CAE 464/517 HVAC Systems Design Spring 2023

February 14, 2023 Intro to fluid flow and ASHRAE 62.1

Built Environment Research @ IIT] 🗫 🕣 🍂 利

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Assignment 3 Parts (a) and (b) – Common Mistakes
 Make sure to use the write template!

File P	references Components & Meas	ures Help				_
	Constructions Construction Sets	Constructions Materia	als		My Model Library Edit	
	MediumOfficeDetaile - ASHRAE 160 2012 54	Exterior Surface Constructio Walls Typical Insulated Steel	ns Floors Typical Insulated Exterior	Roofs	DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-28 DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-3A	
		Interior Surface Construction	ns		DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-38	
		Typical	Typical	Typical	DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-3C	
		Interior Wall	Floor	Ceiling	MediumOfficeDetailed - ASHRAE 169-2013-4A	
		Ground Contact Surface Cor Walls	Istructions Floors	Ceilings	DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-48	
		Typical Insulated & Basement	ext-slab- mass	Drag From Library	MediumOfficeDetailed - ASHRAE 169-2013-4C	
		Exterior Sub Surface Constru	actions		MediumOfficeDetailed - ASHRAE 169-2012 50	
		Fixed Windows	Operable Windows	Doors Typical	DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-58	
		Glazing	Glazing	Metal Door	DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-5C	
	Drag From Library	Glass Doors	Overhead Doors	Skylights	DOE Ref Pre-1980 - MediumOfficeDetailed - ASHRAE 169-2013-6A	
	📀 😨 😫 🛛 🗿	A-L Clr 6mm	Door	Drag From Library	DOE Ref Pre-1980 - MediumOfficeDetailed -	

Assignment 3 Parts (a) and (b) – Common Mistakes
 Make sure to include the folder

Folders	Folders	Developer
iles >	000_OpenStudioResults >	report.html
generated_files >		
measures >	Documents	
reports >	🛄 epluszsz.csv	
🚞 run 🚿	😈 in.osm	
Other	Developer	
📄 floorplan.json	o eplustbl.htm	
out.osw		
stderr	Other	
stdout	h data_point_out.json	
workflow.osw	data_point.zip	
	eplusout.audit	
	eplusout.bnd	
	eplusout.eio	
	eplusout.end	
	eplusout.err	

- Assignment 3 Parts (a) and (b) Common Mistakes
 Pay attention to the units
- Geometry Type FloorspaceJS 💠 Preview OSM Merge with Current OSM Assignments 🖉 Components 🍲 Floorplan 📊 STORY BELOW 💙 GRID 📝 SPACING 5 M \rightarrow ▶ 10 10 10 10 VIEW BY Space 🕨 Space 🔻 📀 Î 140 105 70 35 Preferences Components & Measures Help 0 File Metric (SI) Units -35 Change My Measures Directory English (I-P) **Change Default Libraries** -70 **Configure External Tools** eneral Loads -105 Language ۲ **Configure Internet Proxy** -140 Filter: Load Type -160 -120 -80 -40 0 40 80 120 160 200 240 * Show all loads Space Type Name All

• Do not forget about the Q&A file:

https://docs.google.com/document/d/1m6ezSI6Bi9wGQcjnaYj iAXY2kzRICPYWkKfayNp5WE

• Any questions for Assignment 3 Parts (c) to (e)?

• Group project: Add your name to the list

https://docs.google.com/spreadsheets/d/1WwM6L1i8SmpTWU 3xYQeNypfnqbloQRglBgCt5E7Kb2s/

REVIEW OF FLUID FLOW (CAE 209 OR MMAE 313)

(Please, see Chapter 3 of the handbook)

Fluid Properties

- For fluid properties, in the design, we mostly consider the following assumptions:
 - □ Fluids are incompressible
 - Gases may be compressible or incompressible
 - Newtonian vs non-Newtonian

Fluid Properties

• Viscosity is the resistance of adjacent fluid layers to shear

Which one has the high viscosity?

