# CAE 464/517 HVAC Systems Design Spring 2023

# February 21, 2023

# Air distribution systems: Classification of air diffusion

Built Environment Research @ IIT ] 🗫 🕣 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

# ANNOUNCEMENTS

#### Announcements



#### **Mechanical Engineering Tips**

#### in Commercial Buildings

#### **SPEAKER**

Mechanical Engineer Danielle Passaglia

#### WHEN

February 23<sup>rd</sup>, 2023 12:40 pm – 1:40 pm

#### WHERE

John T. Rettaliata Engineering Center, RE 242

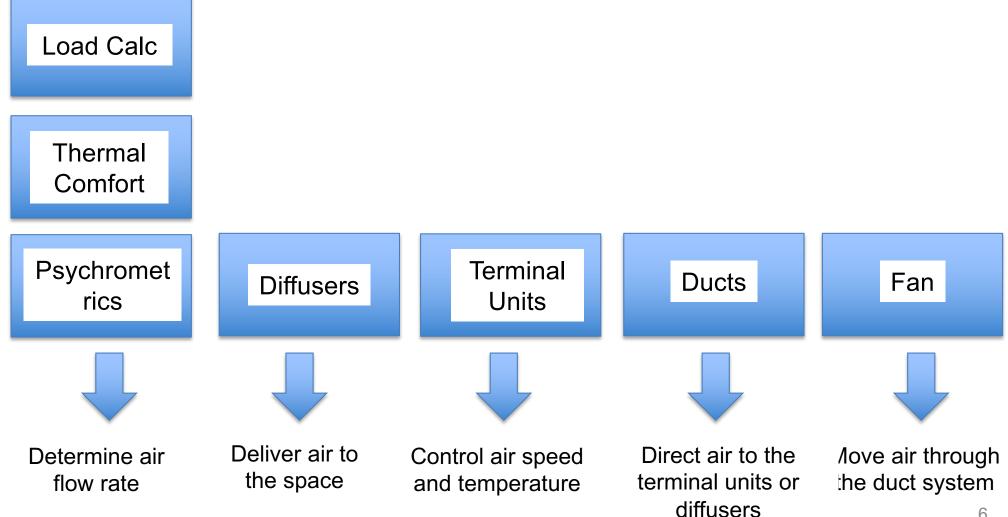
#### **TALK ABOUT**

 ✓ Work Experiences
 ✓ Careers in Mechanical Engineering
 ✓ Skill in Engineering Simulation Tools

For more information, feel free to contact ASHRAE official email ashrae\_iit@iit.edu

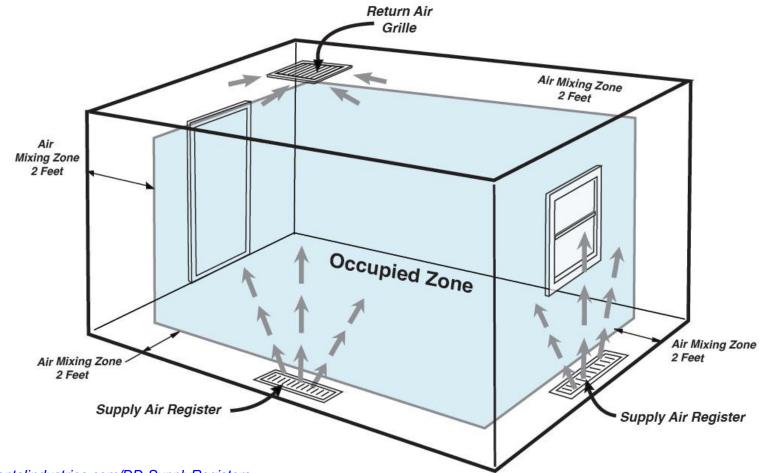


Interested in Joining

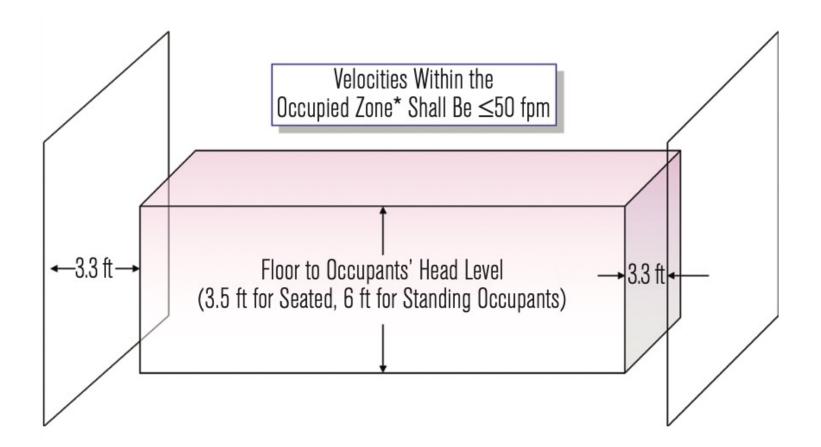

#### Lunch will be provided!

# HOMEWORK / PROJECT / EXAM

#### RECAP

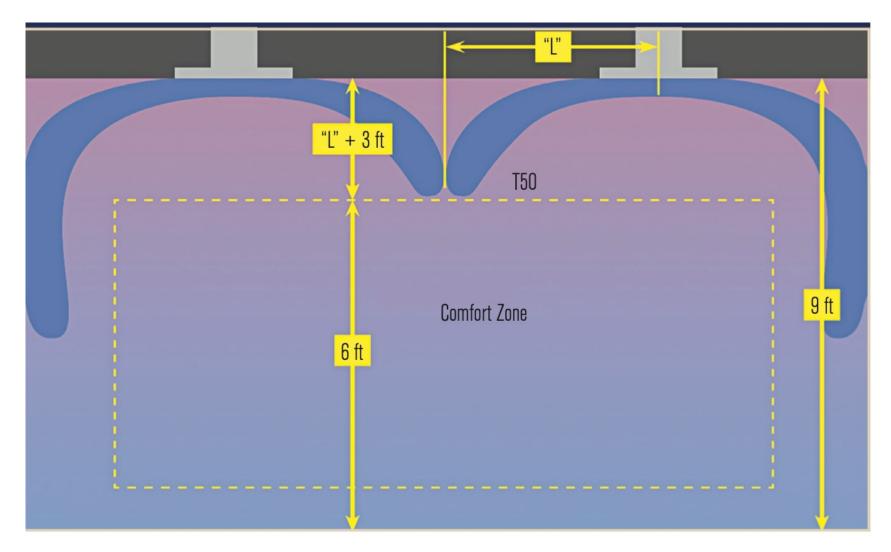

### Recap

 There are a couple of components required for the design of an air distribution

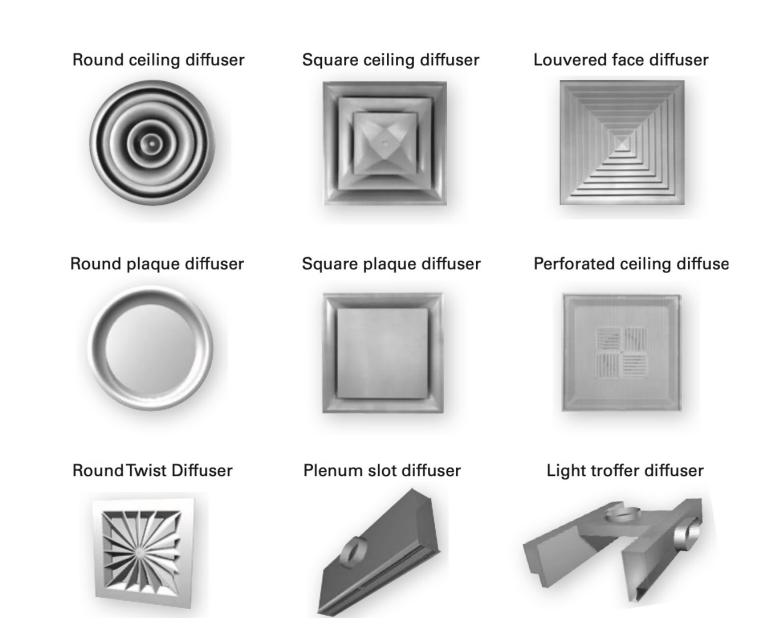



#### Recap

- We are interested in the occupied zone (or breathing zone):
  2 feet from any wall
  - □ 6 feet from the floor

