.00$

- Can you find one from the datasheets for a return face velocity between 300 to 400 fpm?
- You can consider face blades (e.g., 35 degrees)

EXAMPLE (DIFFUSER DESIGN)

 Select round ceiling diffusers for a room with the size of 80 ft and 78 ft and the height of 9 ft. The room has a cooling load of 112,000 Btu/hr and a design air supply rate of 2,600 cfm. Locate the diffusers on the floor plan.

- Use ADPI to find the ideal throw to characteristic length ratio with the room load
- Be mindful of the noise criterion (NC) value while selecting your diffuser size.
 - □ Office: Less than 30
 - □ Levels above an NC of 50 are considered noisy
- Think about the air diffusion layout
 - □ Various ways exist
 - □ Can use 4 to 9 round ceiling diffusers for this problem

- Consider one single diffuser for the entire room (e.g., round ceiling)
- Would this work?

- Looking at the diffuser table data indicates that such a diffuser would be large and could be noisy
- Placing 4 in a grid pattern should give better choices. Would this work?

• How about this one?

• Characteristics length:

$$L = \frac{78}{4} = 19.5 \, ft$$

• Or:

$$L = \frac{80}{4} = 20.0 \, ft$$

• We can assume we are focusing on the occupied zone and the length close to the wall is ignored. Therefore, we can consider 19.5

- Find the characteristic length (L)
- Find the throw (X_{50})

Diffuser Type	Characteristic Length L
High sidewall grille	Distance to wall perpendicular to jet
Circular ceiling pattern diffuser	Distance to closest wall or intersecting air jet
Sill grille	Length of room in direction of jet flow
Ceiling slot diffuser	Distance to wall or midplane between outlets
Light troffer diffusers	Distance to midplane between outlets plus distance from ceiling to top of occupied zone
Cross-flow pattern ceiling diffusers	Distance to wall or midplane between outlets

• Volume flow rate per diffuser:

$$\dot{Q} = \frac{2600 \, cfm}{4 \, diffusers} = 650 \, cfm \, per \, diffuser$$

• Room load:

$$\frac{112000 Btu/hr}{80ft * 78 ft} = 17.95 \frac{Btu}{hr. ft^2}$$

 Look at the ADPI table. If the number for the ADPI is too high, in addition to table 6-A and 6-B, look at this general table

Terminal Device	Room Load, Btu/h·ft ²	X ₅₀ /L for Maximum ADPI	Maxi- mum ADPI	For ADPI Greater than	Range of X ₅₀ /L
High sidewall	80	1.8	68		<u>9-0</u> -
grilles	60	1.8	72	70	1.5 to 2.2
	40	1.6	78	70	1.2 to 2.3
	20	1.5	85	80	1.0 to 1.9
	<10	14	90	80	0.7 to 2.1
Circular ceiling	80	0.8	76	70	0.7 to 1.3
diffusers	60	0.8	83	80	0.7 to 1.2
	40	0.8	88	80	0.5 to 1.5
	20	0.8	93	80	0.4 to 1.7
	<10	0.8	99	80	0.4 to 1.7
Sill grille,	80	1.7	61	60	1.5 to 1.7
straight vanes	60	1.7	72	70	1.4 to 1.7
	40	1.3	86	80	1.2 to 1.8
	20	0.9	95	90	0.8 to 1.3
Sill grille,	80	0.7	94	90	0.6 to 1.5
spread vanes	60	0.7	94	80	0.6 to 1.7
	40	0.7	94		
	20	0.7	94		_
Ceiling slot	80	0.3	85	80	0.3 to 0.7
diffusers (for	60	0.3	88	80	0.3 to 0.8
T_{100}/L)	40	0.3	91	80	0.3 to 1.1
	20	0.3	92	80	0.3 to 1.5
Light troffer	60	2.5	86	80	<3.8
diffusers	40	1.0	92	90	<3.0
	20	1.0	95	90	<4.5
Cross-flow	11 to 50	2.0	96	90	1.4 to 2.7
pattern diffusers	11 to 50	2.0	96	80	1.0 to 3.4

• Calculate $\frac{X_{50}}{L}$:

$$\frac{X_{50}}{L} = 0.8$$

$$X_{50} = L * 0.8 = 19.5 * 0.8 = 15.6 ft$$

• Look at the manufacture datasheets (Option 1):