What would an example of each?

Fluid Properties

• Viscosity is defined as:

$$\tau = \mu \frac{du}{dy}$$

Continuity Equation

• Conservation of mass:

□ Mass flow rate:

$$\dot{m} = \rho A V$$

□ Volume flow rate:

$$Q = \frac{\dot{m}}{\rho} = AV$$

Entrance and Fully Developed Regions

• Consider a pipe flow:

Laminar Flow

• Laminar flow is defined as: $\tau = \mu \frac{du}{dy}$

$$\tau = \frac{1}{2}r\Delta P = (Const) \times r$$

• For parabolic flow:

$$u = \frac{1}{4\mu} \left[-\frac{d}{dx} (P + \rho g z) \right] (R^2 - r^2)$$

Pipe

Laminar Flow

• Turbulent flow is a function of fluctuations

• Reynolds experiment:

• Reynolds experiment:

• The measure of turbulent vs laminar is

$$Re = \frac{VD}{v}$$

• What will happen for rectangular cross section?

Hydraulic diameter =
$$D_h = \frac{4(Cross\ sectional\ area)}{Wetted\ perimeter}$$

Entrance Region

 Boundary layer effect determines the flow pattern in pipe or conduits

- There is basically adverse pressure gradient
- Flow cannot follow the surface anymore

· Flow separation is one of the sources to losses of flow field

- Flow separation in
 - Vena contraction
 - □ Sudden expansion
 - Dampers

• Flow separation in diffusers

- Account for friction caused by conduit-wall shearing stresses and losses from conduit section change using H_L or E_L in the energy equation
- H_L is the loss of energy per unit mass of flowing fluid
- Darcy-Weisbach equation:

$$H_{Lf} = f\left(\frac{L}{D}\right) \left(\frac{V^2}{2g}\right)$$

• For laminar flow the equation is modified as:

$$H_{Lf} = \frac{L}{\rho g} \left(\frac{8\mu V}{R^2} \right)$$

$$H_{Lf} = \frac{32L\nu V}{D^2 g}$$

$$H_{Lf} = \frac{64}{\frac{DV}{\nu}} \left(\frac{L}{D}\right) \left(\frac{V^2}{2g}\right)$$

• Darcy friction factor is:

$$f = \frac{64}{Re}$$

• For turbulent flow equation requires consideration of the roughness (ϵ)

Material	ε (μm)	<i>ϵ</i> (μin)
Commercially smooth brass, lead, copper, or plastic pipe	1.52	60
Steel and wrought iron	46	1,800
Galvanized iron or steel	152	6,000
Cast iron	259	10,200

• Entrance length:

$$\frac{L_e}{D} = 0.06 \times Re$$

• For turbulent flow, friction factor is:

$$\frac{1}{\sqrt{f}} = 1.14 + 2\log(\frac{D}{e})$$

$$f = \frac{1.325}{\left\{ \ln\left[\frac{\epsilon}{3.7D_h} + \frac{5.74}{Re^{0.9}}\right]^2 \right\}^2}$$

Friction Factor

Friction Factor

 We use modified Moody Chart for our air and water calculations

Friction Factor

 We use modified Moody Chart for our air and water calculations

Loss Coefficients

- Besides the conduit friction, there are major losses due to:
 - Pipe entrance and exit
 - □ Sudden expansion or contraction
 - □ Bends, elbows, tees, and other fittings
 - □ Valves, open or partially closed
 - Gradual expansions or contractions

Loss Coefficient

• Consider loss coefficient (K) for fittings as:

Loss of section =
$$K\left(\frac{V^2}{2g}\right)$$

Loss Coefficient

• Adding them together, the total losses in the pipe is:

$$H_{Lf} = \left[K + f\left(\frac{L}{D}\right)\right] \left(\frac{V^2}{2g}\right)$$

Loss Coefficient

Which fitting do you think will have the highest loss coefficient?