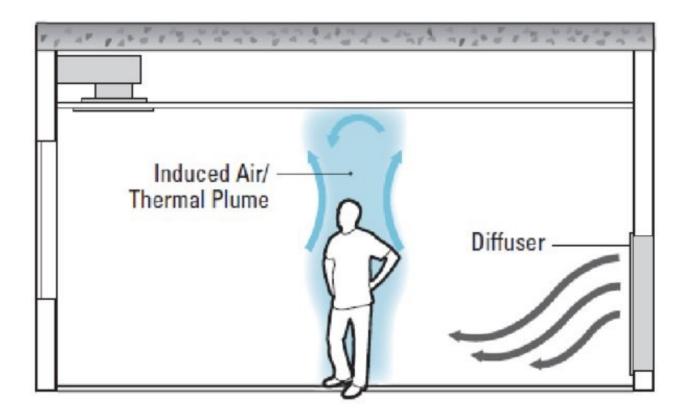



• The definition of the occupied zone can vary:



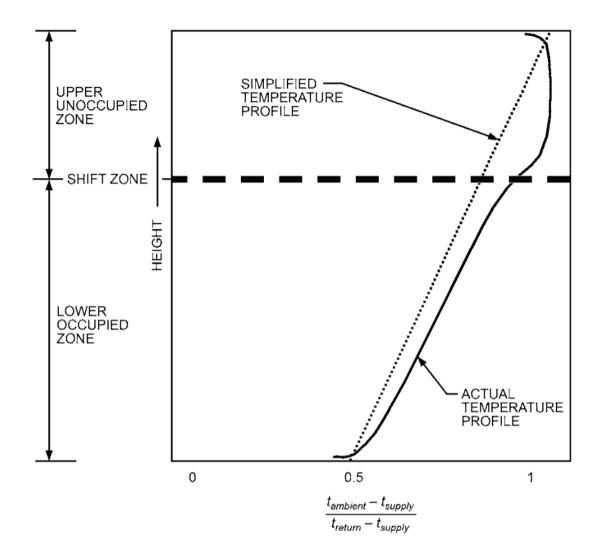

#### Recap

• The definition of the occupied zone can vary:



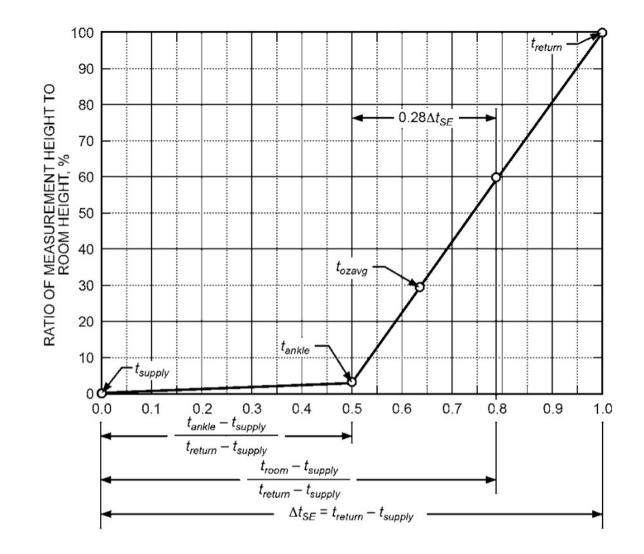

## **AIR DIFFUSION**





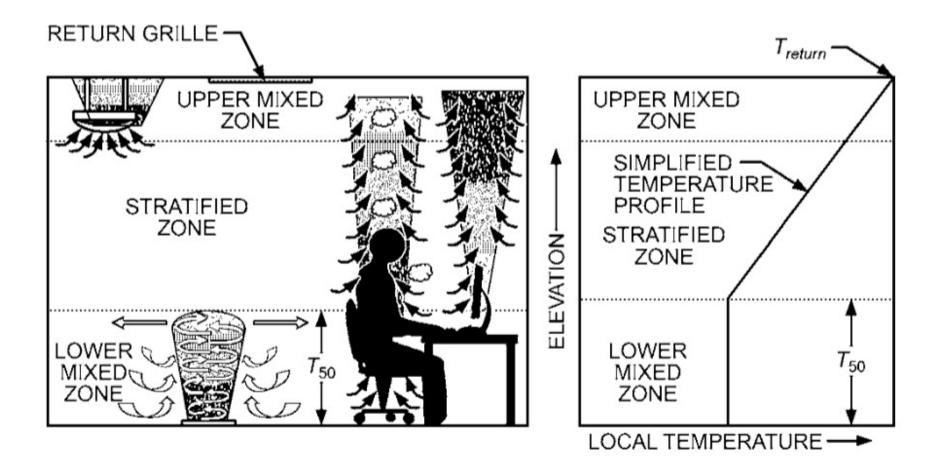

- Thermal Displacement Ventilation (TDV):
  - □ Introduce cool air into a space at low face velocities
  - Let convection and stratification move warm contaminated air up to returns



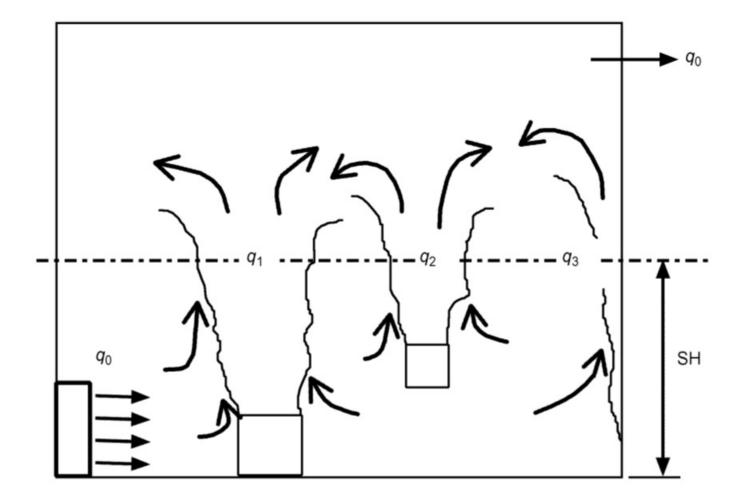

• Thermal Displacement Ventilation (TDV):

□ Temperature profile is usually as follow:

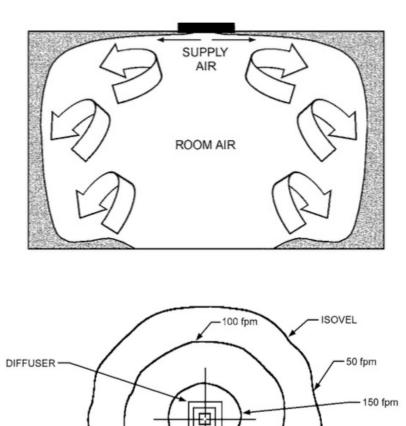



• Thermal Displacement Ventilation (TDV):

□ An example temperature profile for a ceiling height of 10 ft

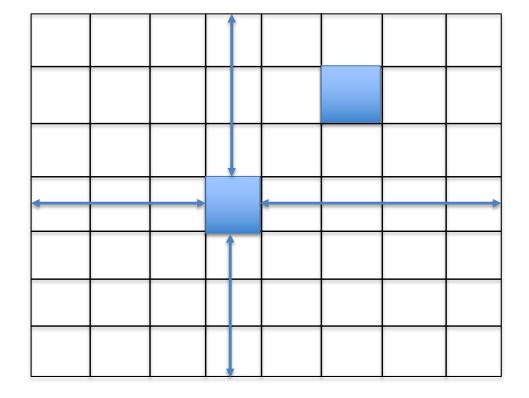



Underfloor Air Distribution (UFAD):


□ Supply airflow is usually vertically at a relatively high velocity



• We need to make sure to consider internal objects




• Remember the secondary flow is important



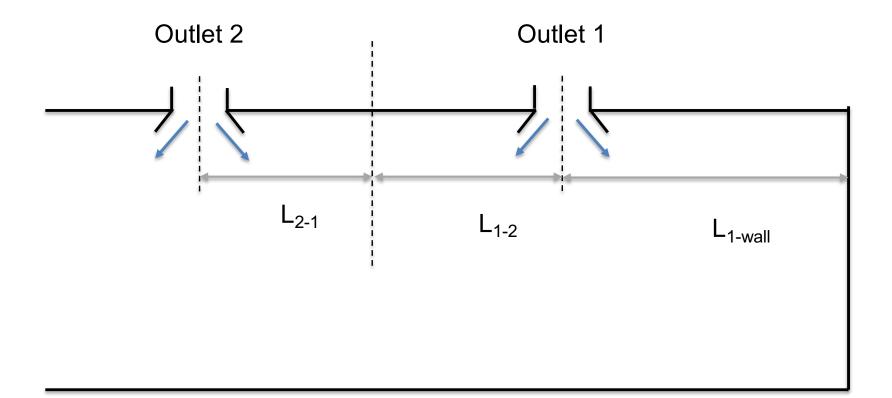
THROW

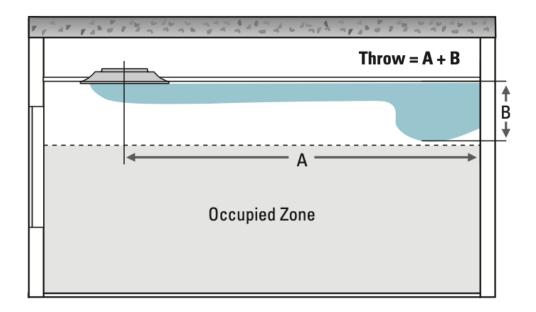
- To identify the characteristics length, we need to identify the location of the air outlets
- Identify the maximum achievable throw:

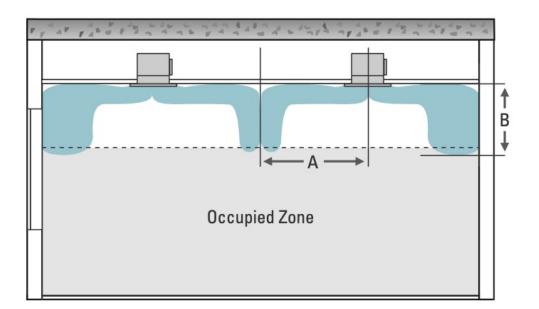


#### **High Sidewall Grille**

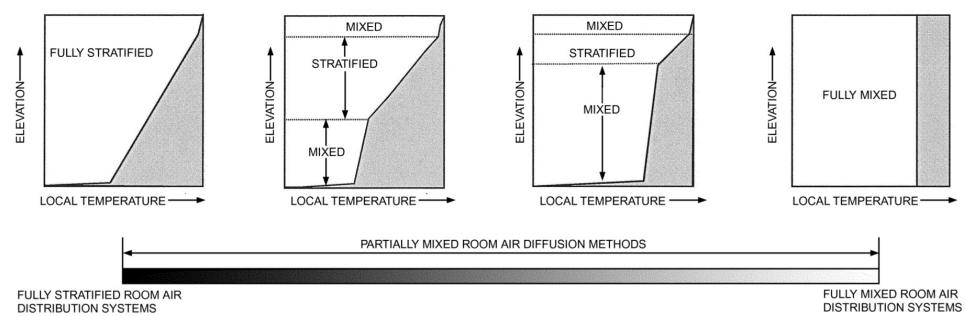



#### Distance to wall perpendicular to jet


#### **Circular Ceiling Diffuser**




Distance to closet wall or intersecting air jet


- The available length (L) for outlet #1 is the lesser of  $L_{1-wall}$  and  $L_{1-2}$  for this case







# VERTICAL TEMPERATURE STRATIFICATION PROFILES



#### EXAMPLES:

- Thermal displacement using low-velocity cool air
- Natural ventilation

#### EXAMPLES:

- Underfloor air distribution (using room air induction) in cooling operation
- Underseat air distribution (using room air induction) in cooling operation
  Track (seek least least
- Task/ambient cooling (using furniture-based outlets)
- Task/ambient (spot) cooling or heating (industrial applications)

#### EXAMPLES:

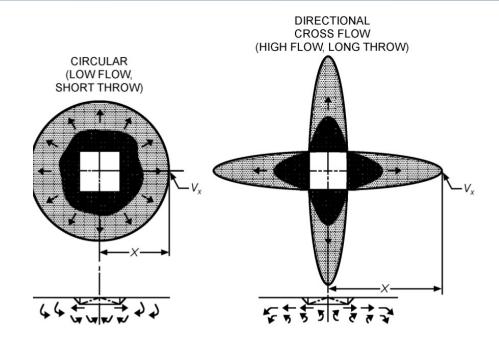
- · Overhead mixed air supply in cooling operation
- · Fan-coil units and unit ventilators
- High-velocity floor-based supply in heating operation

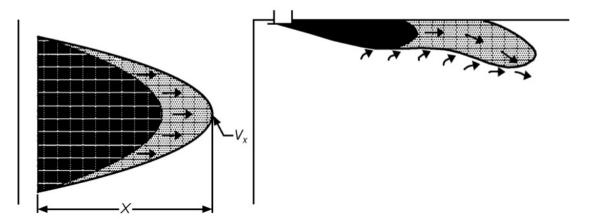
- Fully mixed systems: Room air is fully mixed
  - □ Little or no thermal/pollutant stratification vertically
  - Achieved by supplying large amounts of conditioned air into the room either from overhead or underfloor
  - Conditioning of the space achieved by diluting space air with the supply air
  - Overhead air distribution is an example of this distribution

