CAE 464/517 HVAC Systems Design Spring 2023

January 19, 2023

Space conditioning and intro to the load calculations

Built Environment Research @ IIT] 🐋 🎧 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcements

• Regularly check out the Q&A file:

CAE 464/517 Spring 2023 Q&As

Assignment 1

Question: I have a question about the homework for HVAC design. I'm on the part involving the AHU, but I can't find the manufacturer or model number in the plans. I must've just missed it, but I was just wondering where it's supposed to be.

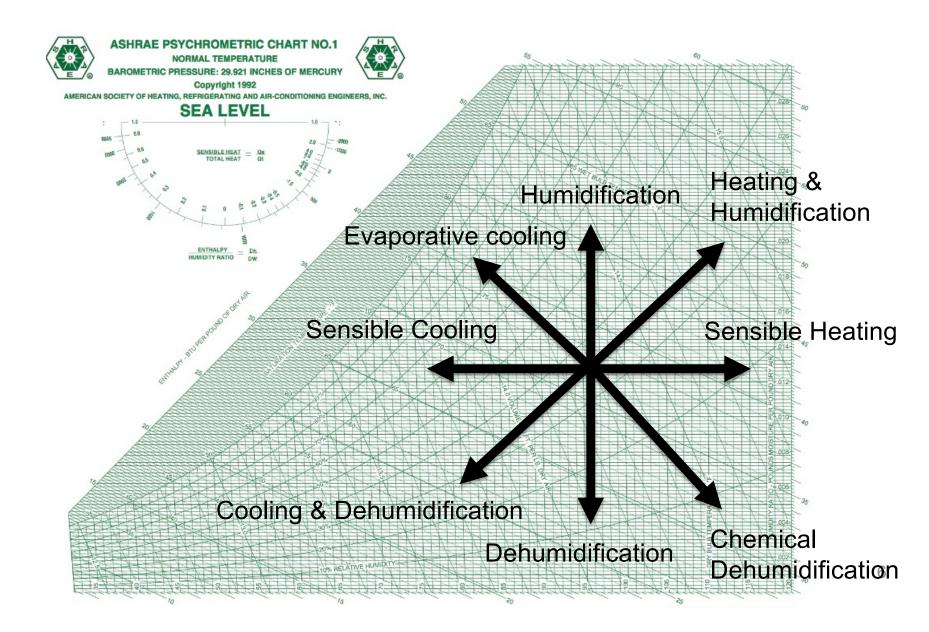
Response: This is a good question. Sometimes major components, especially AHU, are custom made and it might be hard to find the exact model. I would recommend finding something close to the AHU model.

Question: For the question where we're calculating the cfm/ft^2 for the conditioned spaces, is that going to be on a zone by zone basis or is it the total cfm for the entire building? Or for each floor? Also, in the ventilations schedules on the M2-x sheets are we supposed to use the supply or return cfm for calculating the ventilation?

Response: For the cfm/ft², you should do it zone by zone similar to the ventilation schedules that you see. You can just report for one floor. No need to do it for all floors.

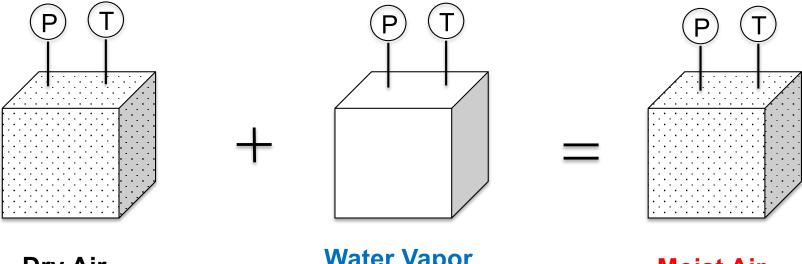
Ventilation refers to the outdoor air supply, so please just take a look at the supply and no need to report the return at this point.