		$\boldsymbol{K} = \frac{\Delta \boldsymbol{P} / \rho \boldsymbol{g}}{\boldsymbol{K}}$
Fitting	Geometry	$K = \frac{1}{V^2/2g}$
Entrance	Sharp	0.5
	Well-rounded	0.05
Contraction	Sharp $(D_2/D_1 = 0.5)$	0.38
90° elbow	Miter	1.3
	Short radius	0.90
	Long radius	0.60
	Miter with turning vanes	0.2
Globe valve	Open	10
Angle valve	Open	5
Gate valve	Open	0.19 to 0.22
	75% open	1.10
	50% open	3.6
	25% open	28.8
Any valve	Closed	∞
Tee	Straight-through flow	0.5
	Flow through branch	1.8

Summary

• For an air duct system, how do we estimate the air flow rate?

ANSI/ASHRAE Standard 62.1-2022

(Supersedes ANSI/ASHRAE Standard 62.1-2019) Includes ANSI/ASHRAE addenda listed in Appendix Q

Ventilation and Acceptable Indoor Air Quality

 Let's look at a common ventilation system and identify major air flows

- How to calculate the outdoor air requirement:
 - 1. First calculate the breathing zone outdoor air flow rate:

$$\dot{V}_{bz} = R_p \times P_z + R_a \times A_z$$

How to calculate the outdoor air requirement:
2. Then calculate the outdoor air flow rates:

$$\dot{V}_{oz} = \frac{R_p \times P_z + R_a \times A_z}{E_z}$$

How to calculate the outdoor air requirement:
 3. Design for the worst ventilation if you do not know and round up the numbers to identify the "Design Ventilation"

• Let's look at the Standard:

Table 6-1 Minimum Ventilation Rates in Breathing Zone

	People (Outdoor	Area O	outdoor	Default Values		
	$Air Rate R_p Air Rate R_a C$		Occupant Density				
Occupancy Category	cfm/ person	L/s· person	cfm/ft ²	L/s·m ²	#/1000 ft ² or #/100 m ²	Air Class	OS (6.2.6.1.4)
Animal Facilities							
Animal exam room (veterinary office)	10	5	0.12	0.6	20	2	
Animal imaging (MRI/CT/PET)	10	5	0.18	0.9	20	3	
Animal operating rooms	10	5	0.18	0.9	20	3	
Animal postoperative recovery room	10	5	0.18	0.9	20	3	
Animal preparation rooms	10	5	0.18	0.9	20	3	
Animal procedure room	10	5	0.18	0.9	20	3	
Animal surgery scrub	10	5	0.18	0.9	20	3	
Large-animal holding room	10	5	0.18	0.9	20	3	
Necropsy	10	5	0.18	0.9	20	3	
Small-animal-cage room (static cages)	10	5	0.18	0.9	20	3	
Small-animal-cage room (ventilated cages)	10	5	0.18	0.9	20	3	

• Common ventilation effectiveness are calculated as:

Air Distribution Configuration	E ₅
Well-Mixed-Air Distribution Systems	
Ceiling supply of cool air	1.0
Ceiling supply of warm air and floor return	1.0
Ceiling supply of warm air 15°F (8°C) or more above space temperature and ceiling return	0.8
Ceiling supply of warm air less than 15°F (8°C) above average space temperature where the supply air-jet velocity is less than 150 fpm (0.8 m/s) within 4.5 ft (1.4 m) of the floor and ceiling return	0.8
Ceiling supply of warm air less than 15°F (8°C) above average space temperature where the supply air-jet velocity is equal to or greater than 150 fpm (0.8 m/s) within 4.5 ft (1.4 m) of the floor and ceiling return	1.0
Floor supply of warm air and floor return	1.0
Floor supply of warm air and ceiling return	0.7
Makeup supply outlet located more than half the length of the space from the exhaust, return, or both	0.8
Makeup supply outlet located less than half the length of the space from the exhaust, return, or both	0.5

Table 6-4 Zone Air Distribution Effectiveness (E_z)

 Do you see any information about the healthcare outdoor air requirements in ASHRAE 62.1?

