CAE 464/517 HVAC Systems Design Spring 2023

January 24, 2023

Indoor and outdoor design conditions and heating loads

Built Environment Research @ IIT] 🐋 🎧 🍂 🥂

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

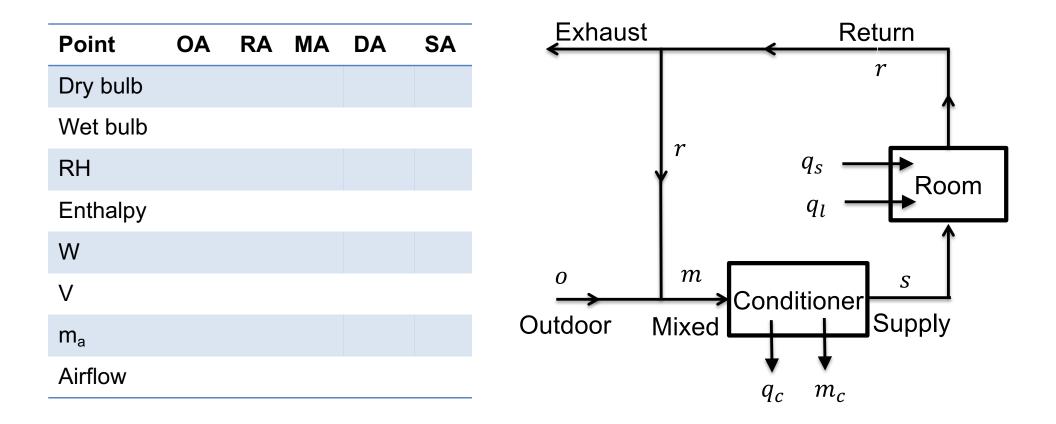
muh182@iit.edu

ANNOUNCEMENTS

Announcements

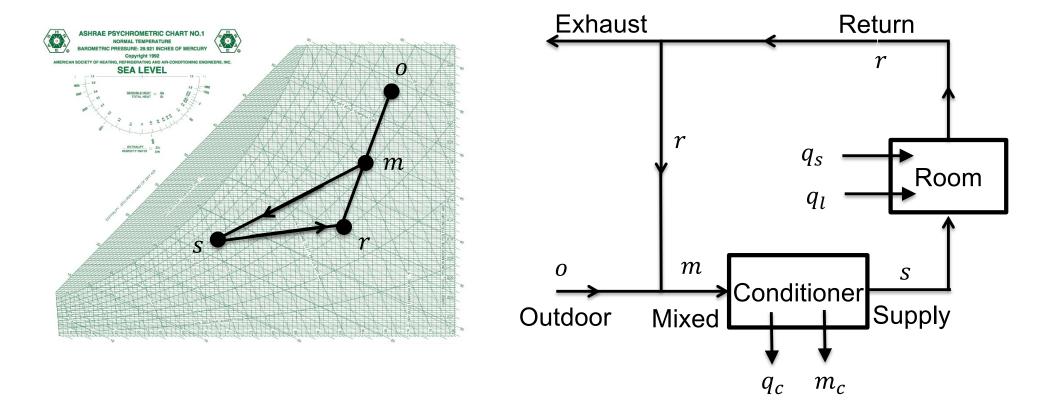
- Homework 1 is due tonight
- Homework 2 is posted
- No class on Thursday 01/26 (Video training will be posted)

Announcements


• Start thinking about your group for the project

Group #	Team Members
1	
2	
3	
4	
5	
6	
7	

RECAP


Recap

• Step 1: Develop state condition property table

Recap

• Step 2: Develop Psychrometric chart

DESIGN CONDITIONS

Design Conditions

• Temperature difference is the main driver for the heat transfer (How about moisture?):

$$\Delta T = T_i - T_o$$

• *T_i*:

- Varies from space to space (e.g., from an office space to a classroom)
- Exists reference for various environments
- Uses rules of thumbs
- *T*_o:
 - Outdoor design conditions

Design Conditions

- Indoor design conditions
 - □ Temperature
 - □ Relative humidity

- Outdoor design conditions
 - □ Temperature (e.g., dry bulb, wet bulb, …)
 - □ Solar radiation
 - **D** ...