3


RECAP OF INTRO TO PSYCHROMETRICS

• If needed, additional resources are available:

http://built-envi.com/courses/cae-331-513-building-science-fall-2019/


• Summary of Psychrometric Processes

Recap

Moist air: •

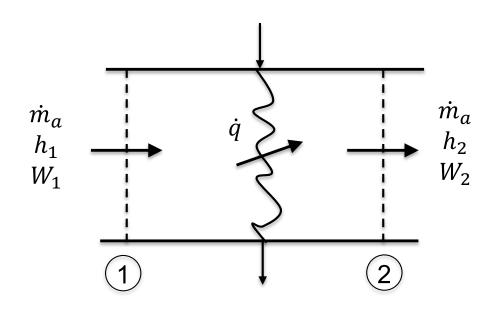
□ Atmospheric air is a mixture of "dry air and gases" and "water vapor"

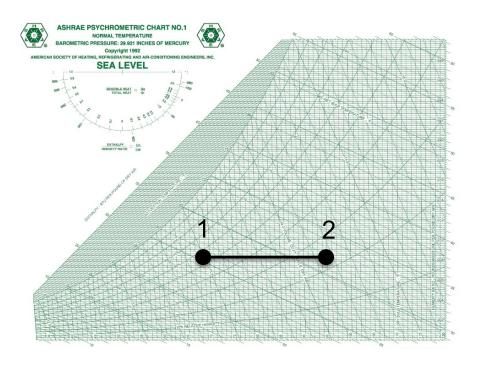
Dry Air

T = 75 °F $m_{da} = 1 \text{ lb}$ $m_w = 0 \text{ lb}$ $p_a = 14.482 \text{ psia}$ $p_w = 0 psia$ p_{mixture} = 14.482 psia

Water Vapor

T = 75 °F $m_{da} = 0 lb$ $m_w = 0.0092 \text{ lb}$ $p_a = 0 psia$ $p_{w} = 0.215 \text{ psia}$ p_{mixture} = 0.215 psia


Moist Air


T = 75 °F $m_{da} = 1 \text{ lb}$ $m_w = 0.0092 \text{ lb}$ p_a = 14.482 psia p_w = 0.215 psia p_{mixture} = 14.697 psia

CLASSIFICATION OF AIR PROCESSES (CAE 331, MMAE 320)

Sensible heating or cooling:
 Steady-state the energy balance is:

$$\dot{m}_a h_2 = \dot{m}_a h_1 + \dot{q}$$

Processes

• Sensible heating or cooling:

□ Sensible

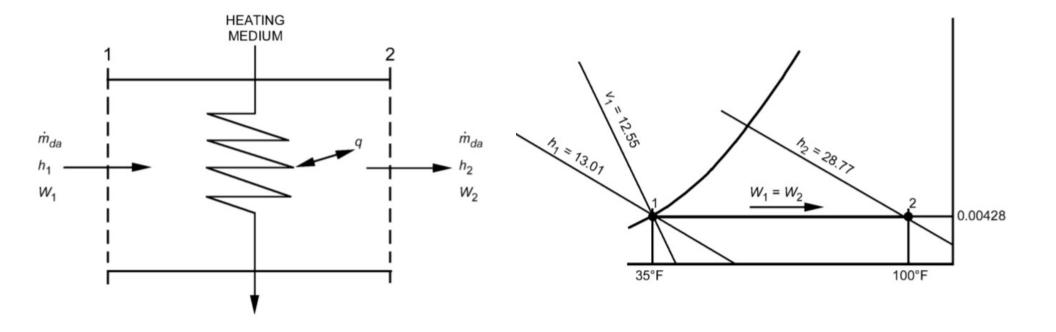
$$W_1 = W_2$$

□ Moist air

$$h_1 = h_{da1} + W_1 h_{v1}$$
$$h_2 = h_{da2} + W_2 h_{v2}$$

□ From perfect gas assumption

$$\dot{q}_{s} = \dot{m}_{a}c_{p}(T_{2} - T_{1})$$
 heating
 $\dot{q}_{s} = \dot{m}_{a}c_{p}(T_{1} - T_{2})$ cooling


CLASS ACTIVITY

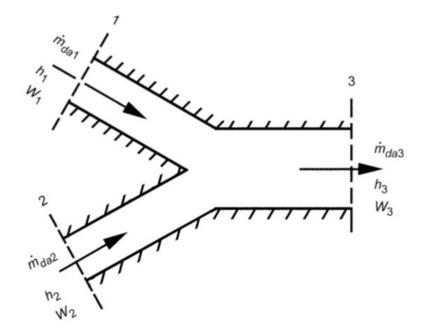
Class Activity

 Example (sensible heating or cooling – Page 1.18): Moist air, saturated at 35 °F, enters a heating coil at a rate of 20,000 CFM. Air leaves the coil at 100 °F. Find the required rate of heat addition.