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

STANDARD

ANSI/ASHRAE/ASHE Standard 170-2021

(Supersedes ANSI/ASHRAE/ASHE Standard 170-2017) Includes ANSI/ASHRAE/ASHE addenda listed in Appendix F

Ventilation of Health Care Facilities

See Appendix F for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, the ASHE Board of Directors, and the American National Standards Institute.

https://ashrae.iwrapper.com/ViewOnline/Standard_170-2017_(86529)

CLASS ACTIVITY

 Find the required outdoor air flow rate and for a university lecture hall (fixed seat) that has a maximum occupancy of 180 people, and the floor has an area of 1,500 ft². Assume the supply and returns are in the ceiling.

• Solution (see Table 6-1):

Table 6-1 Minimum Ventilation Rates in Breathing Zone

	People Outdoor Air Rate R _p		Area Ou	ıtdoor	Default Values		
			Air Rate R _a		Occupant Density		
Occupancy Category	cfm/ person	L/s· person	cfm/ft ²	L/s·m ²	#/1000 ft ² or #/100 m ²	Air Class	OS (6.2.6.1.4)
Educational Facilities							
Art classroom	10	5	0.18	0.9	20	2	
Classrooms (ages 5 to 8)	10	5	0.12	0.6	25	1	
Classrooms (age 9 plus)	10	5	0.12	0.6	35	1	
Computer lab	10	5	0.12	0.6	25	1	
Daycare sickroom	10	5	0.18	0.9	25	3	
Daycare (through age 4)	10	5	0.18	0.9	25	2	
Lecture classroom	7.5	3.8	0.06	0.3	65	1	~
Lecture hall (fixed seats)	7.5	3.8	0.06	0.3	150	1	~

• Solution:

- In this configuration the ventilation effectiveness depends on the cooling or heating mode
- □ We usually consider the worst condition (e.g., 0.7 and 0.8)

• Solution:

$$\dot{V}_{bz} = R_p \times P_z + R_a \times A_z$$

$$\dot{V}_{bz} = (7.5)(180) + (0.06)(1,500) = 1,440 \ cfm$$

$$\dot{V}_{oz} = \frac{\dot{V}_{bz}}{E_z} = \frac{1,440 \ cfm}{0.8} = 1,800 \ cfm$$

• What do we do if occupancy is not given?

• Solution:

Table 6-1 Minimum Ventilation Rates in Breathing Zone

	People Outdoor		Area Ou	ıtdoor	Default Values		
	Air Rate J	Air Rate R _p		e R _a	Occupant Density		
Occupancy Category	cfm/ person	L/s· person	cfm/ft ²	L/s·m ²	#/1000 ft ² or #/100 m ²	Air Class	OS (6.2.6.1.4)
Educational Facilities							
Art classroom	10	5	0.18	0.9	20	2	
Classrooms (ages 5 to 8)	10	5	0.12	0.6	25	1	
Classrooms (age 9 plus)	10	5	0.12	0.6	35	1	
Computer lab	10	5	0.12	0.6	25	1	
Daycare sickroom	10	5	0.18	0.9	25	3	
Daycare (through age 4)	10	5	0.18	0.9	25	2	
Lecture classroom	7.5	3.8	0.06	0.3	65	1	~
Lecture hall (fixed seats)	7.5	3.8	0.06	0.3	150	1	~

- Solution:
 - □ 8 cfm/person based on an occupancy of 150 person per 1,000 ft²
 - □ The outdoor air delivery is:

$$\dot{V}_{bz} = R_c P_c$$

$$\dot{V}_{bz} = (7.5) \left(\frac{150 \times 1,500}{1,000} \right) = 1,687.5 \ cfm$$

$$\dot{V}_{oz} = \frac{\dot{V}_{bz}}{E_z} = \frac{1,6875.5}{0.8} = 2,109.375 \ cfm$$

Air Requirement

 How much is the total airflow requirements? Can we use ASHRAE 62.1 to calculate the entire airflow requirement for a building and design the AHUs?