- Fully stratified systems: Space is fully stratified vertically
  - □ There is a distinct thermal gradient
  - □ Happens through the displacement ventilation systems

- Partially mixed systems:
  - This arises when the occupied space is fully mixed and maintained at a condition distinctly different from the unoccupied zone
  - The unoccupied volume is usually stratified into three zones whose relative lengths may vary
  - Most underfloor air distribution systems (UFAD) are examples of this type

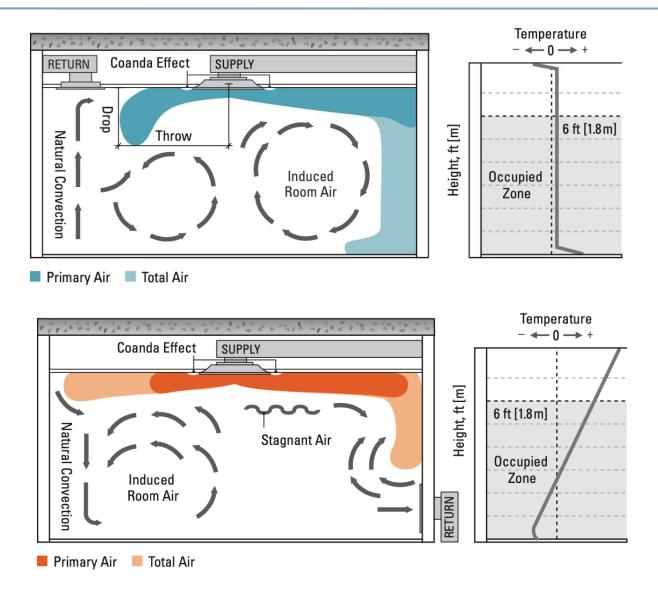
# CLASSIFICATION OF AIR DIFFUSION METHODS


### **Outlet Classification**


- Group A
  - Outlets mounted in or near the ceiling that discharge air horizontally
  - Outlets discharge horizontally the air that is not influenced by an adjacent surface
- Group B
  - Outlets mounted in or near the floor that discharge air vertically in a nonspreading jet
- Group C
  - Outlets mounted in or near the floor that discharge air vertically in a spreading jet
- Group D
  - □ Outlets mounted in or near the floor that discharge air horizontally
- Group E
  - Outlets that project supply air vertically downward

### Group A1 (Ceiling: Horizontal Discharge)

- High sidewall grilles
- Sidewall diffusers
- Ceiling diffusers
- Linear ceiling diffusers

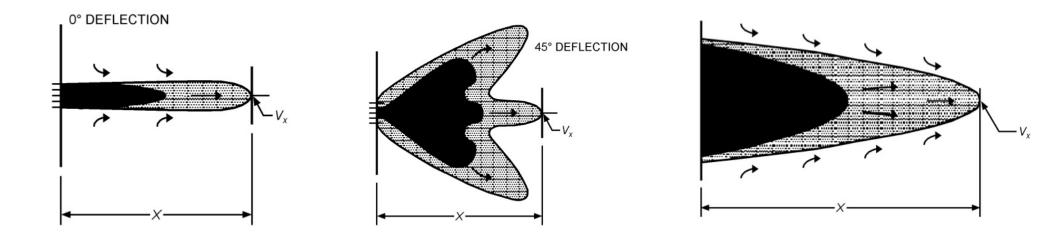

### Group A1 (Ceiling: Horizontal Discharge)





Non-Isothermal

#### Group A1 (Ceiling: Horizontal Discharge)



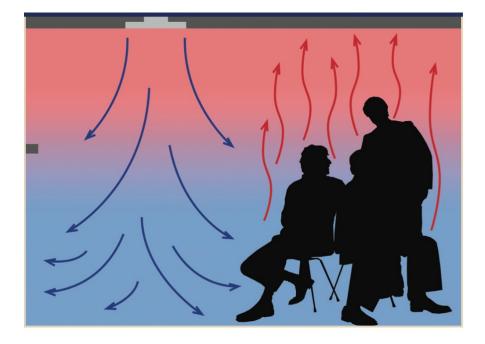

#### What do you think any of these configurations are good for heating or cooling?

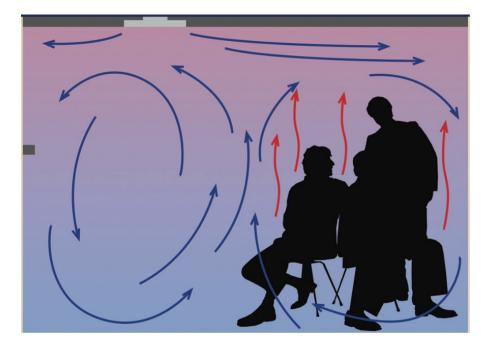
Engineering Guide Air Distribution, Price

### Group A2 (Horizontal Discharge Not Surface)

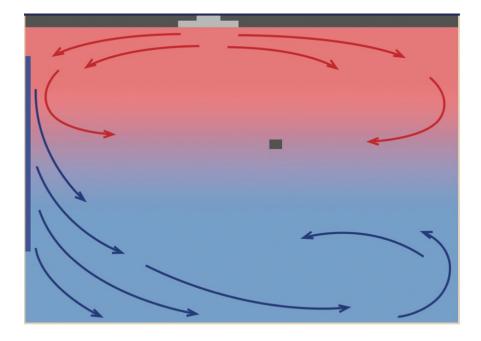
 Similar to A2 with higher stratification for the cooling close to the ceiling

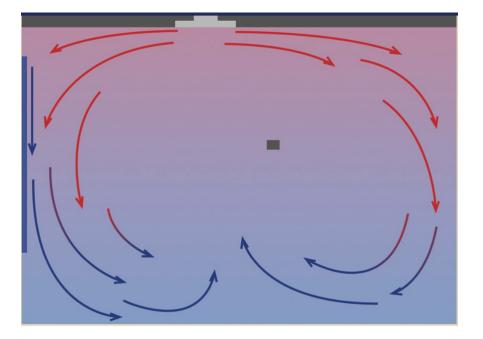



## Group A (Ceiling: Horizontal Discharge)


- Often used in mild climates and on the second and succeeding floors of multistory buildings
- Not recommended for cold climates or with unheated floors
- Because the primary air project radially in all directions, the rate of entrainment is large, causing the high-momentum jet to diffuse quickly
- Ceiling diffuser allow handling larger quantities of air at higher velocities than other types

## Group A (Ceiling: Horizontal Discharge)


- Quite effective for cooling
- Not recommended for heating unless the floor is above a heated space
- Linear diffusers fall into this group
  - Good for cooling
  - □ Require a supplemental heating system


#### Group A (Ceiling: Horizontal Discharge)





# Group A (Ceiling: Horizontal Discharge)

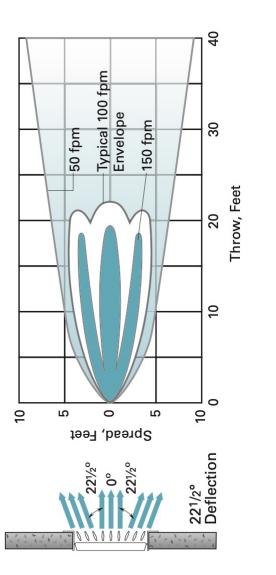


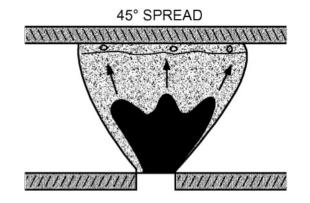


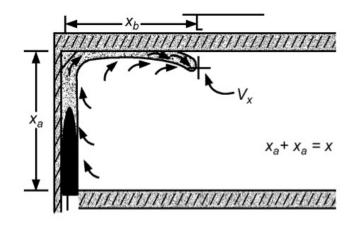
$$\Delta T > 15 \text{ °F} (8.3 \text{ °C})$$
  
