CAE 464/517 HVAC Systems Design Spring 2023

February 28, 2023
 Air distribution systems: Diffuser selection examples and intro to pressure loss in ducts

Built
Environment
Research
@ IIT

Advancing energy, environmental, and sustainability research within the built environment Civil, Architectural and Environmental Engineering www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

Commissioning Skills

to Improve Building Performance

SPEAKER
Commissioning Team Technical Leader Jed Starner

WHEN
March 2nd, 2023
12:40 pm - 1:40 pm

WHERE
John T. Rettaliata
Engineering Center, RE 242

TALK ABOUT
\checkmark Careers in
Commissioning
Services
\checkmark Work Experiences

For more information, feel free to contact ASHRAE official email ashrae_iit@iit.edu

Lunch will be provided!

Announcements

| Cushing | about |
| :--- | :--- | :--- | :--- | :--- |
| Terreil. | |

Join Us

HOMEWORK / PROJECT / EXAM

Homework / Project / Exam

- Assignment 3 solution is posted (both the sample solution for OpenStudio and the Excel file for the load calcs)

Homework / Project / Exam

- The first midterm exam is on March 7:

Exam starts at 8:35 (be on-time)
\square Covers the materials before March 2, 2023
\square Open book and open notes
\square Past exams are posted

Homework / Project / Exam

- Project is posted
\square Follow the timeline closely (no extension will be granted) Next submission is by the end of next week
- Highly recommend to start working on that ASAP

No group composition changes for Part 1 is allowed

RECAP

Recap

Performance Data - Models 510, 520 / 610, 620 / 710, 720 / 910, 920

							NC 2030					40	
	Core Velocity fpm Velocity Pressure		300	400	500	600	700	800	1000	1200	1400	1600	1800
			. 006	. 010	. 016	. 022	. 030	. 040	. 062	. 090	. 122	. 159	. 202
Size	Total	$0{ }^{\circ}$. 014	. 024	. 038	. 052	. 071	. 094	. 146	. 212	. 287	. 374	. 475
	Pressure	22 $1_{2}{ }^{\circ}$. 017	. 028	. 045	. 063	. 085	. 114	. 176	. 256	. 347	. 452	. 574
		45°	. 025	. 042	. 067	. 093	. 126	. 168	. 261	. 379	. 514	. 669	. 850
$\begin{aligned} & \mathrm{Ac}=\mathbf{0} . \mathbf{1 5} \mathrm{ft}^{2} \\ & 7 \times 4 \\ & 6 \times 5 \end{aligned}$	cfm		45	60	75	90	105	120	150	180	210	240	270
	NC		-	-	-	-	15	19	26	31	36	40	44
		0°	4-6-12	5-8-14	7-10-16	8-12-17	9-13-19	11-14-20	13-16-22	14-17-24	15-19-26	16-20-28	17-22-30
	Throw	22 $1_{2}{ }^{\circ}$	3-5-10	4-6-11	6-8-13	6-10-14	7-10-15	9-11-16	10-13-18	11-14-19	12-15-21	13-16-22	14-18-24
	ft	45°	2-3-6	3-4-7	3-5-8	4-6-9	5-7-9	5-7-10	6-8-11	7-9-12	8-9-13	8-10-14	9-11-15
$\begin{array}{rl} \mathrm{Ac}=\mathbf{0 . 1 8} \mathrm{ft}^{2} \\ 8 & \times 4 \\ 7 & x \end{array}$	cfm		55	70	90	110	125	145	180	215	250	290	325
	NC		-	-	-	-	16	20	27	32	37	41	45
		0°	4-7-13	6-8-15	7-11-17	9-13-19	10-15-20	11-16-22	14-17-24	15-19-26	17-21-29	18-22-31	19-24-33
	Throw	22 $1^{1}{ }^{\circ}$	3-6-10	5-6-12	6-9-14	7-10-15	8-12-16	9-13-18	11-14-19	12-15-21	14-17-23	14-18-25	15-19-26
	$f t$	45°	2-3-7	3-4-8	4-5-9	4-7-10	5-7-10	6-8-11	7-9-12	8-10-13	8-10-14	9-11-15	10-12-16
$\begin{aligned} & \mathrm{Ac}=\mathbf{0 . 2 2} \mathrm{ft}^{2} \\ & 10 \times 4 \\ & 8 \times \\ & \hline \end{aligned}$	cfm		65	90	110	130	155	175	220	265	310	350	395
	NC		-	-	-	-	17	21	27	33	38	42	45
		$0{ }^{\circ}$	4-7-14	7-10-17	8-12-19	9-15-21	11-16-23	13-17-24	16-19-27	17-21-29	19-23-32	20-25-34	21-26-36
	Throw	22 $1_{2}{ }^{\circ}$	3-6-11	6-8-14	6-10-15	7-12-17	9-13-18	10-14-19	13-15-22	14-17-23	15-18-26	16-20-27	17-21-29
	ft	45°	2-4-7	3-5-9	4-6-10	5-7-10	6-8-11	6-9-12	8-10-13	9-11-15	9-12-16	10-12-17	11-13-18
$\begin{aligned} & \mathrm{Ac}=\mathbf{0} \mathbf{0 . 2 6} \mathrm{ft}^{2} \\ & 12 \times 4 \\ & 10 \times 5 \\ & 8 \times 6 \end{aligned}$	cfm		80	105	130	155	180	210	260	310	365	415	470
	NC		-	-	-	-	17	21	28	34	38	42	46
		$0{ }^{\circ}$	5-8-16	7-11-19	9-13-21	10-16-23	12-17-24	14-19-26	17-21-29	19-23-32	20-25-35	22-26-37	23-27-40
	Throw	22 $1_{2}{ }^{\circ}$	4-6-13	6-9-15	7-10-17	8-13-18	10-14-19	11-15-21	14-17-23	15-18-26	16-20-28	18-21-30	18-22-32
	ft	45°	3-4-8	4-5-9	4-7-10	5-8-11	6-9-12	7-9-13	8-11-15	9-12-16	10-13-17	11-13-18	12-14-20
$\begin{aligned} \mathrm{Ac}=\mathbf{0} . \boldsymbol{3 0} \mathrm{ft}^{2} \\ 14 \times 4 \end{aligned}$	cfm		90	120	150	180	210	240	300	360	420	480	540
	NC		-	-	-	-	18	22	29	34	39	43	47
		$0{ }^{\circ}$	5-9-17	8-11-20	9-14-22	11-17-24	13-19-26	15-20-28	18-23-31	20-25-34	22-27-37	24-29-40	25-30-42
	Throw	22 $1^{1}{ }^{\circ}$	4-7-14	6-9-16	7-11-18	9-14-19	10-15-21	12-16-22	14-18-25	16-20-27	18-22-30	19-23-32	20-24-34
	ft	45°	3-4-8	4-6-10	5-7-11	6-8-12	7-9-13	8-10-14	9-11-16	10-12-17	11-13-19	12-14-20	12-15-21