Air Requirement

Let's look at Assignment 1: •

	VENTILATION SCHEDULE											
					MECHANICAL	VENTILATION		FAN 1	ΓAG		HEAT	LOSS
ROOM NO.	ROOM NAME	PURPOSE	FLOOR AREA SQ. FT.	ORDINANCE SUPPLY AIR CFM	REQUIREMENTS EXHAUST AIR CFM	PLAN REC SUPPLY AIR CFM	UIREMENTS EXHAUST AIR CFM	SUPPLY FAN	EXH. FAN	REMARKS	ROOM BTU/HR	OUTDOOR AIR BTU/HR
101	CORRIDOR	LOBBY	2220	-	-	5000	5000	RTU-1	RTU-1	BB-2.FPB-4,5	120,000	0
102	STAIR	STAIRS	252	N.R.	N.R.	0	0	RTU-1	RTU-1	-	6000	0
103	MEN	TOILET ROOM	280	N.R.	560	450	600	RTU-1	TE-1	-	15000	0
104	OFFICE SUITE	OFFICE	290	175	90	1880	1880	RTU-1	RTU-1	-	8120	53605
104A	VESTIBULE	VESTIBULE	100	N.R.	N.R.	0	0	RTU-1	RTU-1	-	0	0
104B	VESTIBULE	VESTIBULE	225	N.R.	N.R.	100	0	RTU-1	RTU-1	-	0	0
104C	STUDENT COMMON AREA	OFFICE	350	210	105	560	0	RTU-1	EXIST.	-	9800	15965
105	OFFICE	OFFICE	150	90	45	540	540	RTU-1	RTU-1	-	4200	15395
106	ANALYTICAL CHARACTERIZATION LAB	LABORATORY	150	180	180	680	600	RTU-1	RTU-1	-	4200	19390
107	PROCESSING LAB	LABORATORY	850	1020	1020	2800	3250	RTU-1	EF-3	-	23800	79835
108	REACTION ENGINEERING LAB	LABORATORY	790	950	950	5010	5400	RTU-1	EXIST.	-	22120	142845
108A	ELECTRICAL ROOM	ELECTRICAL ROOM	52	N.R.	N.R.	0	0	RTU-1	RTU-1	-	1455	0
109	POLYMER RHEOLOGY LAB	LABORATORY	555	665	665	1600	1800	RTU-1	EF-3	-	15540	45620
110A	FORCED RAYLEIGH SCATTER LAB	LABORATORY	150	180	180	200	200	RTU-1	RTU-1	_	4200	5700
112	CORRIDOR	CORRIDOR	514	N.R.	N.R.	1100	675	RTU-1	RTU-1	-	17500	0
113	CLASSROOM	LECTURE HALL	2723	4080	4080	7500	7500	RTU-1	RTU-1	_	80000	116328
113A	EXISTING STORAGE	STORAGE	30	N.R.	N.R.	0	0	RTU-1	RTU-1	-	0	0
114	CORRIDOR	CORRIDOR	452	N.R.	N.R.	800	675	RTU-1	RTU-1	_	17500	0
115	CLASSROOM	CLASSROOM	925	1400	700	3180	3180	RTU-1	RTU-1	-	41500	37065
116	CLASSROOM	CLASSROOM	925	1400	700	3120	3120	RTU-1	RTU-1	-	41400	14170
117	CLASSROOM	CLASSROOM	845	1300	650	2490	2490	RTU-1	RTU-1	-	12650	4330
118	T/C CLOSET	T/C CLOSET	49	N.R.	N.R.	400	400	RTU-1	RTU-1	-	0	0
119	CLASSROOM	CLASSROOM	625	950	475	2200	2200	RTU-1	RTU-1	_	44300	37065
119A	STORAGE	STORAGE	105	N.R.	N.R.	0	0	RTU-1	RTU-1	-	0	0
120	VESTIBULE	VESTIBULE	235	N.R.	N.R.	100	100	RTU-1	RTU-1	_	0	0
120A	OFFICE	OFFICE	195	120	60	130	130	RTU-1	RTU-1	-	8300	4320
120B	CORRIDOR	CORRIDOR	95	N.R.	N.R.	0	0	RTU-1	RTU-1	-	15450	5274
125	WOMEN	TOILET ROOM	280	0	560	450	600	RTU-1	TE-2	-	14000	0
127	STAIR	STAIRS	252	N.R.	N.R.	0	0	RTU-1	RTU-1	-	0	0
			11092	12720	11040	40290	40340			т	OTAL - 527035 1	OTAL - 635787