 $V \sim 150 fpm (0.75 \frac{m}{s})$ 

$$\Delta T < 15 \,^{\circ}\text{F} \,(8.3 \,^{\circ}\text{C})$$

- Floor registers
- Baseboard units
- Low sidewall units
- Linear type grilles


- Satisfactory performance for cooling
- Less desirable for heating because a larger stratified zone will usually occur





Outlet in or near floor, non spreading linear jets

4°F (2°C) Acceptable to 85% of occupants

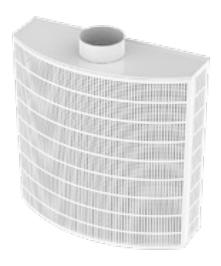
- Floor diffusers
- Sidewall diffusers
- Linear type diffusers





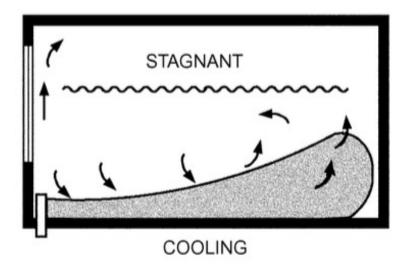


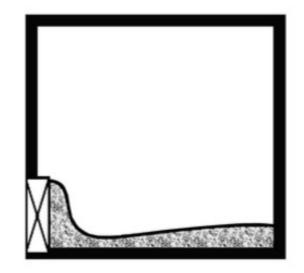





- Usually assume superior for heating applications, especially:
  The floor is located over an unheated space or a slab
  Considerable glass area exists in the wall
- Diffusers with a wide spread are usually best for heating because buoyancy tends to increase the throw
- Similarly, these diffusers are not good for cooling application because the throw may not be adequate for mixing
- Sometimes diffusers are available to change depending on the season

# **Group D (Horizontal Discharge)**


 They are good for displacement ventilation to remove large amount of contaminants from a space



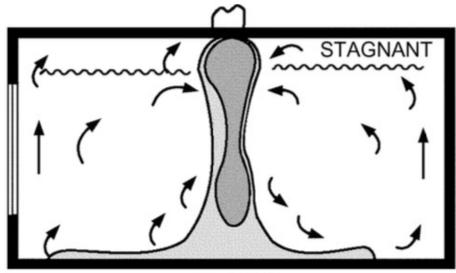



# **Group D (Horizontal Discharge)**

- Baseboard registers
- Low-sidewall registers






Outlet Group D (High Velocity) - (Nonisothermal)

Outlet Group D (Low Velocity) -Nonisothermal

# **Group E (Vertical Discharge)**

- These outlets are used in partially stratified systems
  - □ Ceiling diffusers
  - □ Linear grilles
  - □ Sidewall diffusers
- These outlets use low discharge velocities
- In mixed systems, they use higher discharge velocities
- Are used for a special applications such as cooling large glasses

# **Group E (Vertical Discharge)**

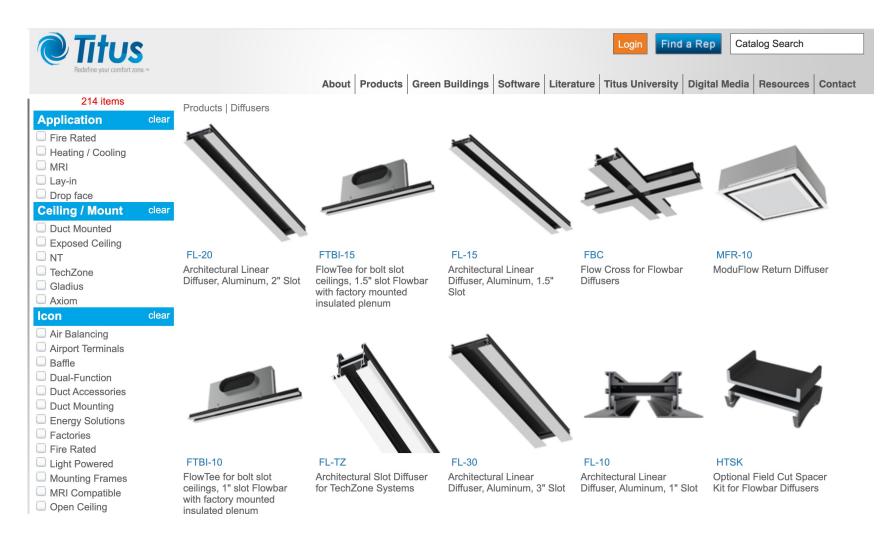


COOLING

Outlet Group E (High Velocity) -(Nonisothermal)

Outlet Group E (Low Velocity) -Nonisothermal

# Return Air & Exhaust Grilles


- Less important than diffusers since velocity decreases significantly as the area increases
- Their location has little effect on room air motion (Supplies create the air flow patterns)
- Both supplies and returns should not be blocked by any objects
- The location of returns might be important when there is any pressure imbalance

# **Return Air & Exhaust Grilles**

- From energy standpoint, it is economical to return the coolest air to the heating coil and warmest air to the cooling coil (Stagnation region)
- However, careful consideration is required for high ceiling, atrium, and large vertical glass surfaces
- Always, make sure to avoid short circuiting of supply air

# **Supply and Return Options**

 Please review some diffuser, grille, and register options for the next lectures



# **Supply and Return Options**

 Please review some diffuser, grille, and register options for the next lectures



......



# **REVISITING ASHRAE 62.1**

# **Revisiting ASHRAE 62.1**

- ASHRAE 62.1 also provides:
  - Criterion for reduction in the outdoor delivery rate when recirculated air is treated
  - Criterion for variable ventilation rates when the air volume in the space can be used to dilute contaminants
- Many municipals have their own prescribed rates that can differ from ASHRAE
- ASHRAE 62.1 notation uses airflow rate as V

# **Revisiting ASHRAE 62.1**

• Air change rate:

$$ACH = \frac{Volumetric\ flow\ rate}{Volume}\ (or\ \frac{60Q}{V}\ using\ cfm)$$

• Time Constant:

$$\tau = \frac{V}{Q} = \frac{m}{\dot{m}}$$

- □ *ACH*: Air change rate (air changes/hour)
- □ Q: Volumetric flow rate ft<sup>3</sup>/hr
- $\Box$  V: Room volume ft<sup>3</sup>
- $\Box$   $\tau$ : Time constant
- $\square$  m: Mass of air in the space
- $\Box$   $\dot{m}$ : mass flow rate of outdoor air

# **CLASS ACTIVITY**

# **Class Activity**

- Calculate the volumetric flow rate (in CFM and  $\frac{ft^3}{hr}$ ) and time constant for the following condition:
  - □ Office area: 800 ft<sup>2</sup>
  - □ Office height: 10 ft

#### **Class Activity**

• Solution:

□ Office areas usually have an ACH between 2 to 6

$$\tau = \frac{1}{2 \, [1/hr]} = 0.5 \ hour$$

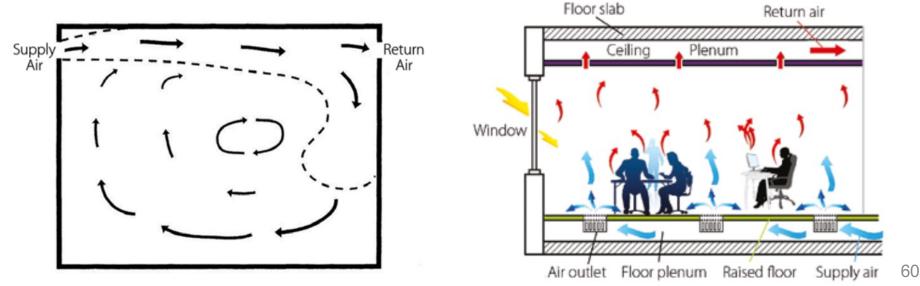
$$2 = \frac{Q}{(800 \times 10)}$$

$$Q = 16,000 \frac{ft^3}{hr} = 16,000 \times \frac{ft^3}{hr} \times \frac{1 hr}{60 minutes} = 266 CFM$$

# Air Change Terms

 Ventilation effectiveness provides measure of an air distribution system's ability to remove an internally generated pollutant

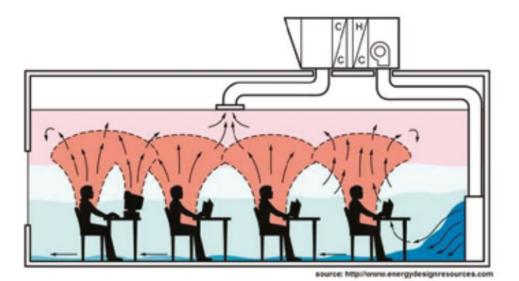
 Age-of-air (θ): Time in which some quantity of outside air has been in a particular building or space (hr)


# **Outdoor Air Requirement**

- The per person rate is to dilute the contaminants the occupants create
- The per space rate is related to dilute the contaminants created by furnishings and non-occupant activities
- Calculate the zone outdoor air flow rate from the breathing zone air flow rate

$$V_{oz} = \frac{V_{bz}}{E_z}$$

# **Ventilation Effectiveness**


- The zone effectiveness depends upon
  - □ The location of the supply air diffusers
  - □ The location of he return air vents
  - □ Heating or cooling mode
- All three of these factors go into determining how much mixing takes place



## **Ventilation Effectiveness**

• It is better to use the ASHRAE 62.1 table, but common ventilation effectiveness are calculated as:

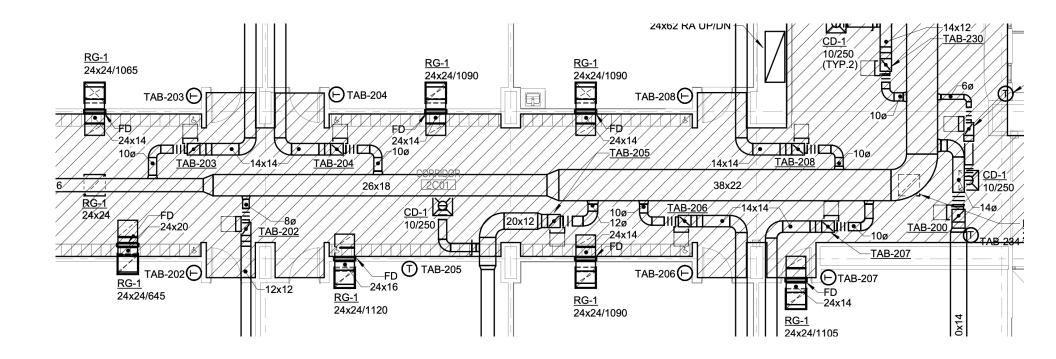
| Heating/Cooling | Supply       | Return   | Ez  |
|-----------------|--------------|----------|-----|
| Cooling         | Overhead     | Overhead | 1.0 |
| Heating         | Underfloor   | Opposite | 1.0 |
| Heating         | Overhead     | Overhead | 0.8 |
| Heating         | Displacement | Overhead | 0.7 |



# **MECHANICAL DRAWINGS**

 Please, see Chapter 38 of ASHRAE Fundamentals: Abbreviations and Symbols. This chapter entails:

□ Abbreviations


- □ Letter symbols
- □ Graphical symbols

#### **CHAPTER 38**

#### **ABBREVIATIONS AND SYMBOLS**

| Abbreviations for Text, Drawings, and Computer Programs | 37.1 |
|---------------------------------------------------------|------|
| Letter Symbols                                          |      |
| Dimensionless Numbers                                   |      |
| Mathematical Symbols                                    |      |
| Subscripts                                              |      |
| Graphical Symbols for Drawings                          |      |
| Piping System Identification                            |      |

 A good approach starts drawing on the existing architectural drawings:

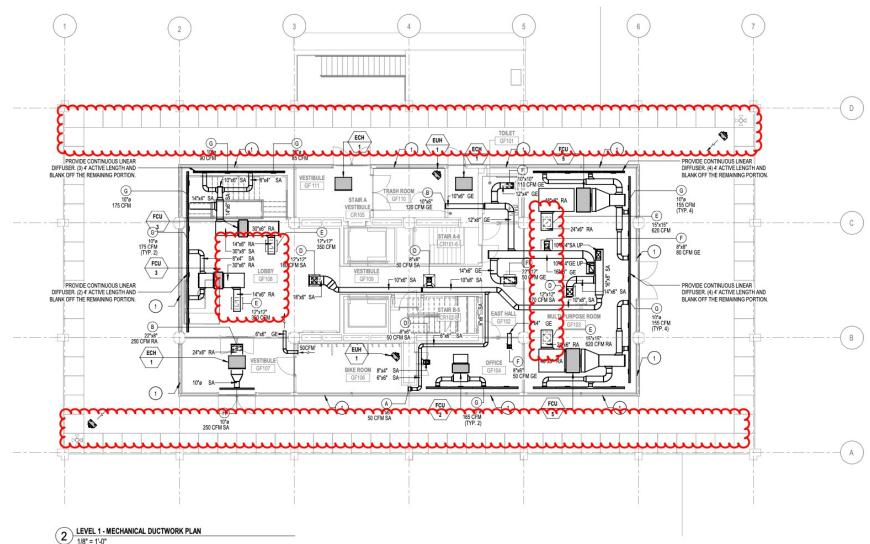


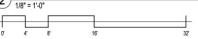
 Look for the Mechanical Symbols, Notes, and Abbreviations page (usually M.000, M.00.00, …)

| ·                                                                                                     |
|-------------------------------------------------------------------------------------------------------|
| <u>LOCATION:</u><br>3101 South Wabash Ave.<br>Chicago, IL 60616<br><u>PROJECT:</u><br>IIT BAILEY HALL |
| DRAWING TITLE<br>MECHANICAL SYMBOLS, NOTES &<br>ABBREVIATIONS                                         |
| DRAWING NUMBER: M.000                                                                                 |
| © DIRK DENISON ARCHITECTS 2019                                                                        |