Recap

Recap

- Various outlet performs differently:

Table 5 Characteristic Room Length for Several Diffusers (Measured from Center of Air Outlet)

Diffuser Type	Characteristic Length \boldsymbol{L}
High sidewall grille	Distance to wall perpendicular to jet
Adjustable blade	
Fixed blade	
Linear bar	
Nozzle	
Horizontal-throw ceiling diffuser	Distance to closest wall, midplane between outlets or intersecting air jet
Round	
Square	
Perforated Louvered Plaque	Length of room in direction of jet flow
Swirl	Distance to wall perpendicular to jet or midplane between outlets
Ceiling slot diffuser	Distance to midplane between outlets plus distance from ceiling to top of occupied zone
Light troffer diffusers	

Recap

Table 6B Air Diffusion Performance Index (ADPI) Selection Guide for Typical Heating Loads

Terminal Device in Heating Mode	Installation	Load, Btu/h $\cdot \mathbf{f t}^{\mathbf{2}}$	$\begin{aligned} & \text { Max. ADPI } \\ & T_{50} L L \end{aligned}$	Max. ADPI	$\begin{gathered} \text { T/L Low } \\ \text { Limit for } \\ \text { ADPI }>\mathbf{8 0 \%} \end{gathered}$	$\begin{gathered} \text { T/L High } \\ \text { Limit for } \\ \text { ADPI }>\mathbf{8 0 \%} \end{gathered}$
Adjustable-blade grilles	45° upward blades, High sidewall	10 to 12	1.1	95	0.6	1.9
	0° horizontal blades, High sidewall	10 to 12	1.6	94	1.1	2.4
	45° downward blades, High sidewall	10 to 12	0.7	84	0.6	0.8
Fixed-blade grilles	15° upward blades, High sidewall	10 to 12	1.8	96	1.2	2.8
	15° downward blades, High sidewall	10 to 12	1.4	88	0.6	2.2
Linear-bar grilles	High sidewall	10 to 12	1.2	94	0.6	1.7
	Sill	10 to 12	1.2	100	0.7	1.8
Nozzles (high sidewall installation)	High sidewall	10 to 12	1.5	92	1.0	2.0
Round ceiling diffuser	Ceiling	10 to 12	1.4	93	1.0	2.3
Square ceiling diffuser	Ceiling	10 to 12	1.7	91	2.5	3.4
Perforated diffusers, round pattern	Ceiling	10 to 12	2.1	90	2.0	2.8
Perforated diffusers, directional pattern (4-way)	Ceiling	10 to 12	2.5	87	2.5	3.4
Louvered face diffusers, with lip on deflector blade	Ceiling	10 to 12	2.6	88	2.5	4.4
Louvered face diffusers, without lip on deflector blade	Ceiling	10 to 12	2.1	88	2.1	3.2
Plaque face diffusers	Ceiling	10 to 12	2.1	93	2.1	3.0
Linear-slot diffusers	Ceiling	10 to 12	1.7	90	1.7	3.1
T-bar slot diffusers	Ceiling, periphery of a wall	10 to 12	1.6	91	1.3	2.0
Swirl diffusers	Ceiling	10 to 12	1.4	100	1.4	2.1
N-slot diffusers	Ceiling	10 to 12	1.9	100	1.5	2.4

Source: Data developed by Liu and Novoselac (2015) for this chapter from ASHRAE research project RP-1546 (Liu 2016), and air speed limit (70 fpm) extrapolated from data. Additional data point used to create new regressions for ADPI curves to better represent current diffusers/grilles. Table applies to spaces with maximum 12 ft ceiling.