VENTUATION COLLEDULE

TOTAL = 527035 TOTAL = 635787 TOTAL = 1162822

RELEVANT TOOLS

Relevant Tools

There are relevant tools:

About LEED Credentials Education Membership

Store Resources Directory

Calculators

Minimum Indoor Air Quality Performance Calculator

The Minimum Indoor Air Quality Performance Calculator can be used for projects using ASHRAE 62.1 to comply with LEED BD+C, ID+C and O+M EQ Prerequisite Minimum Indoor Air Quality Performance, EQ Credit Increased Ventilation, and EQ Credit Enhanced Indoor Air Quality Strategies, Option 2, Strategy B: Increased Ventilation, as well as LEED Homes and Multifamily Midrise EQ Prerequisite Ventilation. The calculator accommodates all ventilation types (multiple zone, single-zone, 100% outside air) in one spreadsheet. Assumptions for occupancy categories are from ASHRAE 62.1-2010 (for LEED v4 projects) and ASHRAE 62.1-2007 (for LEED 2009 projects).

Updates

- 11/14/2019 v04 Updated to include LEED v4.1 option
- 6/3/2016 v03
 - 1. Fixed bug with default values for zone population in the single zone sheet
 - 2. Updated Table 6-3 calculation for Ev in the multiple zone sheet to not exceed 1.0 when Max Zp<0.15
 - 3. In multiple zone sheet, changed Ep from user entry to calculated value.
 - Added column for Zone outdoor airflow provided to the 100% OA and corresponding column in the summary tab (zone outdoor airflow provided meets or exceeds Voz for all zones).
 - 5. Note added to Are you using default value for zone population to clarify default values should only be used if expected occupancy is unknown.
 - 6. Modified rounding and decimals displayed
 - 7. Fixed bug in summary sheet so that all systems are always displayed.

Relevant Tools

• There are relevant tools:

< NIST

MULTIZONE MODELING

Quick Indoor CO2 (QICO2)

An Indoor Carbon Dioxide Metric Analysis Tool

link to documentation of this tool.

Building Type		Мо	del Type	
Commercial/Institutional	Residential		Predefined	User-Defined
Predefined Commer	cial Building	s (from ASH	RAE Standard	62.1-2019)
Classroom (5-8 y)				~
Outdoor CO2 Concentration 400 ppm	<u>Ceiling Height</u> 3 m	<u>62.1</u> 5 L/s	Ventilation Rate per Person	62.1 Ventilation Rate per Floor Area 0.6 L/s ⁻ m ²
<u>Occupant Density</u> 25 #/100 m ²	Primary Ventilation Rate 7.4 L/s	per Person Time 2 h	to Metric	
Alternate Ventilation Rate per Person: 10 sL/s v				
Predefined Occupants				
Number of Occupants	Sex	Mass (kg)	Age Group	Activity Level (met)
12	м	23	3 to 9	2
12	F	23	3 to 9	2
1	м	85	30 to 59	3
Copy to User-Defined Model				
Get Results				

Relevant Tools

• There are relevant tools:

To use	this spreadsheet, identify the zones served by the system being de	signed and li	st them in m	w 11. Then	select the si	nace type						
usina t	he pull down menus in row 12. For each zone, enter the values in all	vellow shade	d cells, plus	the total nur	mber of occu	pants						
expect	ed to be served by the system in cell C36.		, ,									
The va	lues used for Vpz, Vdz and Vdzm depend on whether one is designir	ng a CAV or V	VAV system	n. Notes in b e	old text are	included						
below t	hat explain these distinctions.											
NOTE:	Various sums and formulas in column C (in boxes) are based on the	individual zo	ne data ente	ered from col	umn C throug	gh column						
Z. If th	e system, has more than 24 zones, then the sums and formulas in	column C ne	ed to be mo	dified to inclu	ude all the zo	ones.						
RESUL	rs											
Vot	Minimum outdoor air intake, Vou/Ev, cfm	1611										
	Percent outdoor air intake, Vot/Vps	64%										
Ev	System ventilation efficiency	0.87										
ZONE	EVEL											
	Zones served by system	Zone 1	Zone 2	Zone 3	Zone 4							
	Space type (select from pull-down list)	Lobbies/pre	Office space	Classrooms	Conference	Office spac	Office spac	Office spac	Office space	Office spac	Office spac	Office sp
Az	Floor area of zone, ft2	3340	4000	2500								
Pz	Zone population, largest # of people expected to occupy zone	20	32	70								
Rp	People outdoor air rate from Table 6.1, cfm/person	7.5	5	10	5	5	5	5	5	5	5	
Ra	Area outdoor air rate from Table 6.1, cfm/ft2	0.06	0.06	0.12	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.0
Pz*Rp		150	160	700	0	0	0	0	0	0	0	
Az*Ra		200.4	240	300	0	0	0	0	0	0	0	
Voz	Outdoor sinflow to the zone corrected for zone sin distribution	350.4	400	1000	0	0	0	0	0	0	0	
VOZ	effectiveness, (Pz*Rp + Az*Ra)/Ez, cfm	550.4	400	1000	0	0	0	0	0	0	U	
Vpz	Primary airflow to zone from air handler (intake plus recirculated	650	850	1000								
	air, but not local recirculation such as at mixing boxes), cfm. In											
Vdz	Supply/discharge to zone including primary air Vpz and locally	2600	3400	4000								
	recirculated air, cfm. In VAV systems, use the design value.											
Vdzm	Minimum supply/discharge to zone used to calculate Ev, cfm. In	2600	3400	4000	1							
	CAV systems, Vdzm = Vdz. In VAV systems, Vdzm is the											
	minimum expected value of Vdz.											
7d	Outdoor air fraction required in air discharged to zone	0.13	0.12	0.25	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	N
20	= Voz/Vdzm	0.10	0.12	0.20				101		101		
Ep	Primary air fraction to zone, = Vpz/Vdz (=1 for single duct and	0.25	0.25	0.25	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
	single zone systems)											
Er	Fraction of secondary recirc to zone representative of system	0.80	0.80	0.80								
	average, only applies if Ep<1. For plenum return =0. For duct											
Ez	Zone air distribution effectiveness. Table 6.2	1.00	1.00	1.00								
Fa	Fraction of supply air to zone from sources outside zone, = Ep +	0.85	0.85	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	(1-Ep)*Er											
Fb	Fraction of supply air to zone from full mixed primary air, = $Ep = 1/2$	0.25	0.25	0.25	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
Fc	vpz/voz Fraction of outdoor air to zone from sources outside zone – 1 -	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	(1-Ez) * (1-Er) * (1-Ep)	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CVCTT												
De	System population, maximum simultaneous # of occurrents of	20										
	space served by system	80										
D	Occupant diversity, ratio of system peak occupancy to sum of	0.66										

https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/St 62 andards%20Intepretations/VRP-Excel-Spreadsheet.xls