10 in.	Plaque Position	Flow Rate (cfm)	218	273	327	382	436	491	545	654	763				
		Total Pressure (in. w.g.)	0.019	0.030	0.043	0.058	0.076	0.096	0.118	0.171	0.232				
	Center	Sound (NC)	-		-	-	16	19	22	28	32				
		Horizontal Throw (ft)	3-4-8	3-5-10	4-6-11	4-7-13	5-8-15	6-9-17	545 654 763 0.118 0.171 0.232 22 28 32 6-10-19 8-11-23 9-13-27 0.100 0.144 0.196 22 27 31 6-9-19 7-11-22 9-13-26 0.148 9.213 0.290 22 28 33 17 19 21 16 17 19 14 16 17 13 14 15						
		Total Pressure (in. w.g.)	0.016	0.025	0.036	0.049	0.064	0.081	0.100	0.100 0.144 0. 22 27 3 6-9-19 7-11-22 9-1					
	Down	Sound (NC)	-	-	-	-	16	19	22	27	31				
		Horizontal Throw (ft)	2-4-7	3-5-9	4-6-11	4-7-13	5-7-15	6-8-17	6-9-19	7-11-22	9-13-26				
	lle	Total Pressure (in. w.g.)	0.024	0.037	0.053	0.072	0.095	0.120	0.148	0.213	0.290				
	Up	Sound (NC)	-		-	-	15	19	22	28	33				
		10°F Heating	11	12	14	15	16	17	17	19	21				
	Vertical	20°F Heating	10	11	12	13	14	15	16	17	19				
	Projection to E0ferm	30°F Heating	9	10	11	12	13	13	14	16	17				
	to solpin	40°F Heating	8	9	10	10	11	12	13	14	15				
								NC	20	NC	30				

• This is higher than what we needed:

 $22 \times 0.75 = 16.5 ft$

• Look at the manufacture datasheets (Option 2):

		Neck Velocity (fpm)	400	500	600	700	800	900	1000	1200	1400	
Size		Velocity Pressure (in. w.g.)	.010	.016	.023	.031	.040	.051	.063	.090	.122	
	Plaque Position	Flow Rate, Flow Rate (cfm)	314	393	471	550	628	707	785	942	1099	
ſ		Total Pressure (in. w.g.)	0.019	0.030	0.043	0.058	0.076	0.096	0.118	0.171	0.232	
	Center	Sound (NC)		-	-	18	22	26	29	34	39	
		Horizontal Throw (ft)	3-5-9	4-6-11	5-7-14	5-8-16	6-9-18	7-10-21	8-11-23	9-14-28	11-16-32	
12 in.		Total Pressure (in. w.g.)	0.016	0.025	0.036	0.049	0.064	0.081	0.100	0.144	0.196	
	Down	Sound (NC)	-	-	-	19	23	26	29	34	38	
		Horizontal Throw (ft)	3-4-9	4-6-11	4-7-14	5-8-16	6-9-18	7-10-21	7-11-23	9-13-28	10-16-32	
[lla	Total Pressure (in. w.g.)	0.032	0.050	0.071	0.097	0.127	0.161	0.198	0.285	0.389	
	op	Sound (NC)		-	-	19	23	27	30	35	40	
		10°F Heating	13	14	16	17	18	19	20	22	24	
	Vertical	20°F Heating	12	13	14	15	16	17	18	20	22	
	to 50fpm	30°F Heating	10	11	13	14	15	15	16	18	19	
	to solphi	40°F Heating	9	10	11	12	13	14	14	16	17	
				NC	20		NC	30	NC			

• This is higher volume flow rate than what we needed, but the throw is acceptable. This is overall a better option:

$$21 \times 0.75 = 15.75 ft$$

INTRO TO PRESSURE LOSS IN DUCTS AND FITTINGS

• There are a couple of components required for the design of an air distribution

Static head

Lost head (L)

Static pressure

Lost pressure

• No change in the elevation

$$P_1 + \frac{\rho V_1^2}{2} = P_2 + \frac{\rho V_2^2}{2} + \rho L_h$$

• Total pressure in the duct section

$$P_{total,1} = P_{total,2} + \Delta P_f$$

• We define system requirements

$$P_{total} = \sum_{i \in F_{up}} \Delta p_{t_i} + \sum_{i \in F_{down}} \Delta p_{t_i}$$

 $i = 1, 2, ... n_{up}, n_{down}$

- \Box F_{up} and F_{down} : Sets of duct sections returns and downstream of fan
- *ε*: Symbol that ties duct sections into system paths from exhaust/return air terminals to supply terminals

CLASS ACTIVITY

Class Activity

• Example: What is the pressure requirement for balancing airflow in this configuration?