DIFFUSER SELECTION GUIDELINES (CONSIDERATION OF LOADS)

Diffuser Selection Guidelines

- How much air do we need for the space?

Diffuser Selection Guidelines

- Find air flow requirement for the space

$$
\dot{V}=\frac{\dot{q}_{t o t}}{\rho \Delta h} \cong \frac{\dot{q}_{s e n}}{\rho \Delta t}
$$

- V்: maximum volumetric flow rate ($\mathrm{m}^{3} / \mathrm{s}, \mathrm{ft}^{3} / \mathrm{min}$)
- $\dot{q}_{\text {tot }}$: total design load ($\mathrm{W}, \mathrm{Btu} / \mathrm{hr}$)
- $\dot{q}_{\text {sen }}$: sensible design load (W, Btu/hr)
- ρ : air density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lbm} / \mathrm{ft}^{3}\right)$ - about 1.08
- Δh : enthalpy difference between supply and return air (J / kg, Btu/lbm)
- Δ t. Temperature difference between supply and return air (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$)
- Select diffuser type, number, location

Diffuser Selection Guidelines

- Guideline 1:
- Determine the air flow requirements (both outdoor air and the load required) and room size
- Obtain reflected ceiling
- Select the type of diffuser to be used
\square Determine room characteristic length
S Select the recommended throw-to-length ratio
Select the appropriate diffuser from catalog data
- Make sure that other specifications are met (e.g., noise or total pressure)

Diffuser Selection Guidelines

- Guideline 2:
\square Use equalizing grids on direct diffuser connections
L Locate balancing dampers at branch take-off
K Keep flexible duct bends as gentle as possible
- Flex is a great attenuator of upstream noise sources

Keep duct velocities as low as possible but over sizing can result in higher thermal loss

Diffuser Selection Guidelines

- Guideline 3:
- Occupants may need to hear diffusers at full load to be assured system is operating
- Noisy diffusers work better at mixing air than quiet ones
- Oversized diffusers may have excessive drop at low flows

CLASS ACTIVITY

Class Activity

- For a 20 by 12 ft room, with 9 ft ceiling, with uniform loading of $10 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}$ or $2400 \mathrm{Btu} / \mathrm{h}$ and air volumetric flow of 1 $\mathrm{cfm} / \mathrm{ft}^{2}$ or 240 cfm for one outlet, find the size for a 0° deflection horizontal blade, high sidewall grille located at center of 12 ft end wall, 9 in . from ceiling (From ASHAE A19 - Chapter 58).

Class Activity

- Solution:

Characteristics Length $=20 \mathrm{ft}$

Class Activity

- Solution:
\square Cooling model (Table 6A)
- Consider maximum condition

Class Activity

- Solution:
\square Heating model (Table 6B)
\square Consider maximum condition

Table 6B Air Diffusion Performance Index (ADPI) Selection Guide for Typical Heating Loads

| Terminal Device in |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Heating Mode |

Then, use the manufacture's catalog

Class Activity

- Solution:
\square To satisfy both models of operation, consider one or pick a common throw distance that resides within the overall ADPI range of both modes

Class Activity

- Solution:
\square Let's look at some manufacture datasheets:
Performance Data - Models 510, 520 / 610, 620 / 710, 720 / 910, 920
https://www.priceindustries. com/content/uploads/assets /literature/catalogs/catalogpages/section\%20d/500 60 0 supply.pdf

SUPPLY AND RETURN FACE VELOCITY

Supply and Return Face Velocity

- Common prescribed face velocities for supplies are:
\square Between 500 to 750 fpm for residential buildings
\square Between 500 to 1,000 fpm for commercial buildings (e.g., offices)
Between 1000 to 1500 from for stores or the spaces with a high ceiling

Supply and Return Face Velocity

- Consider a low face return velocity
\square At maximum value of 400-600 fpm
\square At maximum value of 450 fpm with return filter
Desirable design value of 300 fpm max for filter grilles and 500 fpm max for nonfilter grilles
\square A single point return cannot be oversized like a supply
\square Consider multiple return locations where balancing is more critical to pull in relevant amounts from each room
\square Noise is not expected from a return

Supply and Return Face Velocity

- Consider a low face velocity:
\square Place returns in stagnant air locations that need to be reconditioned:
\square High for cooling mode (hot air rises)
\square Low for heating mode (cold air falls)
\square Do not place returns near a supply register's throw range
\square Desirable to place returns at an opposite corner of the room
\square Most of the room air movement is done by supplies