Class Activity

• Solution (Psychrometric Chart)

Class Activity

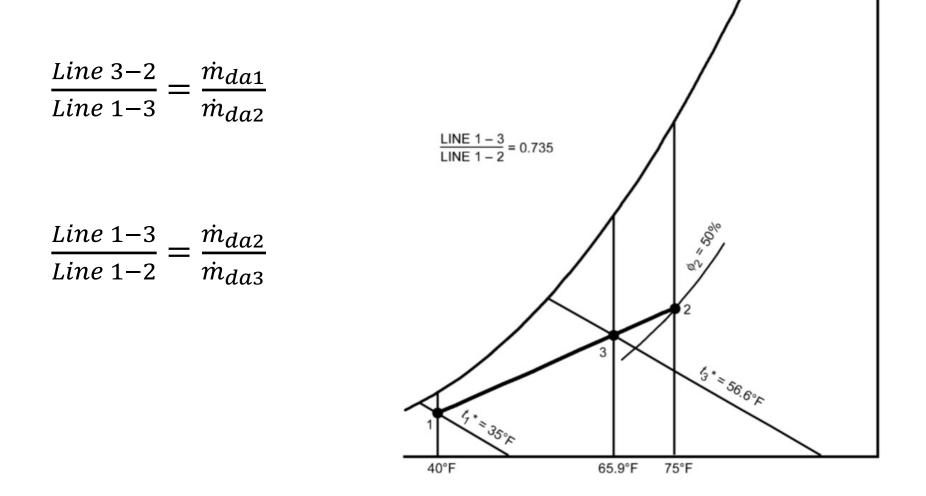

• Solution (Psychrometric Chart):

$$\dot{q} = \dot{m}_{da}(h_2 - h_1)$$

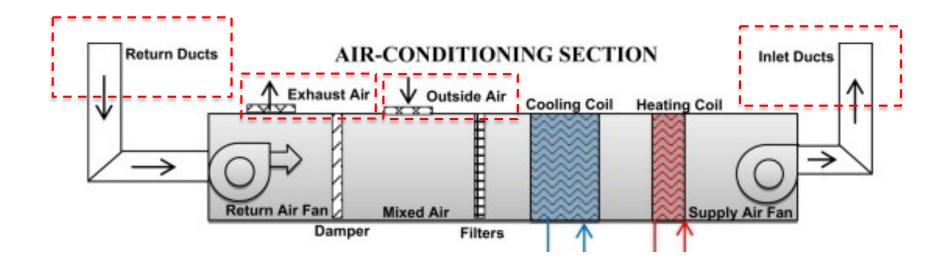
$$\dot{m}_{da} = 20,000 \ CFM \times \frac{60}{12.55} = 95,620 \ lb_{da}/h$$

$$\dot{m}_{da} = (95,620) \times (28.77 - 13.01) = 1,507,000 \frac{Btu}{h}$$

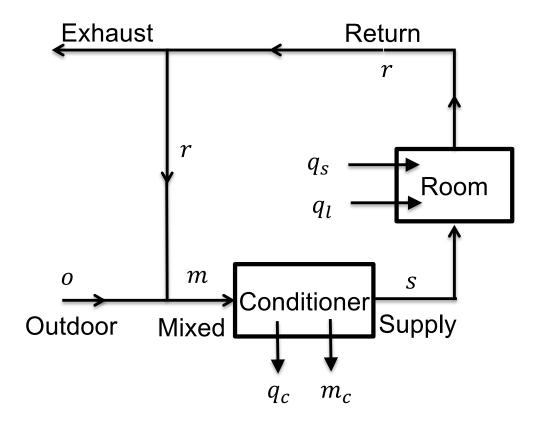
• Adiabatic mixing of two moist stream:


$$\dot{m}_{da1}h_1 + \dot{m}_{da2}h_2 = \dot{m}_{da3}h_3$$

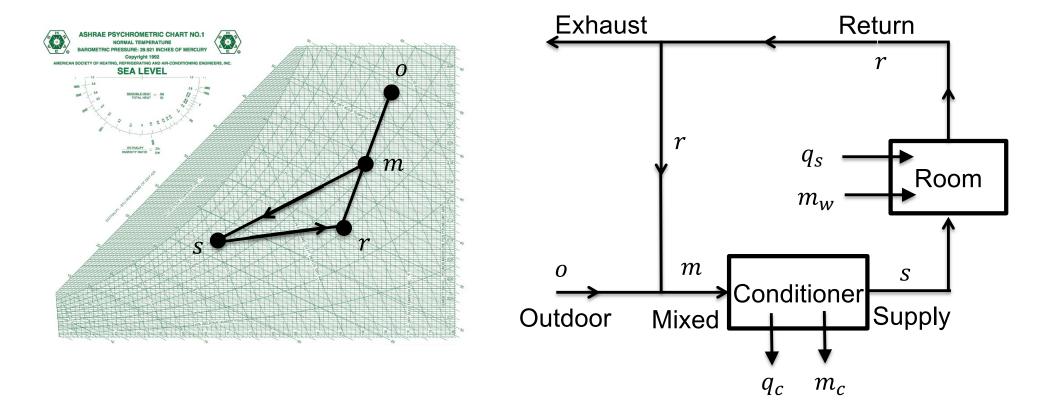
$$\dot{m}_{da1} + \dot{m}_{da2} = \dot{m}_{da3}$$

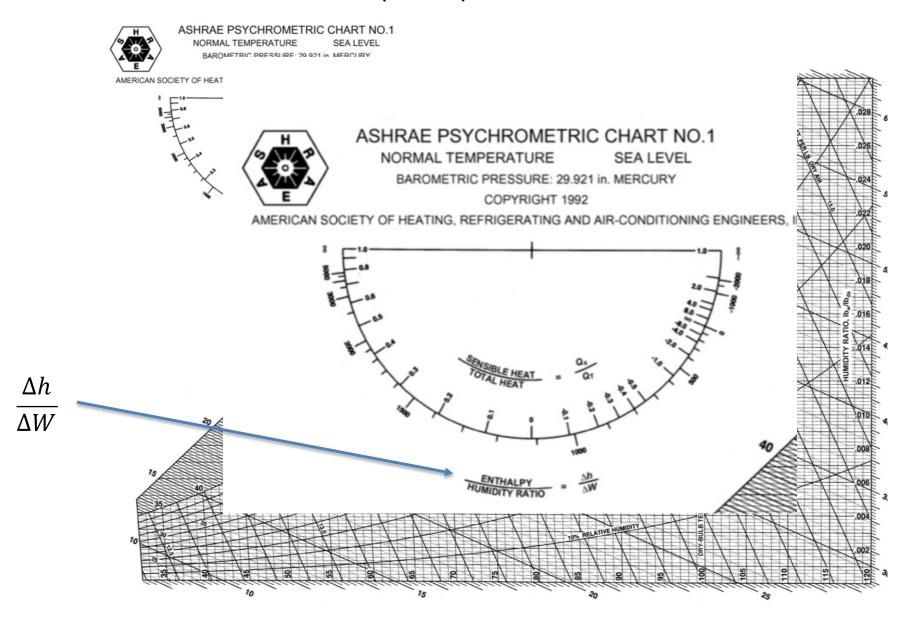

$$\frac{h_2 - h_3}{h_3 - h_1} = \frac{W_2 - W_3}{W_3 - W_1} = \frac{segment2 - 3}{segment3 - 1} = \frac{\dot{m}_{da1}}{\dot{m}_{da2}}$$