• Solution: The following equations must be satisfied to attain pressure balancing for design airflow

$$\begin{split} P_{total} &= \Delta p_1 + \Delta p_3 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_5 \\ P_{total} &= \Delta p_1 + \Delta p_3 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_6 \\ P_{total} &= \Delta p_1 + \Delta p_3 + \Delta p_4 + \Delta p_9 + \Delta p_8 \\ P_{total} &= \Delta p_2 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_5 \\ P_{total} &= \Delta p_2 + \Delta p_4 + \Delta p_9 + \Delta p_7 + \Delta p_6 \\ P_{total} &= \Delta p_2 + \Delta p_4 + \Delta p_9 + \Delta p_8 \end{split}$$

TOTAL FAN PRESSURE

Total Fan Pressure

Total Fan Pressure

- The airflow system principals are:
 - The measure of the amount of energy required to move air from one location to another is the change (decrease) in the total pressure within the system
 - The total pressure (P_{total}) at any location within a system is a measure of the total mechanical energy at that location. It is the sum of the static pressure and the velocity pressure
 - In any duct system, the total pressure always decreases in the direction of airflow
 - In any system having two or more branches, the losses in total pressure between the fan and the end of each branch are the same
 - Static pressure and velocity pressure are mutually convertible and can either increase or decrease in the direction of flow

PRESSURE LOSSES IN DUCTS AND FITTINGS

• Consider loss coefficient (K) for fittings as:

Loss of section =
$$K\left(\frac{V^2}{2g}\right)$$

• Adding them together, the total losses in the pipe is:

$$H_{Lf} = \left[K + f\left(\frac{L}{D}\right)\right] \left(\frac{V^2}{2g}\right)$$

1	2	3										
	Absolute I	Roughness ε, ft										
Duct Type/Material	Range	Roughness Category										
Drawn tubing (Madison and Elliot 1946)	0.0000015	Smooth 0.0000015										
PVC plastic pipe (Swim 1982)	0.00003 to 0.00015	Medium smooth 0.00015										
Commercial steel or wrought iron (Moody 1944)	0.00015											
Aluminum, round, longitudinal seams, crimped slip joints, 3 ft spacing (Hutchinson 1953)	0.00012 to 0.0002											
Friction chart:												
Galvanized steel, round, longitudinal seams, variable joints (Vanstone, drawband, welded. Primarily beaded coupling), 4 ft joint spacing (Griggs et al. 1987)	0.00016 to 0.00032	Average 0.0003										
Galvanized steel, spiral seams, 10 ft joint spacing (Jones 1979)	0.0002 to 0.0004											
Galvanized steel, spiral seam with 1, 2, and 3 ribs, beaded couplings, 12 ft joint spacing (Griggs et al. 1987)	0.00029 to 0.00038											
Galvanized steel, rectangular, various type joints (Vanstone, drawband, welded. Beaded coupling), 4 ft spacing ^a (Griggs and Khodabakhsh-Sharifabad 1992)	0.00027 to 0.0005											
Wright Friction Chart:												
Galvanized steel, round, longitudinal seams, 2.5 ft joint spacing, $\epsilon=0.0005$ ft	Retained for historical pu development	rposes [See Wright (1945) for of friction chart]										
Flexible duct, nonmetallic and wire, fully extended (Abushakra et al. 2004; Culp 2011)	0.0003 to0.003	Medium rough 0.003										
Galvanized steel, spiral, corrugated, ^b Beaded slip couplings, 10 ft spacing (Kulkarni et al. 2009)	0.0018 to 0.0030											
Fibrous glass duct, rigid (tentative) ^c	—											
Fibrous glass duct liner, air side with facing material (Swim 1978)	0.005											
Fibrous glass duct liner, air side spray coated (Swim 1978)	0.015	Rough 0.01										
Flexible duct, metallic corrugated, fully extended	0.004 to 0.007											
Concrete (Moody 1944)	0.001 to 0.01											