EXAMPLE (DIFFUSER DESIGN)

Example (ADPI)

- Known:
- An office area
\square Load $=1,200 \mathrm{Btu} / \mathrm{hr}$
\square Supply air and return air temperature difference $=20 \mathrm{~F}$
- Airflow rate $=280$ CFM
\square Noise criteria ≤ 35
\square Plan to install ceiling diffuser(s)
\square Room size 12 ft by 10 ft
\square Cooling calculations are needed only
\square Select diffuser(s) such as Flush-faced perforated, droppedfaced multi-coned, square, flush-faced plaque paneled, flush-faced mitered-louvered

Example (ADPI)

- Place the grid displacement
- Find the throw

- We can assume 5 ft , assuming the 1 ft close to the wall is not in the occupied space

Example (ADPI)

- Check ADPI for the perforated and louvered ceiling diffuser

$$
\frac{\text { Load }}{\text { Area }}=\frac{1,200 \frac{B t u}{h r}}{(12 f t \times 10 f t)}=10 \frac{B t u}{h r-f t^{2}}
$$

Table 6A Air Diffusion Performance Index (ADPI) Selection Guide for Typical Cooling Loads

Terminal Device in Cooling Mode	Installation	Load, Btu/h•ft ${ }^{\mathbf{~}}$	$\begin{gathered} \text { Max. ADPI } \\ T_{50} / L \end{gathered}$	Max. ADPI	$\begin{gathered} \text { T/L Low } \\ \text { Limit for } \\ \text { ADPI }>\mathbf{8 0 \%} \end{gathered}$	$\begin{gathered} \text { T/L High } \\ \text { Limit for } \\ \text { ADPI }>80 \% \end{gathered}$
Perforated diffusers, round pattern	Ceiling	8	1.9	95	0.5	3.3
Louvered face diffusers, without lip on deflector blade	Ceiling	8	2	100	0.5	3.6
		16	1.8	100	0.4	3.4
Plaque face diffusers	Ceiling	8	1.6	100	0.3	3.0
		16	1.6	100	0.4	3.2

Example (ADPI)

- Check ADPI for the perforated ceiling diffuser (Cooling)

$$
\begin{aligned}
& \left.\frac{T_{50}}{L}=2 \text { (Max for } 95 \%\right) \\
& \left.\frac{T_{50}}{L}=1 \text { to } 2.9 \text { (Greater than } 80 \%\right) \\
& \frac{T_{50}}{L}=1 \times 5 \mathrm{ft}=5 \mathrm{ft} \\
& \frac{T_{50}}{L}=2 \times 5=10 \mathrm{ft} \text { (Max ADPI) } \\
& \frac{T_{50}}{L}=2.9 \times 5=14.5 \mathrm{ft}
\end{aligned}
$$

Example (ADPI)

- Check ADPI for the perforated ceiling diffuser (Cooling)

PDF/PDN/PDC/PDMC/PDSP

Perforated Face Supply Diffuser

PERFORMANCE DATA

PDF/PDFE - 16 in. x 16 in.

Inlet	Neck Velocity (fpm) Velocity Pressure (in. w.g.)		300	400	500	600	700	800	900	1000	1200	1400
Size			. 006	. 010	. 016	. 022	. 031	. 040	. 050	. 062	. 090	. 122
60	Total Pressure (in. w.g.) Flow Rate (cfm) Sound (NC)		. 012	. 021	. 033	. 047	. 064	. 084	. 106	. 131	. 189	. 257
			59	78	98	118	137	157	176	196	235	274
			-	-	-	19	24	28	32	35	41	46
	Throw (ft.)	4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
		3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
		2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
		1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
6×6	Total Pressure (in. w.g.) Flow Rate (cfm) Sound (NC)		. 013	. 024	. 037	. 054	. 073	. 096	. 121	. 150	. 215	. 293
			75	100	125	150	175	200	225	250	300	350
			-	-	17	22	27	31	35	38	44	48
	Throw (ft.)	4 Way	1-1-5	1-2-7	2-4-9	2-5-9	3-6-10	4-7-11	5-8-11	6-9-12	7-9-13	8-10-14
		3 Way	1-2-6	1-3-8	2-5-10	3-6-11	4-7-12	5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
		2 Way	1-2-8	2-4-11	3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
		1 Way	1-3-11	2-5-14	3-8-17	5-11-19	7-12-20	9-14-22	11-16-23	12-17-24	14-19-26	16-20-29
80	Total Pressure (in. w.g.) Flow Rate (cfm) Sound (NC)		. 017	. 029	. 046	. 066	. 090	. 118	. 149	. 184	. 265	. 360
			105	140	175	209	244	279	314	349	419	489
			-	-	21	26	31	35	39	42	48	52
		4 Way	1-2-7	2-3-9	2-5-10	3-7-11	5-8-12	6-9-13	7-10-14	7-10-14	9-11-16	10-12-17
	Throw	3 Way	1-2-8	2-4-11	3-7-12	4-8-13	6-9-14	7-11-15	8-11-16	9-12-17	11-13-19	12-14-20
	(ft.)	2 Way	1-3-11	2-6-14	4-9-16	6-11-18	8-12-19	9-14-20	11-15-22	12-16-23	14-18-25	16-19-27
		1 Way	2-4-13	3-7-18	5-11-20	7-13-22	10-15-24	12-18-26	13-19-27	15-20-29	18-22-31	19-24-34
	Total Pr	(in. w.q.)	. 019	. 034	. 053	. 076	. 104	. 136	. 172	. 212	. 305	. 415