Design Conditions

- Relevant standards to determine the indoor and outdoor conditions are:
 - ASHRAE Handbook-Fundamentals
 - ASHRAE 55 Thermal Environmental Conditions for Human Occupancy
 - ASHRAE 62.1: Ventilation for Acceptable Indoor Air Quality (IAQ) (Commercial)
 - ASHRAE 62.2: Ventilation for Acceptable Indoor Air Quality (IAQ) (Residential)
 - ASHRAE 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings

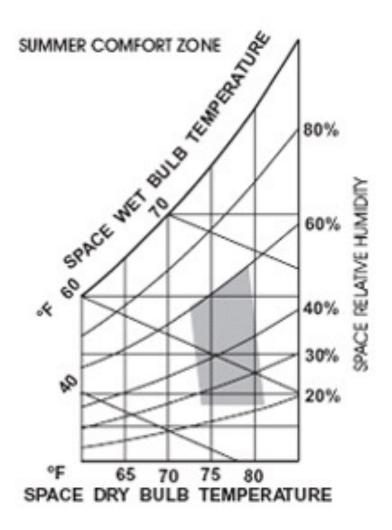
Access to standards: <u>https://www.ashrae.org/technical-resources/standards-and-guidelines</u>

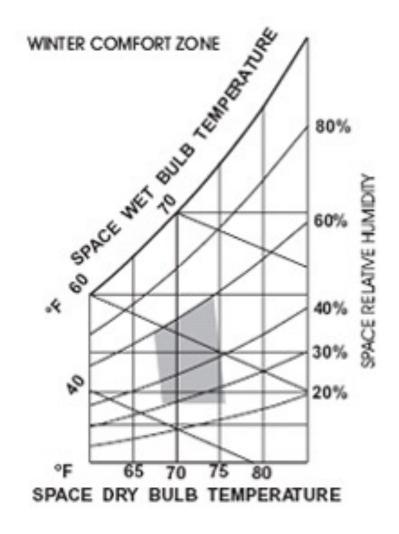
INDOOR DESIGN CONDITIONS

(Please, see Chapter 9 for additional materials)

• Indoor heating design condition:

```
 Temperature: 70 °F – 72 °F
 RH = 30%
```


• Indoor cooling design condition:


Temperature: 75°F – 78 °F
 RH = 50%

What do these temperatures and relative humidity mean?

Where do you find more accurate values?

 Consider the middle of the ASHRAE comfort zone for the appropriate season

Other resources to find the setpoints:
 ASHRAE 170 for healthcare facilities (e.g., Table 7-1, 2017):

Function of Space	Design Temperature (°F)
Inpatient nursing – all room	70 - 75
Physical therapy	72 – 80
•••	

• Other resources to find the setpoints:

DOE Reference Buildings:

Table B-4 Large Office Hourly Operation Schedu	les
--	-----

Schedule	Day of Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
ALWAYS_ON	All	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
BLDG_ELEVATORS	All	0.05	0.05	0.05	0.05	0.1	0.2	0.4	0.5	0.5	0.35	0.15	0.15	0.15	0.15	0.15	0.15	0.35	0.5	0.5	0.4	0.4	0.3	0.2	0.1
INFIL_QUARTER_ON_SCH	WD, SummerDesign	1	1	1	1	1	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	1
	Sat, WinterDesign	1	1	1	1	1	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	1	1	1	1	1
	Sun, Hol, Other	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
BLDG_OCC_SCH	SummerDesign	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.05	0.05
	WD	0	0	0	0	0	0	0.1	0.2	0.95	0.95	0.95	0.95	0.5	0.95	0.95	0.95	0.95	0.7	0.4	0.4	0.1	0.1	0.05	0.05
	Sat	0	0	0	0	0	0	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0	0	0	0	0	0	0
	Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BLDG_LIGHT_SCH	WD	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.7	0.5	0.5	0.3	0.3	0.1	0.05
	Sat	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.15	0.15	0.15	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	SummerDesign	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	WinterDesign	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Other	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
BLDG_EQUIP_SCH	WD	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.8	0.6	0.6	0.5	0.5	0.4	0.4
	Sat	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.35	0.35	0.35	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	SummerDesign	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	WinterDesign	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Other	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
ACTIVITY_SCH	All	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
VORK_EFF_SCH	All	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AIR_VELO_SCH	All	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
CLOTHING_SCH	All	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	All	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	All	1	1	1	1	1	1	1	۲	1		1	1	1	1	T	-	1		1	1	1	1	1	1
CLGSETP_SCH	WD, SummerDesign	26.7	26.7	26.7	26.7	26.7	26.7	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	26.7	26.7
	Sat	26.7	26.7	26.7	26.7	26.7	26.7	24	24	24	24	24	24	24	24	24	24	24	24	26.7	26.7	26.7	26.7	26.7	26.7
	WinterDesign	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7
	Other	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7
HTGSETP_SCH	WD	15.6	15.6	15.6	15.6	15.6	15.6	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	15.6	15.6
	SummerDesign	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6
	Sat	15.0	15.0	15.6	15.6	15.6	15.6		21	21	21	ZT	21	Z	21			21	21	15.0	6 .	15.6	15.6	15.6	15.6
	WinterDesign	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
	Other	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6
Seasonal-Reset-Supply-Air-Temp-Sch	All	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8
MinOA_MotorizedDamper_Sched	WD, SummerDesign	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
	Sat, WinterDesign	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dual Zone Control Type Sched	All	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
HVACOperationSchd	WD, SummerDesign	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
	Sat, WinterDesign	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CW-Loop-Temp-Schedule	All	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
HW-Loop-Temp-Schedule	All	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2

 Design HVAC system capacity based on the peak loads which is a combination of:

Internal loads

External loads

What does this mean for heating and cooling loads?

OUTDOOR DESIGN CONDITIONS

(Please, see Chapter 14)

• Winter design conditions:

□ Use ASHRAE Design Data from the Fundamentals Handbook

☐ The 99.6% and 99% indicate the risk level desired

- When 99% is selected, it means the outdoor temperatures have been equaled or exceeded by 99% of the total number of hours in a year (8760 hours):
 - 99.6% (0.4%) ~ 35 hours
 - 99.0% (1.0%) ~ 88 hours
 - 98.0 (2.0%) ~ 175 hours
 - 95.0 (5.0%) ~ 438 hours

- Summer design conditions
 - □ DB is dry-bulb temperature
 - □ MWB is the mean-coincident-wet-bulb temperature
 - The 0.4%, 1% and 2% mean the percentile of the total hours may not meet indoor design conditions