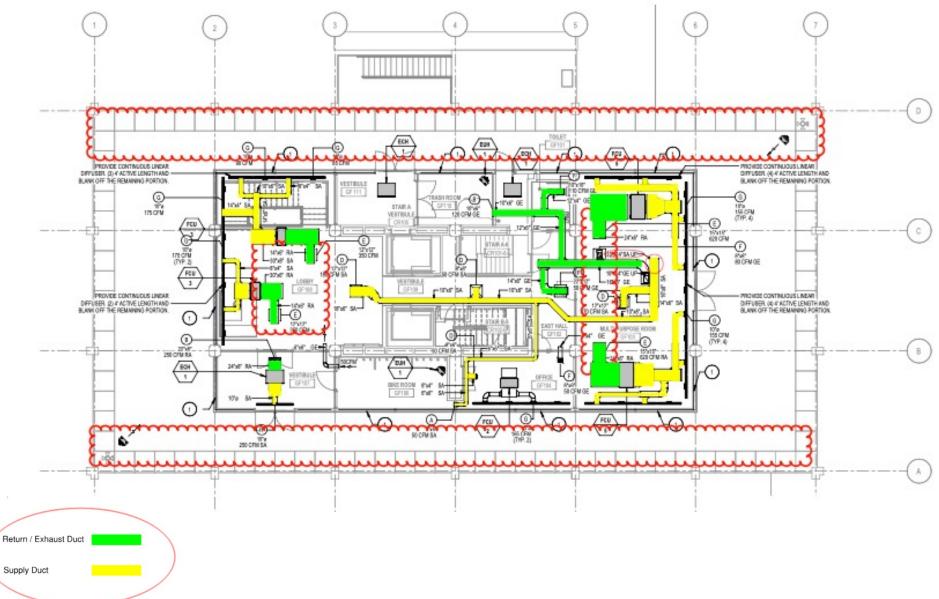
| VENTILATION SYM                                          | ION SYMBOLS                                  |                 | MBOLS                                                                     |
|----------------------------------------------------------|----------------------------------------------|-----------------|---------------------------------------------------------------------------|
| SYMBOL                                                   | DESCRIPTION                                  | SYMBOL          | DESCRIPTION                                                               |
|                                                          | NEW DUCTWORK                                 |                 | PRESSURE GAGE & COCK                                                      |
| $\square$                                                | DUCT SECTION - SUPPLY UP                     | +>+             | STRAINER                                                                  |
| $\mathbb{Z} \mathbb{Z} \mathbb{N} \mathbb{Z} \mathbb{Z}$ | DUCT SECTION - SUPPLY DOWN                   |                 | STRAINER WITH BLOW OFF VALVE                                              |
|                                                          | DUCT SECTION - RETURN UP                     |                 | THERMOMETER                                                               |
|                                                          | DUCT SECTION - RETURN DOWN                   | Р/Т             | PRESSURE/TEMPERATURE SENSOR                                               |
|                                                          | DUCT SECTION - EXHAUST UP                    | [               | CAP                                                                       |
|                                                          | DUCT SECTION - EXHAUST DOWN                  |                 | UNION                                                                     |
|                                                          | DUCT SECTION - OUTSIDE AIR UP                |                 |                                                                           |
| $\left \right>$                                          | DUCT SECTION - OUTSIDE AIR DOWN              |                 | FLEXIBLE CONNECTION                                                       |
| $R \longrightarrow f$                                    | INCLINED RISE WITH RESPECT TO AIRFLOW        | ₩               | PRESSURE REDUCING VALVE                                                   |
|                                                          | INCLINED DROP WITH RESPECT TO AIRFLOW        | \$*             | RELIEF VALVE                                                              |
|                                                          | FLEXIBLE CONNECTION TO EQUIPMENT             |                 | GATE VALVE                                                                |
|                                                          | LOUVER & SCREEN WXD GROSS OPENING            | 6               | BUTTERFLY WHEN VALVE IS 4" OR MORE<br>BALL VALVE WHEN VALUE IS 3" OR LESS |
|                                                          | FLEXIBLE DUCT                                | —á—             | GAS COCK                                                                  |
|                                                          | VOLUME DAMPER WITH QUADRANT LOCKING          | ——ö——           | PRESSURE/TEMPERATURE TAP                                                  |
|                                                          | MOTORIZED DAMPER                             | 0<br>T          | UNIT HEATER VERTICAL                                                      |
|                                                          | SPLITTER DAMPER                              | ۵ <u> </u><br>د | UNIT HEATER HORIZONTAL<br>PIPE DOWN                                       |
| BDD                                                      | BACKDRAFT DAMPER (GRAVITY)                   | ·               | PIPE UP                                                                   |
| <b>▲</b> FD                                              | FIRE DAMPER, SLEEVE & ACCESS DOOR            |                 | NEW PIPING                                                                |
|                                                          | AIR EXTRACTING VANES                         |                 | PIPING ASSEMBLY (SEE DETAIL)                                              |
| XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                   | TURNING VANES, DOUBLE THICKNESS AIRFOIL TYPE | v               | AIR VENT                                                                  |
| SYSTEM<br>RISER NO.                                      | RISER MARK                                   |                 | EQUIPMENT (SPECIFIED BY TAG BELOW)                                        |
| Ū                                                        | THERMOSTAT (G) W/ GUARD                      |                 | EQUIPMENT TAG                                                             |
| s                                                        | SENSOR                                       | SD              | SMOKE DETECTOR                                                            |
| Э                                                        | HUMIDISTAT                                   | FSD             | FIRE / SMOKE DETECTOR                                                     |

 Look for the Mechanical Symbols, Notes, and Abbreviations page (usually M.000)


| UCTWORK      |                       | MECHANICAL PIPING | MECHANICAL PIPING           |  |  |  |  |
|--------------|-----------------------|-------------------|-----------------------------|--|--|--|--|
| ABBREVIATION | SYSTEM NAME           | ABBREVIATION      | SYSTEM NAME                 |  |  |  |  |
| FLUE         | BOLIER FLUE           | CD                | CONDENSATE DRAIN            |  |  |  |  |
| CAI          | COMBUSTION AIR INTAKE | NGMP              | NATURAL GAS MEDIUM PRESSURE |  |  |  |  |
| DE           | DRYER EXHAUST         | RFGG              | REFRIGERATION GAS           |  |  |  |  |
| GE           | EXHAUST AIR           | RFGL              | REFRIGERATION LIQUID        |  |  |  |  |
| OA           | OUTSIDE AIR           |                   |                             |  |  |  |  |
| RA           | RETURN AIR            |                   |                             |  |  |  |  |
| SA           | SUPPLY AIR            |                   |                             |  |  |  |  |
| TE           | TOILET EXHAUST        |                   |                             |  |  |  |  |
|              |                       |                   |                             |  |  |  |  |