Example (ADPI)

- Remember manufacture report isothermal numbers

Inlet Size	Diffuser Type	Isothermal	Non-Isothermal	Decision
NC			35	
CFM			279	
8"	4-Way	13	$=13 \times 0.75=9.75$	Good Option
	3-Way	15	$=15 \times 0.75=11.25$	May work
	2-Way	20	$=20 \times 0.75=15.00$	

Example (ADPI)

- Can you find one from the datasheets for a return face velocity between 300 to 400 fpm ?
- You can consider face blades (e.g., 35 degrees)

EXAMPLE (DIFFUSER DESIGN)

Example (ADPI)

- Select round ceiling diffusers for a room with the size of 80 ft and 78 ft and the height of 9 ft . The room has a cooling load of $112,000 \mathrm{Btu} / \mathrm{hr}$ and a design air supply rate of $2,600 \mathrm{cfm}$. Locate the diffusers on the floor plan.

Example (ADPI)

- Use ADPI to find the ideal throw to characteristic length ratio with the room load
- Be mindful of the noise criterion (NC) value while selecting your diffuser size.
- Office: Less than 30
\square Levels above an NC of 50 are considered noisy
- Think about the air diffusion layout
\square Various ways exist
\square Can use 4 to 9 round ceiling diffusers for this problem

Example (ADPI)

- Consider one single diffuser for the entire room (e.g., round ceiling)
- Would this work?

Example (ADPI)

- Looking at the diffuser table data indicates that such a diffuser would be large and could be noisy
- Placing 4 in a grid pattern should give better choices. Would this work?

Example (ADPI)

- How about this one?

$$
y+2 y+y=4 y=80 \rightarrow y=20 \mathrm{ft} \quad x+2 x+x=4 x=78 \rightarrow x=19.5 \mathrm{ft}
$$

Example (ADPI)

- Characteristics length:

$$
L=\frac{78}{4}=19.5 \mathrm{ft}
$$

- Or:

$$
L=\frac{80}{4}=20.0 \mathrm{ft}
$$

- We can assume we are focusing on the occupied zone and the length close to the wall is ignored. Therefore, we can consider 19.5

Example (ADPI)

- Find the characteristic length (L)
- Find the throw $\left(X_{50}\right)$

Diffuser Type	Characteristic Length L
High sidewall grille	Distance to wall perpendicular to jet
Circular ceiling pattern diffuser	Distance to closest wall or intersecting air jet
Sill grille	Length of room in direction of jet flow Ceiling slot diffuser Light troffer diffusers
Distance to wall or midplane between outlets Distance to midplane between outlets plus distance from ceiling to top of occupied zone Cross-flow pattern ceiling diffusers	Distance to wall or midplane between outlets

Example (ADPI)

- Volume flow rate per diffuser:

$$
\dot{Q}=\frac{2600 \text { cfm }}{4 \text { diffusers }}=650 \text { cfm per diffuser }
$$

Example (ADPI)

- Room load:

$$
\frac{112000 \mathrm{Btu} / \mathrm{hr}}{80 \mathrm{ft} * 78 \mathrm{ft}}=17.95 \frac{\mathrm{Btu}}{\mathrm{hr} \cdot f t^{2}}
$$

Example (ADPI)

- Look at the ADPI table. If the number for the ADPI is too high, in addition to table 6-A and 6-B, look at this general table

Terminal Device	Room Load, Btu/h $\cdot \mathrm{ft}^{2}$	X_{50} / L for Maximum ADPI	Maximum ADPI	For ADPI Greater than	Range of X_{50} / L
High sidewall grilles	80	1.8	68	-	-
	60	1.8	72	70	1.5 to 2.2
	40	1.6	78	70	1.2 to 2.3
	20	1.5	85	80	1.0 to 1.9
	<10	14	90	80	07 to 21
Circular ceiling diffusers	80	0.8	76	70	0.7 to 1.3
	60	0.8	83	80	0.7 to 1.2
	40	0.8	88	80	0.5 to 1.5
	20	0.8	93	80	0.4 to 1.7
	<10	0.8	99	80	0.4 to 1.7
Sill grille, straight vanes	80	1.7	61	60	1.5 to 1.1
	60	1.7	72	70	1.4 to 1.7
	40	1.3	86	80	1.2 to 1.8
	20	0.9	95	90	0.8 to 1.3
Sill grille, spread vanes	80	0.7	94	90	0.6 to 1.5
	60	0.7	94	80	0.6 to 1.7
	40	0.7	94	-	-
	20	0.7	94	-	-
Ceiling slot diffusers (for T_{100} / L)	80	0.3	85	80	0.3 to 0.7
	60	0.3	88	80	0.3 to 0.8
	40	0.3	91	80	0.3 to 1.1
	20	0.3	92	80	0.3 to 1.5
Light troffer diffusers	60	2.5	86	80	<3.8
	40	1.0	92	90	<3.0
	20	1.0	95	90	<4.5
Cross-flow pattern diffusers	11 to 50	2.0	96	90	1.4 to 2.7
	11 to 50	2.0	96	80	1.0 to 3.4