		2005 ASHRAE Handbook - Fundamentals (IP) © 2005 ASHRAE, Inc.
		Design conditions for CHICAGO, IL, USA
Basic Information	\longrightarrow	Station Information Station name WMO# Lat Long Elev StdP Hours +/- uTC Time zone code Period 1a 1b 1c 1d 1e 1f 1g 1h 1j CHICAGO 725300 42.00N 87.88W 623 14.368 -6.00 NAC 7201
Annual Heating		Coldest month Heating DB Humidification DP/IACDB and HR Coldest month MCWS/MCDB MCWS/PCWD 2 3a 3b 4a 4b 4c 4d 4e 4f 5a 5b 5c 5d 6a 6b
Annual Cooling	\longrightarrow	1 -5.0 0.8 -15.7 2.4 -3.5 -9.8 3.3 1.7 28.6 23.5 26.3 24.6 10.9 270 Annual Cooling, Dehumuldifications and Entitlaty Design Conditions Mottest month Cooling DB/MCWB Event Cooling, DB/MCWB MCWS/PCWD 0.4% 0.4% 0.04% DB MCWS/PCWD Month DB ange DB MCWB DB MCWB DB MCWB DB MCWB DB MCWB DB MCWB PCWD 10.0 10.6 10.0 10.0 4.4% DB 7 8 9 90 90 90 90 90 10.0 10.0 100
· _ · · · · ·		Dehumidification DP/MCDB and HR Enthalpy/MCDB 0.4% 1% 2% 0.4% 1% 2% DP HR MCDB DP HR MCDB Enth MCDB Enth MCDB 12a 12b 12c 12d 12c 12f 12g 12h 13b 13c 13d 13e 13f 74.8 133.3 84.2 73.0 125.6 82.1 71.4 118.4 80.1 34.0 88.2 32.2 85.2 30.4 82.5 Extreme Annual Design Conditions Extreme Annual Design Conditions 64.1 64.1 64.1 86.2 32.2 85.2 30.4 82.5
Extreme Annual	\longrightarrow	Extreme Annual WS Extreme Annual DB n-Year Return Period Values of Extreme D9 1% 2.6% 9% WB Mean Standard deviation n=5 years n=10 years n=10 years 14a 14b 14c 15 16a 16c 16c 17a 17b 17c 17d 17c 17f 17g 17h 255.0 22.1 19.6 83.3 96.3 -11.5 3.1 7.5 98.5 -16.9 100.3 -21.3 102.1 -25.5 104.3 -30.9
Monthly Design	\longrightarrow	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
		14.2 14.3 16.2 18.7 20.7 20.6 19.2 17.9 19.2 19.0 14.8 13.5 WMO# World Meteorological Organization number Lat Latitude, * Latitude, * Long Longitude, * Elev Elevation, ft Staip Standard pressure at station elevation, pair MA Wet builts temperature, *F DB Dry built temperature, *F Deve point temperature, *F Wet builts temperature, *F Wet builts temperature, *F WS Mean coincident dy built bemperature, *F Ench Enthalipy, Builto HR Humidity ratio, grains of moistore per to d'dy air MCDB Mean coincident wind speed, mph PCWD Prevailing coincident wind direction, *, 0 = North, 90 = East Hean coincident we built temperature, *F

Heating Load Design

Design conditions for CHICAGO, IL, USA

Station Information								
Station name	WMO#	Lat	Long	Elev	StdP	Hours +/- UTC	Time zone code	Period
1a	1b	1c	1d	1e	1f	1g	1h	1 <i>i</i>
CHICAGO	725300	42.00N	87.88W	623	14.368	-6.00	NAC	7201
Annual Heating and Humidification Des	ign Conditions							

Coldest	Heatir	ng DB		Hum	nidification D	P/MCDB and	d HR		(Coldest mont	MCWS/PCWD			
month	Пеаш	IG DB		99.6%			99%			4%	1	%	to 99.6% DB	
monu	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD
2	3a	Зb	4a	4b	4c	4d	4e	4f	5a	5b	5c	5d	6a	6b
1	-5.0	0.8	-15.7	2.4	-3.5	-9.8	3.3	1.7	28.6	23.5	26.3	24.6	10.9	270

Cooling Load Design

Annual Cooling, Dehumidification, and Enthalpy Design Conditions

Hottest	Hottest			Cooling [DB/MCWB					Evaporation	WB/MCDB			MCWS	/PCWD
	month	0.4	1%	1	%	2	%	0.	4%	1	%	2	%	to 0.4	% DB
month	DB range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	9a	9b	9c	9d	9e	9f	10a	10b	10c	10d	10e	10f	11a	11b
1 - S - T	10.0														
7	19.2	91.7	74.9	88.7	73.4	85.9	71.8	77.8	88.1	76.1	85.2	74.3	82.6	11.8	230
			Dehumidific	ation DP/M	CDB and HR						Enthalp	y/MCDB]
	0.4%		Dehumidific	ation DP/M0 1%	CDB and HR		2%		0.4	4%		y/MCDB %	2	%	}
DP	0.4%	MCDB	Dehumidific DP		CDB and HR	DP	2% HR	MCDB	0.4 Enth	4% MCDB			2 Enth	% MCDB	
 DP 12a		MCDB 12c		1%		DP 12g		MCDB 12i			1	%		1]

Monthly M	ean Daily Te	mperature	Range									
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1
20a	20b	20c	20d	20e	20f	20g	20h	20i	20j	20k	201	
14.2	14.3	16.2	18.7	20.7	20.6	19.2	17.9	19.2	19.0	14.8	13.5	

 How does the daily hourly design temperature profile look like?