#### ABBREVIATION DESCRIPTION AIR CONDITIONER AC: ACH AIR CHANGES PER HOUR ADS AIR DIRT SEPARATOR AFF ABOVE FINISH FLOOR AFG ABOVE FINISHED GRADE AFMS AIR FLOW MONTIORING STATION AFU ANNUAL FUEL EFFICIENCY RATIO AHU AIR HANDLER AMP AMPERAGE APD AIR PRESSURE DROP AS AIR SEPARATOR ATU AIR TERMINAL UNIT AUX. AUXILLARY в BOILER BAS BUILDING AUTOMATION SYSTEM BLDG BUILDING BTU BRITSH THERMAL UNITS BTU/H BRITISH THERMAL UNITS PER HOUR CAI COMBUSTION AIR INTAKE CAP CAPACITY CAV CONSTANT AIR VOLUME CAV CABINET UNIT HEATER CC COOING COIL CEH CUBIC FEET PER HOUR CFM CUBIC FEET PER MINUTE CFM GAUGE CHWP CHILLED WATER PUMP CEILING CLG CO2 CARBON DIOXIDE CONN CONNECTION COEFFICIENT OF PERFORMANCE COP CP STEAM CONDENSATE PUMP CRAC COMPUTER ROOM AIR CONDITIONER CT COOLING TOWER CUH CABINET UNIT HEATERS CWP CONDESER WATER PUMP DB DRY-BULB TEMPERATURE DE DRYER EXHAUST DEF DRYER EXHAUST FAN DIA. Ø DIAMETER DN DOWN DOA DEDICATED OUTSIDE AIR FAD EXHAUST AIR DAMPER EAT ENTERING AIR TEMPERATURE EER ENERGY EFFICIENCY RATIO EE EXHAUST FAN EFF EFFICIENCY ESP EXTERNAL STATIC PRESSURE ΕT EXPANSION TANK EUH ELECTRIC UNIT HEATERS EWT ENTERING WATER TEMPERATURE ΕX EXISTING

EXHAUST


EXH

#### **Mechanical Drawings: Air distribution**





#### **Mechanical Drawings: Air distribution**



#### **Mechanical Drawings: Air distribution**

|             |          |                    |                    |           |                              | VENTIL      | ATION SCHEDUL             | E         |                              |             |                           |           |            |         |         |
|-------------|----------|--------------------|--------------------|-----------|------------------------------|-------------|---------------------------|-----------|------------------------------|-------------|---------------------------|-----------|------------|---------|---------|
| ROOM        |          |                    | CLASSIFICATION     |           | CODE REQUIREMENTS            |             |                           |           | ACTUAL PROVIDED              |             |                           |           | FAN SYSTEM |         |         |
|             | ROOM NO. | OM NO. ROOM NAME   |                    | S.F. AREA | MECHANICAL VENTILATION (CFM) |             | NATURAL LIGHT & VENT (SF) |           | MECHANICAL VENTILATION (CFM) |             | NATURAL LIGHT & VENT (SF) |           |            |         | REMARKS |
|             |          |                    |                    |           | SUPPLY CFM                   | EXHAUST CFM | GLASS AREA                | VENT AREA | SUPPLY CFM                   | EXHAUST CFM | GLASS AREA                | VENT AREA | SUPPLY     | EXHAUST |         |
| LOWER LEVEL | BA101    | TOILET ROOM        | TOILET ROOMS       | 63        | 0                            | 130         | -                         | -         | 0                            | 130         | -                         | -         | -          | ERV-1   |         |
|             | CR101    | STAIR A            | STAIR              | 77        | -                            | -           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | CR103    | ELEVATOR PIT       | STORAGE INACTIVE   | 49        | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | CR104    | ELEVATOR           | ELEVATOR           | 66        | -                            | -           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | HA101    | EAST HALL          | CORRIDORS          | 125       | NR                           | NR          | -                         | -         | 50                           | 50          | -                         | -         | ERV-1      | ERV-1   |         |
|             | HA102    | VESTIBULE          | CORRIDORS          | 171       | NR                           | NR          | -                         | -         | 50                           | 50          | -                         | -         | ERV-1      | ERV-1   |         |
|             | HA103    | LOUNGE             | LOUNGE             | 1406      | 1410                         | 2110        | -                         | -         | 1420                         | 2110        | NONE                      | NONE      | ERV-1      | ERV-1   |         |
|             | LL101    | TRANSFORMER ROOM   | STORAGE INACTIVE   | 173       | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL102    | CONDENSER ROOM     | STORAGE INACTIVE   | 460       | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL103    | ATS ROOM           | STORAGE INACTIVE   | 39        | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL104    | SWITCH ROOM        | STORAGE INACTIVE   | 112       | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL105    | BUILDING STORAGE   | STORAGE INACTIVE   | 1915      | 0                            | 0           | -                         | -         | 50                           | 50          | -                         | -         | ERV-1      | ERV-1   |         |
|             | LL106    | JANITOR'S CLOSET   | JANITOR'S CLOSET   | 45        | 0                            | 90          | -                         | -         | 0                            | 90          | -                         | -         | -          | ERV-1   |         |
|             | LL107    | IT CLOSET          | STORAGE INACTIVE   | 29        | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL109    | MULTI-PURPOSE ROOM | OFFICE             | 278       | 170                          | 85          | -                         | -         | 240                          | 85          | NONE                      | NONE      | ERV-1      | ERV-1   |         |
|             | LL110    | LAUNDRY            | LAUNDRIES (PUBLIC) | 274       | 415                          | 415         | -                         | -         | 415                          | 420         | -                         | -         | ERV-1      | ERV-1   |         |
|             | LL111    | LIGHT WELL         | EXTERIOR           | 70        | -                            | -           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL112    | FITNESS CENTER     | GYMNASIUM          | 378       | 760                          | 570         | -                         | -         | 795                          | 570         | 12.83                     | NONE      | ERV-1      | ERV-1   |         |
|             | LL113    | PUMP ROOM          | STORAGE INACTIVE   | 809       | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | LL115    | STORAGE            | STORAGE INACTIVE   | 172       | 0                            | 0           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | ST101    | STAIR C            | STAIR              | 171       | -                            | -           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | ST102    | ACCESSORY STAIR    | STAIR              | 164       | -                            | -           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
| LEVEL 1     | CR101    | STAIR A            | STAIR              | 77        | -                            | -           | -                         | -         | 0                            | 0           | -                         | -         | -          | -       |         |
|             | CR102    | STAIR B            | STAIR              | 85        | -                            | -           | -                         | -         | о                            | 0           | -                         | -         | -          | -       |         |

#### **VENTILATION SCHEDULE**

| ROOM NAME                    |                          | MIN. VENTILATION RATE<br>CFM/SQ. FT. |         | FLOOR   | ORDINANCE REQUIREMENTS |                | ACTUAL PROVIDED |         | SYSTEM SERVED BY |             |         |
|------------------------------|--------------------------|--------------------------------------|---------|---------|------------------------|----------------|-----------------|---------|------------------|-------------|---------|
|                              | ORDINANCE CLASSIFICATION |                                      |         | AREA    | SUPPLY                 | SUPPLY EXHAUST |                 | EXHAUST | AIR HANDLING     | EXHAUST FAN | REMARKS |
|                              |                          | SUPPLY                               | EXHAUST | SQ. FT. | CFM                    | CFM            | CFM             | CFM     | UNIT             | EAHAUST FAN |         |
| FIRST FLOOR                  |                          |                                      |         |         |                        |                |                 |         |                  |             |         |
| COLLEGE & CAREER CENTER 1015 | CLASSROOM                | 1.5                                  | 0.75    | 994     | 1,491                  | 746            | 1,500           | 1,500   | AHU-1            | AHU-1       |         |
| CORRIDOR N112                | CORRIDOR                 | 0.0                                  | 0.0     | 301     | 0                      | 0              | 50              | 50      | AHU-1            | AHU-1       |         |