 Table 1
 Duct Roughness Factors

- Based on:
 - Standard air
 - □ Round galvanized sheet metal with 4 ft joints
 - □ Absolute roughness of 0.0003 ft
- No correction for:
 - □ Medium roughness
 - □ Temperature range 40 °F to 100 °F
 - Elevations to 1,500 ft
 - □ Duct pressure range -20 to 20 in w.c
- Variation of +/- 5%

• We define circular equivalent of rectangular ducts as:

$$D_e = 1.30 \frac{(ab)^{0.625}}{(a+b)^{0.25}}$$

- Where:
 - \square *D_e*: Circular equivalent of a rectangular duct (in)
 - \Box a: Height of duct (in)
 - \Box *b*: Width of duct (in)

										9										
Circular							Lei	ngth of	One S	ide of F	Rectang	ular D	uct (a)	, in.						
Duct	4	5	6	7	8	9	10	12	14	16	18	20	22	24	26	28	30	32	34	36
in.		Length Adjacent Side of Rectangular Duct (b), in.																		
5	5																			
5.5	6	5																		
6	8	6																		
6.5	9	7	6																	
7	11	8	7																	
7.5	13	10	8	7																
8	15	11	9	8																
8.5	17	13	10	9																
9	20	15	12	10	8															
9.5	22	17	13	11	9															
10	25	19	15	12	10	9														
10.5	29	21	16	14	12	10														
11	32	23	18	15	13	11	10													
11.5		26	20	17	14	12	11													
12		29	22	18	15	13	12													
12.5		32	24	20	17	15	13													
13		35	27	22	18	16	14	12												
13.5		38	29	24	20	17	15	13												
14			32	26	22	19	17	14												
14.5			35	28	24	20	18	15												
15			38	30	25	22	19	16	14											
16			45	36	30	25	22	18	15											
17				41	34	29	25	20	17	16										
18				47	39	33	29	23	19	17	10									
19				54	44	38	33	26	22	19	18									
20					50	43	37	29	24	21	19									
21					57	48	41	33	27	23	20									

Ductulator options exist

CLASS ACTIVITY
Class Activity

Example: For a duct of 12 in by 12 in delivers 1,000 cfm.
Find equivalent duct size and the friction loss per 100 ft of duct length

Activity

• Solution:

L 0																				
Circular							Lei	ngth of	One S	ide of F	Rectang	ular D	uct (a)	, in.						
Duct	4	5	6	7	8	9	10	12	14	16	18	20	22	24	26	28	30	32	34	36
Diameter,							Len	ath Ard	iacent	Side of	Rectan	gular	Duct (b) in						
<u> </u>	III. Dengen Augusten State of Rectangular Date (0), in:																			
5	5																			
5.5	6	5																		
6	8	6																		
6.5	9	7	6																	
7	11	8	7																	
7.5	13	10	8	7																
8	15	11	9	8				- I												
8.5	17	13	10	9																
9	20	15	12	10	8			- i												
9.5	22	17	13	11	9			- i -												
10	25	19	15	12	10	9		- i												
10.5	29	21	16	14	12	10		- i												
11	32	23	18	15	13	11	10	- 1												
11.5		26	20	17	14	12	11	- 1												
12		29	22	18	15	13	12	_												
12.5		32	24	20	17	15	13	10												
12 5	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$																			
13.5		38	29	24	20	17	15	13												
14			32	26	22	19	17	14												
14.5			35	28	24	20	18	15	14											
15			38	30	25	22	19	10	14											
10			45	30 41	30	20	22	20	15	16										
18				41	30	29	20	20	10	17										
10				54	44	38	33	25	22	10	18									
20				54	50	43	37	20	24	21	10									
20					57	48	41	23	24	23	20									
21					57	40	-41	55	21	25	20									

Class Activity

$$D_e = 1.30 \frac{(ab)^{0.625}}{(a+b)^{0.25}}$$

$$D_e = 1.30 \frac{(12 \times 12)^{0.625}}{(12 + 12)^{0.25}}$$

$$D_e = 13.1 in$$

Class Activity