$$t = t_{peak} - DR \sum_{i=0}^{11} \left[a_i \cos\left(\frac{2 \times \pi \times \theta}{24}\right) + b_i \sin\left(\frac{2 \times \pi \times \theta}{24}\right) \right]$$

•
$$t$$
 = air temperature °F

- = peak design temperature $^{\circ}F$ t_{peak}
- DR = daily range °F a_i, b_i = coefficients from
 - = coefficients from the ASHRAE Load Calculation Table
- θ •
- = The apparent solar time in decimal form, dimensionless

i	0	1	2	3	4	5	6	7	8	9	10	11
a _i	0.5363	0.3482	-0.0732	0.002	0.0104	-0.0041	0.0025	-0.0004	-0.0038	-0.0003	0.0032	-0.0005
b _i	0	0.3426	-0.0491	-0.0194	0.0123	0.0049	-0.0017	-0.0027	0.0036	0.0006	0	0.0002

• Use proxy for the series part of calculation:

$$t = t_{peak} - DR \times f$$

Time (Hr)	f	Time (Hr)	f	Time (Hr)	f
1	0.88	9	0.55	17	0.14
2	0.92	10	0.38	18	0.24
3	0.95	11	0.23	19	0.39
4	0.98	12	0.13	20	0.5
5	1	13	0.05	21	0.59
6	0.98	14	0	22	0.68
7	0.91	15	0	23	0.75
8	0.74	16	0.06	24	0.82

CLASS ACTIVITY

Class Activity

- Question: From the tables, calculate the following variables (Use both the uploaded page and your handbook):
 - □ 1% condition in Chicago for the hottest month
 - Daily range
 - □ Temperature at 5 PM

Class Activity

Annual Cooling, Dehumidification, and Enthalpy Design Conditions

Hottest	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDB			MCWS	/PCWD
month	month	0.4	1%	1	%	2	%	0.4	4%	1	%	2	%	to 0.4	% DB
monui	DB range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	9a	9b	9C	9d	9e	9f	10a	10b	10c	10d	10e	10f	11a	11b
7	19.2	91.7	74.9	88.7	73.4	85.9	71.8	77.8	88.1	76.1	85.2	74.3	82.6	11.8	230
			Dehumidific	ation DP/MC	DB and HR						Enthalp	y/MCDB			
	0.4%			1%			2%		0.4	4%	1	%	2	%	
DP	0.4% HR	MCDB	DP	1% HR	MCDB	DP	2% HR	MCDB	0.4 Enth	4% MCDB	1 Enth	% MCDB	2 Enth	% MCDB	
DP 12a		MCDB 12c	DP 12d		MCDB 12f	DP 12g		MCDB 12i							

Time (<u>Hr</u>)	f	Time (Hr)	f	Time (<u>Hr</u>)	<u>_ f</u> _
1	0.88	9	0.55	17	0.14
22	0.92	10	0.38	18	0.24
3	0.95	11	0.23	19	0.39
4	0.98	12	0.13	20	0.5
5	1	13	0.05	21	0.59
6	0.98	14	0	22	0.68
7	0.91	15	0	23	0.75
8	0.74	16	0.06	24	0.82

 $t = 88.7 \ ^{\circ}F \ -0.14 \times 19.2 \ ^{\circ}F = 86.01 \ ^{\circ}F$

INTRO TO BUILDING LOAD CALCULATIONS

(Please, see Chapters 17 and 18 for additional information)

- Sizing HVAC systems is among one of important reasons for heating and cooling load calculations:
 - Size for the worst peak load condition (When that would be in summer and winter?)
 - □ Avoid running the system part-load (What does it mean?)
 - □ Consider realistic sizing factors (What's the current practice?)