Processes

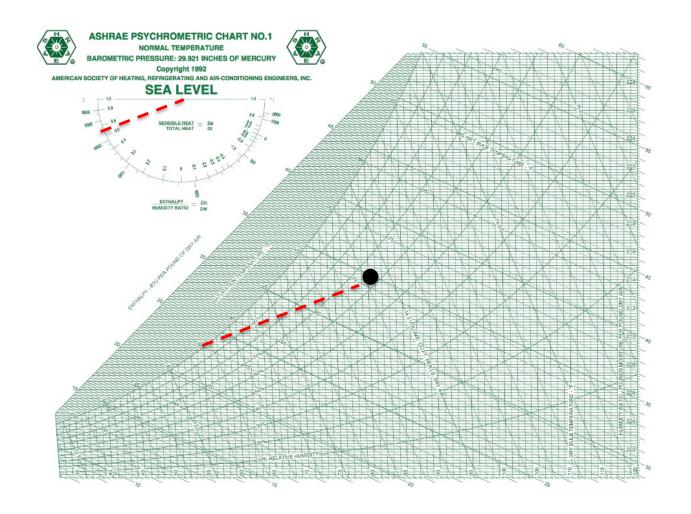

Adiabatic mixing of two moist stream

SPACE CONDITIONING

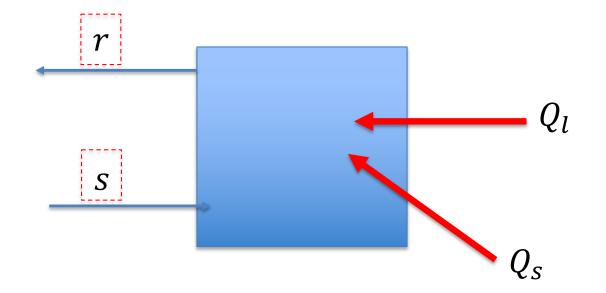

• Step 1: Develop schematic of the processes


• Step 2: Develop state condition property table

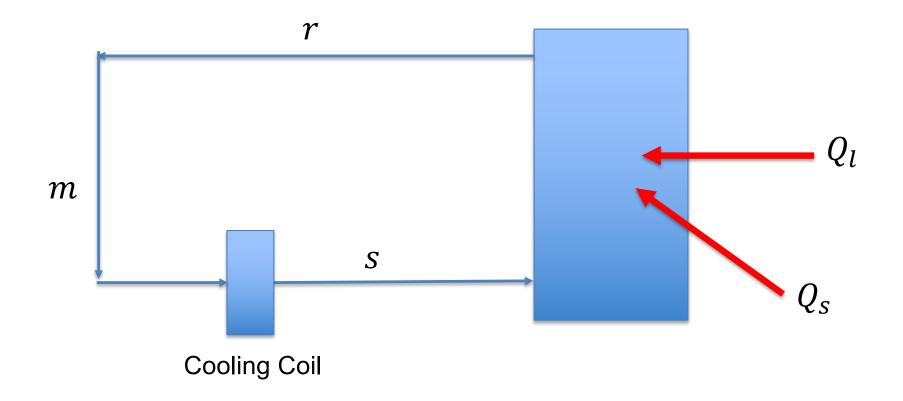
Point	ΟΑ	RA	MA	DA	SA	Exhaust Return	
Dry bulb						r	
Wet bulb						l î	
RH						$\begin{array}{c} r \\ q_s \\ q_l \\ \hline \\ Room \\ q_l \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
Enthalpy							
W							
V							
m _a							
Airflow						$\begin{array}{c} \bigstar \bigstar \\ q_c m_c \end{array}$	