Example (ADPI)

- Calculate $\frac{X_{50}}{L}$:

$$
\begin{gathered}
\frac{X_{50}}{L}=0.8 \\
X_{50}=L * 0.8=19.5 * 0.8=15.6 \mathrm{ft}
\end{gathered}
$$

Example (ADPI)

- Look at the manufacture datasheets (Option 1):

- This is higher than what we needed:

$$
22 \times 0.75=16.5 \mathrm{ft}
$$

Example (ADPI)

- Look at the manufacture datasheets (Option 2):

Size		Neck Velocity (fpm)	400	500	600	700	800	900	1000	1200	1400
		Velocity Pressure (in. w.g.)	. 010	. 016	. 023	. 031	. 040	. 051	. 063	. 090	. 122
12 in.	Plaque Position	Flow Rate, Flow Rate (cfm)	314	393	471	550	628	707	785	942	1099
	Center	```Total Pressure (in.w.g.) Sound (NC) Horizontal Throw (ft)```	$\begin{gathered} \hline 0.019 \\ - \\ 3-5-9 \\ \hline \end{gathered}$	$\begin{gathered} 0.030 \\ - \\ 4-6-11 \\ \hline \end{gathered}$	$\begin{gathered} 0.043 \\ - \\ 5-7-14 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.058 \\ 18 \\ 5-8-16 \\ \hline \end{gathered}$	$\begin{gathered} 0.076 \\ 22 \\ 6-9-18 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.096 \\ 26 \\ 7-10-21 \\ \hline \end{gathered}$	$\begin{gathered} 0.118 \\ 29 \\ 8-11-23 \\ \hline \end{gathered}$	$\begin{gathered} 0.171 \\ 34 \\ 9-14-28 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0.232 \\ 39 \\ 11-16-32 \\ \hline \end{array}$
	Down	```Total Pressure (in. w.g.) Sound (NC) Horizontal Throw (ft)```	$\begin{gathered} \hline 0.016 \\ - \\ 3-4-9 \\ \hline \end{gathered}$	$\begin{gathered} 0.025 \\ - \\ 4-6-11 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.036 \\ - \\ 4-7-14 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.049 \\ 19 \\ 5-8-16 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.064 \\ 23 \\ 6-9-18 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.081 \\ 26 \\ 7-10-21 \\ \hline \end{gathered}$	0.100 29 $7-11-23$	$\begin{gathered} 0.144 \\ 34 \\ 9-13-28 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0.196 \\ 38 \\ 10-16-32 \\ \hline \end{array}$
	Up	Total Pressure (in. w.g.)	0.032	0.050	0.071	0.097	0.127	0.161	0.198	0.285	0.389
		Sound (NC)	-	-	\checkmark	19	23	27	30	35	40
	Vertical Projection to 50fpm	$10^{\circ} \mathrm{F}$ Heating	13	14	16	17	18	19	20	22	24
		$20^{\circ} \mathrm{F}$ Heating	12	13	14	15	16	17	18	20	22
		$30^{\circ} \mathrm{F}$ Heating	10	11	13	14	15	15	16	18	19
		$40^{\circ} \mathrm{F}$ Heating	9	10	11	12	13	14	14	16	17

- This is higher volume flow rate than what we needed, but the throw is acceptable. This is overall a better option:

$$
21 \times 0.75=15.75 \mathrm{ft}
$$

INTRO TO PRESSURE LOSS IN DUCTS AND FITTINGS

Intro to Pressure Loss in Ducts and Fittings

- There are a couple of components required for the design of an air distribution

Determine air flow rate

Deliver air to the space

Control air speed and temperature

Direct air to the terminal units or diffusers

Move air through :he duct system

Intro to Pressure Loss in Ducts and Fittings

$$
\left(\begin{array}{l:l}
P_{1} \\
\gamma & \frac{V_{1}^{2}}{2 g}+z_{1}+A_{M}^{\prime}-H_{L}=\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}
\end{array}\right.
$$

Static head
Lost head (L)

$$
P_{1}+\frac{\rho V_{1}^{2}}{2}+\rho z_{1}+\rho, A_{M}-\rho L_{h}^{\prime}=P_{2}+\frac{\rho V_{2}^{2}}{2}+\rho z_{2}
$$