- There is a different process to identify the worst peak load conditions for heating and cooling loads
- For the cooling load, we need to make a distinction between:
 - □ Radiative and convective parts
 - □ Time delay (building thermal mass)

• Heating Loads:

- Simple
- □ Steady-state
- Solar radiation is ignored
- □ No effect of thermal mass or heat gain

Cooling Loads:

- Complex (require separating the convective and radiative from the loads)
- □ Time-dependent (usually 24 hours)
- Solar radiation is considered
- □ Effects of internal heat gains and thermal mass are important

- Five main heat and mass processes are important for the heating and cooling load calculations:
 - **1. Transmission** (e.g., walls, floor, roof, windows)
 - 2. Solar Heat Gain (e.g., walls, windows)
 - 3. Infiltration (e.g., through window frame, door openings)
 - 4. Internal heat gain (e.g., lights, people, equipment)
 - **5. Ventilation** (e.g., mechanical systems)

BUILDING LOAD CALCULATIONS (CHAPTER 17 AND 18)

Building Load Calculations

• Step 1: Identify building materials, characteristics, spaces, zones, (from architectural and mechanical drawings)

Why?


 Step 2: Understand the location of the building, orientation of the space, adjacent spaces and surfaces

Why?

Step 3: Select outdoor design conditions
 □ Consider the risk factor for the design conditions
 □ ΔT = (Outdoor temperature - Indoor temperature)

Why?

• Step 4: Select indoor design conditions

- Step 5: Identify loads
 - Purpose of this lecture for heating and the next lecture for cooling
 - □ Requires careful consideration of all contributions

- Building loads impact:
 - □ Sizes of HVAC systems and components
 - □ First, maintenance, and operational costs
 - □ Thermal comfort
 - □ Energy use of the building
 - □ Indoor air quality

- Building loads are important to size the HVAC systems and components:
 - □ The peak conditions (worst condition)
 - □ Avoid running the system part load
 - □ Realistic safety factors (what is the common practice?)
 - Consider distinction between perimeter zones and internal zones

- What are the main differences between residential and commercial load calculations?
 - □ Smaller internal gains
 - □ Different principal building activities (space types)
 - □ Fewer zones (commercial building sum of all zones)
 - □ Grater distribution losses
 - Partial loads

HEATING LOAD CALCULATIONS

(Please, see Chapters 17 and 18 for additional information)

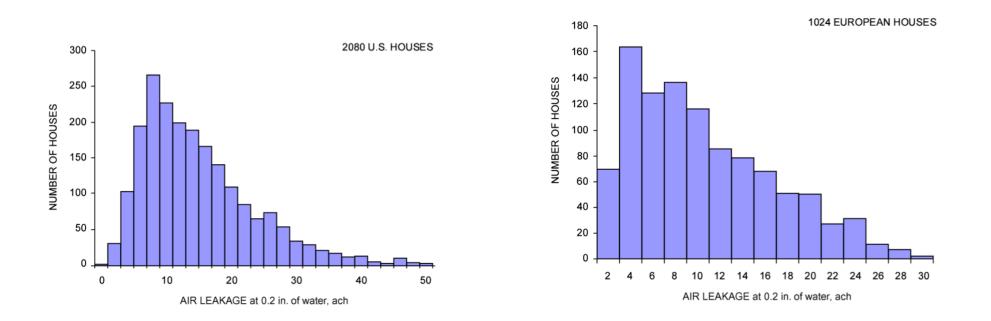
- For the heating load calculations:
 - Assume outdoor temperature is lower than the conditioned space temperature
 - Do not consider any credits for the impacts of solar, internal heat gains, or building thermal mass
 - Thermal bridging has impact on the heating loads than the cooling loads

- Imagine a commercial retail store at night nighttime:
 - □ Temperature setbacks are in place
 - □ Lights and internal gains are off
 - □ Heat flux is only due to conduction and infiltration

How is this different than the day time?

Is it better to consider the day-time or night-time for the load calculation?

- Consider the following heat loads:
 - Transmission
 - Infiltration
 - Ventilation


Why one these three?