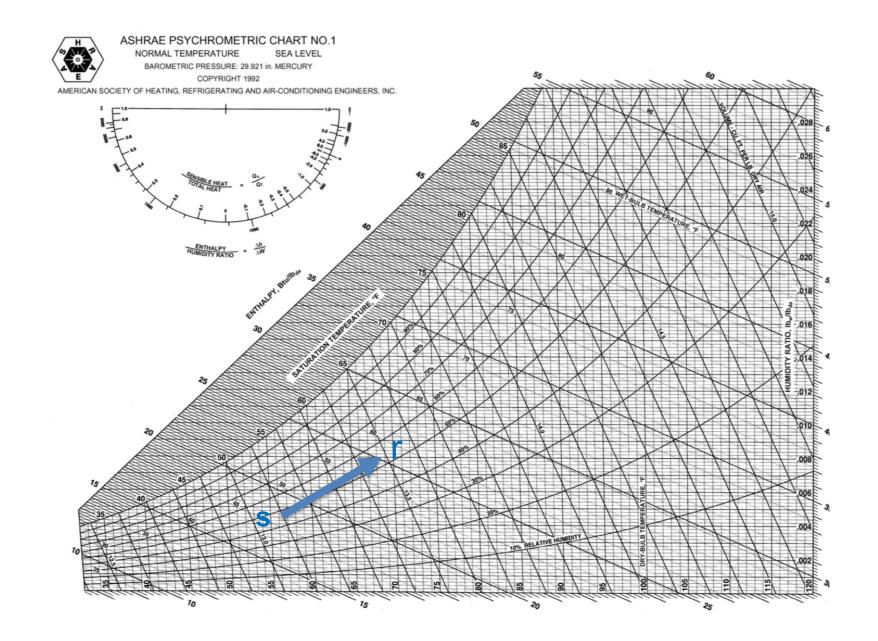

• Step 3: Develop Psychrometric chart

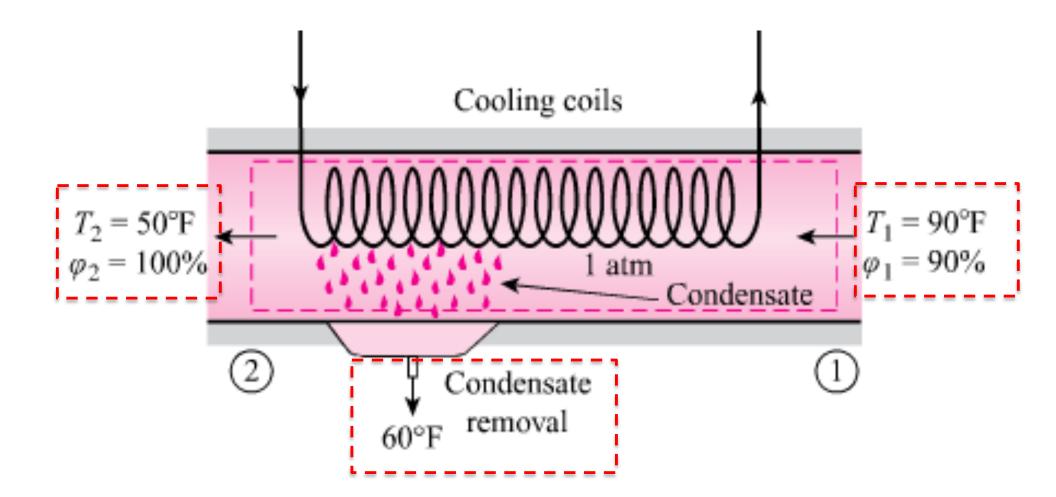
Sensible Heat Ratio (SHR)



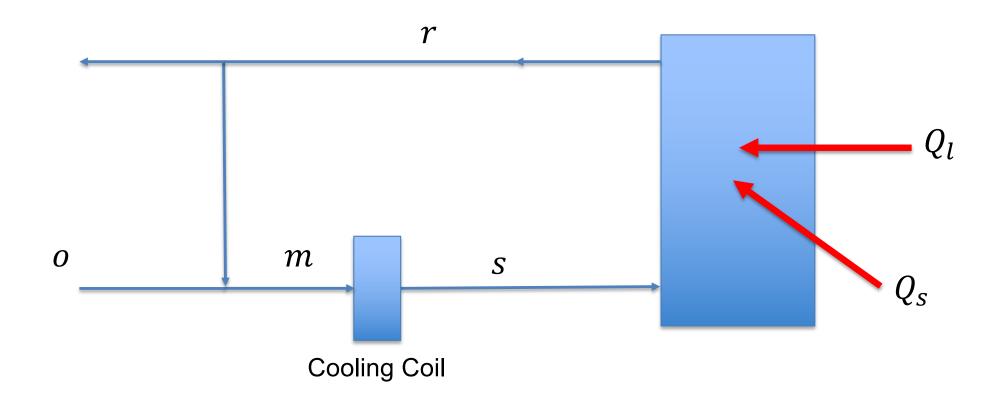
Sensible Heat $SHR = \frac{SURE}{Total Heat}$