Intro to Pressure Loss in Ducts and Fittings

- No change in the elevation

$$
P_{1}+\frac{\rho V_{1}^{2}}{2}=P_{2}+\frac{\rho V_{2}^{2}}{2}+\rho L_{h}
$$

- Total pressure in the duct section

$$
P_{t o t a l, 1}=P_{\text {total }, 2}+\Delta P_{f}
$$

Intro to Pressure Loss in Ducts and Fittings

- We define system requirements

$$
\begin{aligned}
P_{\text {total }}= & \sum_{i \in F_{u p}} \Delta \mathrm{p}_{\mathrm{t}_{\mathrm{i}}}+\sum_{i \in F_{\text {down }}} \Delta \mathrm{p}_{\mathrm{t}_{\mathrm{i}}} \\
& i=1,2, \ldots n_{u p}, n_{\text {down }}
\end{aligned}
$$

- $F_{u p}$ and $F_{\text {down }}$: Sets of duct sections returns and downstream of fan
\square : Symbol that ties duct sections into system paths from exhaust/return air terminals to supply terminals

CLASS ACTIVITY

Class Activity

- Example: What is the pressure requirement for balancing airflow in this configuration?

Class Activity

- Solution: The following equations must be satisfied to attain pressure balancing for design airflow

$$
\begin{aligned}
& P_{\text {total }}=\Delta p_{1}+\Delta p_{3}+\Delta p_{4}+\Delta p_{9}+\Delta p_{7}+\Delta p_{5} \\
& P_{\text {total }}=\Delta p_{1}+\Delta p_{3}+\Delta p_{4}+\Delta p_{9}+\Delta p_{7}+\Delta p_{6} \\
& P_{\text {total }}=\Delta p_{1}+\Delta p_{3}+\Delta p_{4}+\Delta p_{9}+\Delta p_{8} \\
& P_{\text {total }}=\Delta p_{2}+\Delta p_{4}+\Delta p_{9}+\Delta p_{7}+\Delta p_{5} \\
& P_{\text {total }}=\Delta p_{2}+\Delta p_{4}+\Delta p_{9}+\Delta p_{7}+\Delta p_{6} \\
& P_{\text {total }}=\Delta p_{2}+\Delta p_{4}+\Delta p_{9}+\Delta p_{8}
\end{aligned}
$$

TOTAL FAN PRESSURE

Total Fan Pressure

Total Fan Pressure

- The airflow system principals are:
\square The measure of the amount of energy required to move air from one location to another is the change (decrease) in the total pressure within the system
\square The total pressure $\left(P_{\text {total }}\right)$ at any location within a system is a measure of the total mechanical energy at that location. It is the sum of the static pressure and the velocity pressure
\square In any duct system, the total pressure always decreases in the direction of airflow
\square In any system having two or more branches, the losses in total pressure between the fan and the end of each branch are the same
\square Static pressure and velocity pressure are mutually convertible and can either increase or decrease in the direction of flow

PRESSURE LOSSES IN DUCTS AND FITTINGS

Pressure Losses in Ducts and Fittings

- Consider loss coefficient (K) for fittings as:

$$
\text { Loss of section }=K\left(\frac{V^{2}}{2 g}\right)
$$

- Adding them together, the total losses in the pipe is:

$$
H_{L f}=\left[K+f\left(\frac{L}{D}\right)\right]\left(\frac{V^{2}}{2 g}\right)
$$

Pressure Losses in Ducts and Fittings

Table 1 Duct Roughness Factors

1	2	3
Duct Type/Material	Absolute Roughness ε, ft	
	Range	Roughness Category
Drawn tubing (Madison and Elliot 1946)	0.0000015	Smooth 0.0000015
PVC plastic pipe (Swim 1982)	0.00003 to 0.00015	Medium smooth 0.00015
Commercial steel or wrought iron (Moody 1944)	0.00015	
Aluminum, round, longitudinal seams, crimped slip joints, $3 \mathrm{ft} \mathrm{spacing} \mathrm{(Hutchinson} \mathrm{1953)}$	0.00012 to 0.0002	
Friction chart:		
Galvanized steel, round, longitudinal seams, variable joints (Vanstone, drawband, welded. Primarily beaded coupling), 4 ft joint spacing (Griggs et al. 1987)	0.00016 to 0.00032	Average 0.0003
Galvanized steel, spiral seams, $10 \mathrm{ft} \mathrm{joint} \mathrm{spacing} \mathrm{(Jones} \mathrm{1979)}$	0.0002 to 0.0004	
Galvanized steel, spiral seam with 1,2 , and 3 ribs, beaded couplings, 12 ft joint spacing (Griggs et al. 1987)	0.00029 to 0.00038	
Galvanized steel, rectangular, various type joints (Vanstone, drawband, welded. Beaded coupling), 4 ft spacing ${ }^{\text {a }}$ (Griggs and Khodabakhsh-Sharifabad 1992)	0.00027 to 0.0005	
Wright Friction Chart:	Retained for historical purposes [See Wright (1945) for development of friction chart]	
Galvanized steel, round, longitudinal seams, 2.5 ft joint spacing, $\varepsilon=0.0005 \mathrm{ft}$		
Flexible duct, nonmetallic and wire, fully extended (Abushakra et al. 2004; Culp 2011)	0.0003 to 0.003	Medium rough 0.003
Galvanized steel, spiral, corrugated, ${ }^{\text {b }}$ Beaded slip couplings, $10 \mathrm{ft} \mathrm{spacing} \mathrm{(Kulkarni} \mathrm{et} \mathrm{al}. \mathrm{2009)}$	0.0018 to 0.0030	
Fibrous glass duct, rigid (tentative) ${ }^{\text {c }}$	-	
Fibrous glass duct liner, air side with facing material (Swim 1978)	0.005	
Fibrous glass duct liner, air side spray coated (Swim 1978)	0.015	Rough 0.01
Flexible duct, metallic corrugated, fully extended	0.004 to 0.007	
Concrete (Moody 1944)	0.001 to 0.01	