- Consider the following heat loads:
 - Transmission

$$R_{tot} = \frac{1}{UA}$$

$$q_x = UA\Delta T_{overall}$$

- Consider the following heat loads:
 Infiltration
 - An unintentional air through building envelops
 - There are databases of values for the infiltration values

(See Figure 10 – Chapter 16)

- The recommended steps are:
 - □ Select outdoor design condition criteria and numbers
 - □ Select indoor conditioned space temperature
 - □ Estimate temperature in any adjacent unheated spaces
 - Identify transmission coefficients and compute conduction heat losses to exterior
 - Consider infiltration load

 Consider the following heat loads for exterior surfaces above grade:

$$R_{tot} = \frac{1}{UA}$$

$$Q = UA\Delta t = A \times HF$$

HF is the heating load factor in Btu/h-ft²

- How do you account for A, $\Delta T_{overall}$ and U?
 - □ Exterior surface above grade
 - □ Below grade surface
 - □ At grade surface
 - □ Surface adjacent to unconditioned spaces

• Define heating load factor:

 $HF = U\Delta T_{overall}$

- The recommended steps are:
 - □ Select outdoor design condition criteria and numbers
 - □ Select indoor conditioned space temperature
 - □ Estimate temperature in any adjacent unheated spaces
 - Identify transmission coefficients and compute conduction heat losses to exterior
 - Calculate infiltration and other outdoor air

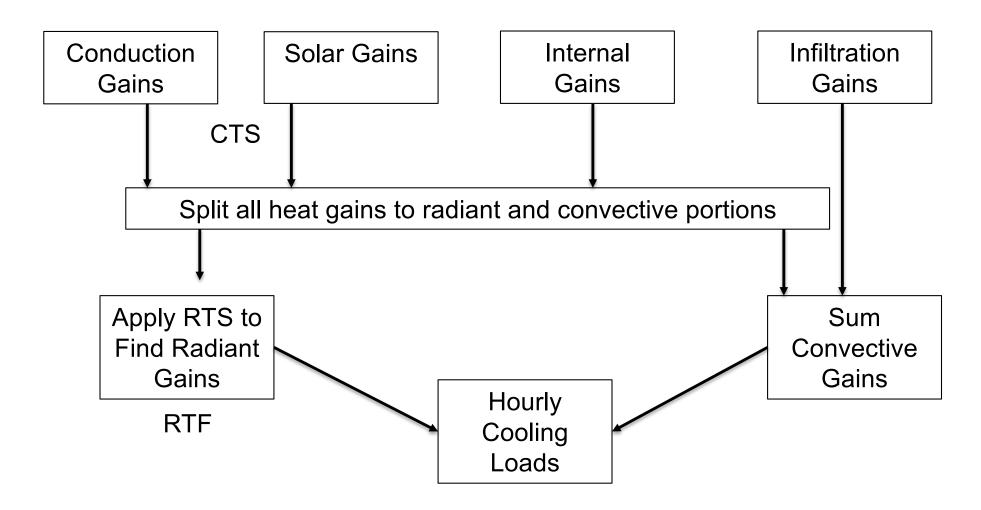
□ Sum the losses

- See Section 9 of Chapter 18 for the three examples:
 - □ Single room example
 - □ Single room example peak heating load
 - □ Whole building example

RSTM (RADIANT TIME SERIES METHOD)

RSTM

- Radiant Time Series Method (RTSM) is a simplified method for the calculation of cooling loads with these assumptions:
 - Calculation Period: Consider only a single day (ignore the stored energy)
 - Exterior Surface Heat Balance: Assume the sol-air temperature to account for solar irradiance and convection
 - Interior Surface Heat Balance and Room Temperature: Consider the delay radiative fractions


RSTM

- Separate sensible and latent components of the loads for cooling load calculations:
 - Sensible heat is directly added to the conditioned space(s) by conduction or radiation
 - □ Latent heat gain occurs when moisture is added
 - Designs may be influenced by sensible/latent loads or both
 - In a space with sensible-load-driven, the cooling supply air has surplus capacity to dehumidify
 - In a space with latent-load-driven, calculating the supply airflow using sensible load does not meet the dehumidification needed (needs subcooling, reheat, or other means)

COOLING LOAD CALCULATIONS

Cooling Load Calculation

• Radiant Transfer Series Method (RTSM)

Cooling Load Calculation

- Space heat gain is the instantaneous rate of heat transfer in the space
- Main components to consider are:
 - **1. Internal** (e.g., Interior lights, appliance and equipment)
 - 2. External (e.g., walls, roof)
 - 3. Infiltration
 - 4. Systems (e.g., ventilation, fan heat)