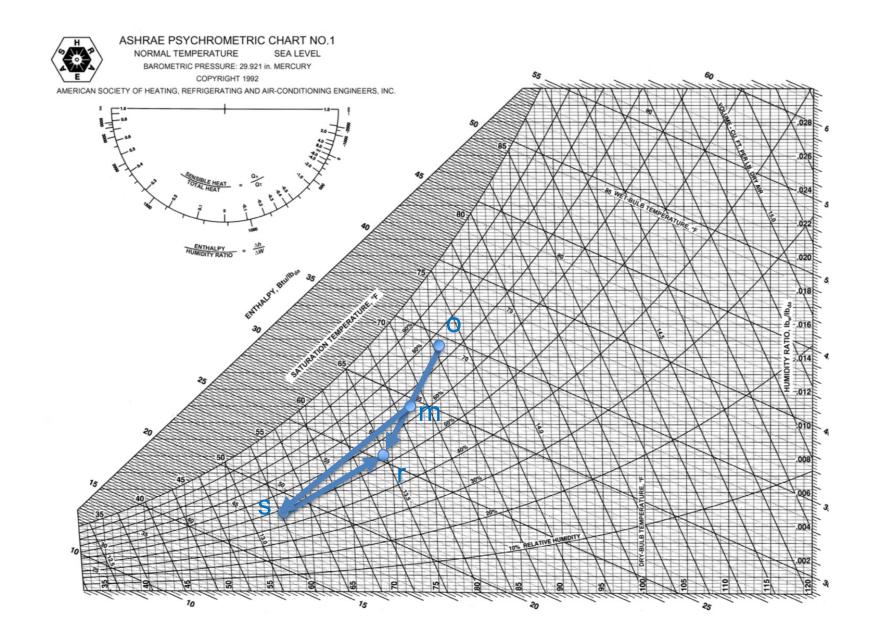

- Which space can potentially have the lowest SHR?
 - □ Server room
 - Auditorium
 - □ An individual office
 - School
 - Restaurant
 - □ Grocery store


 Important factor to have a good understanding of heating and cooling loads known as "space loads"

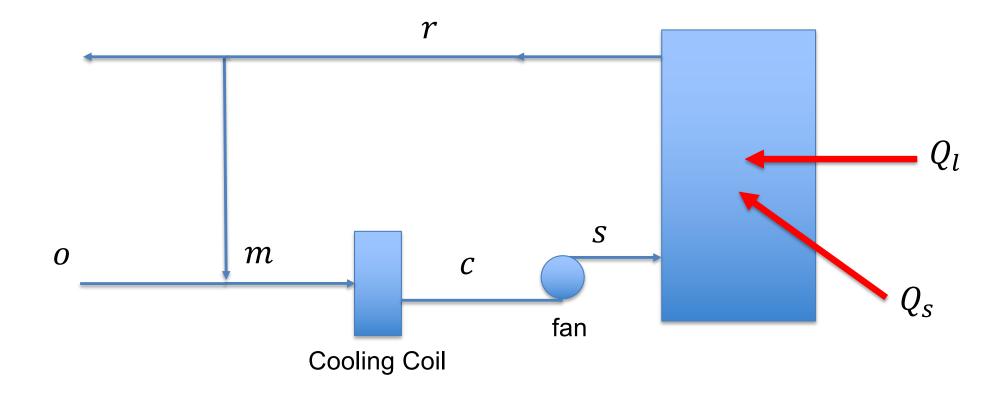

- r: Return air
- s: Supply air
- Q_l : Latent heat transfer
- Q_s : Sensible heat transfer