Pressure Losses in Ducts and Fittings

Pressure Losses in Ducts and Fittings

- Based on:
\square Standard air
Round galvanized sheet metal with 4 ft joints
\square Absolute roughness of 0.0003 ft
- No correction for:
- Medium roughness
- Temperature range $40^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$

E Elevations to $1,500 \mathrm{ft}$
\square Duct pressure range -20 to 20 in w.c

- Variation of $+/-5 \%$

Pressure Losses in Ducts and Fittings

- We define circular equivalent of rectangular ducts as:

$$
D_{e}=1.30 \frac{(a b)^{0.625}}{(a+b)^{0.25}}
$$

- Where:

D D_{e} : Circular equivalent of a rectangular duct (in)

- a: Height of duct (in)
b Width of duct (in)

Pressure Losses in Ducts and Fittings

Circular Duct Diameter, in.	Length of One Side of Rectangular Duct (a), in.																			
	4	5	6	7	8	9	10	12	14	16	18	20	22	24	26	28	30	32	34	36
	Length Adjacent Side of Rectangular Duct (b), in.																			
5	5																			
5.5	6	5																		
6	8	6																		
6.5	9	7	6																	
7	11	8	7																	
7.5	13	10	8	7																
8	15	11	9	8																
8.5	17	13	10	9																
9	20	15	12	10	8															
9.5	22	17	13	11	9															
10	25	19	15	12	10	9														
10.5	29	21	16	14	12	10														
11	32	23	18	15	13	11	10													
11.5		26	20	17	14	12	11													
12		29	22	18	15	13	12													
12.5		32	24	20	17	15	13													
13		35	27	22	18	16	14	12												
13.5		38	29	24	20	17	15	13												
14			32	26	22	19	17	14												
14.5			35	28	24	20	18	15												
15			38	30	25	22	19	16	14											
16			45	36	30	25	22	18	15											
17				41	34	29	25	20	17	16										
18				47	39	33	29	23	19	17										
19				54	44	38	33	26	22	19	18									
20					50	43	37	29	24	21	19									
21					57	48	41	33	27	23	20									

Pressure Losses in Ducts and Fittings

- Ductulator options exist

CLASS ACTIVITY

Class Activity

- Example: For a duct of 12 in by 12 in delivers $1,000 \mathrm{cfm}$. Find equivalent duct size and the friction loss per 100 ft of duct length

Activity

- Solution:

Circular Duct Diameter, in.	Length of One Side of Rectangular Duct (a), in.																			
	4	5	6	7	8	9		12	14	16	18	20	22	24	26	28	30	32	34	36
	Length Adjacent Side of Rectangular Duct (b), in.																			
5	5							1												
5.5	6	5						I												
6	8	6						I												
6.5	9	7	6					I												
7	11	8	7					I												
7.5	13	10	8	7				,												
8	15	11	9	8				I												
8.5	17	13	10	9				1												
9	20	15	12	10	8			I												
9.5	22	17	13	11	9			1												
10	25	19	15	12	10	9		I												
10.5	29	21	16	14	12	10		I												
11	32	23	18	15	13	11	10	I												
11.5		26	20	17	14	12	11													
12		29	22	18	15	13	12	1												
12.5		32	24	20	17	15	13	I												
$13=-$	-	35	27	-22	18	46	+4-	-12												
13.5		38	29	24	20	17	15	13												
14			32	26	22	19	17	14												
14.5			35	28	24	20	18	15												
15			38	30	25	22	19	16	14											
16			45	36	30	25	22	18	15											
17				41	34	29	25	20	17	16										
18				47	39	33	29	23	19	17										
19				54	44	38	33	26	22	19	18									
20					50	43	37	29	24	21	19									
21					57	48	41	33	27	23	20									

Class Activity

$$
D_{e}=1.30 \frac{(a b)^{0.625}}{(a+b)^{0.25}}
$$

$$
D_{e}=1.30 \frac{(12 \times 12)^{0.625}}{(12+12)^{0.25}}
$$

$$
D_{e}=13.1 \mathrm{in}
$$

Class Activity