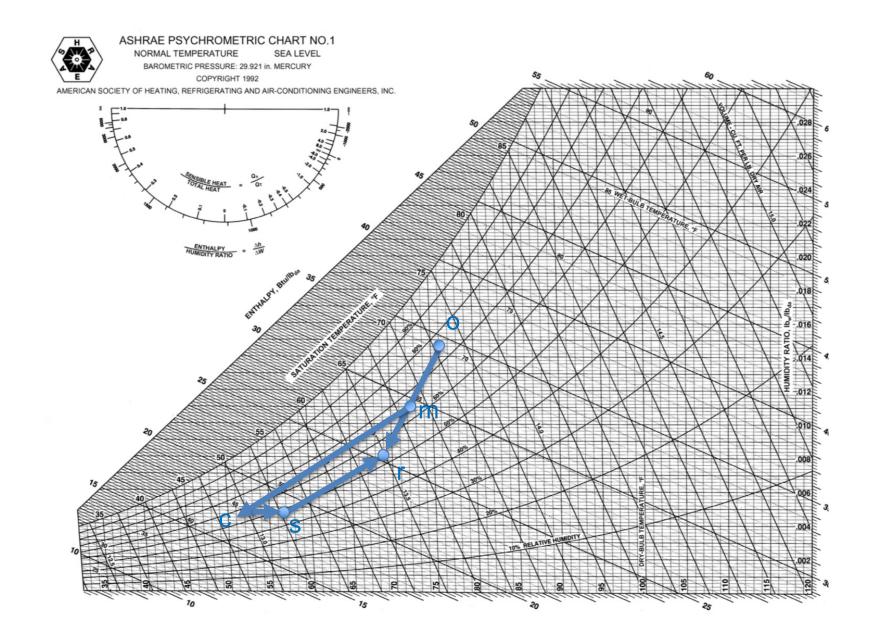
• A simple cooling process is the "re-circulation" process

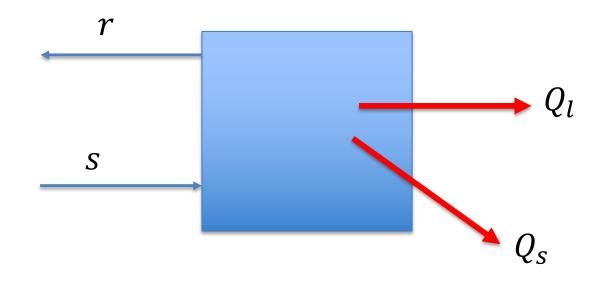




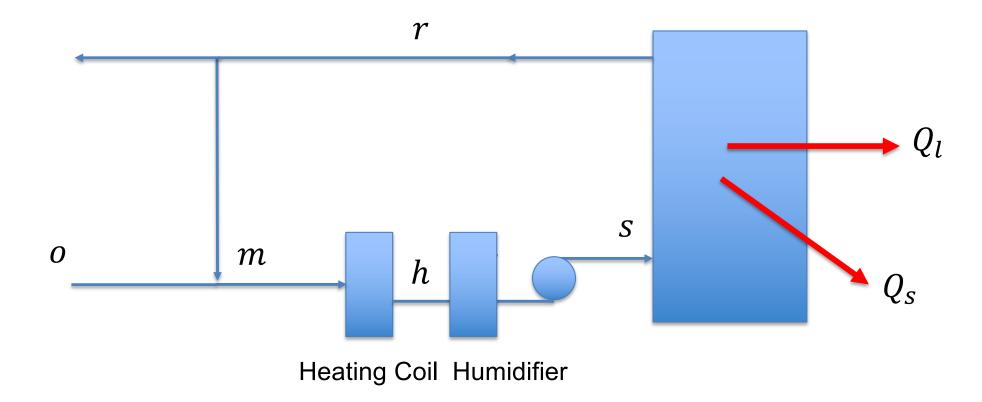
Cooling coil load is different than the space loads

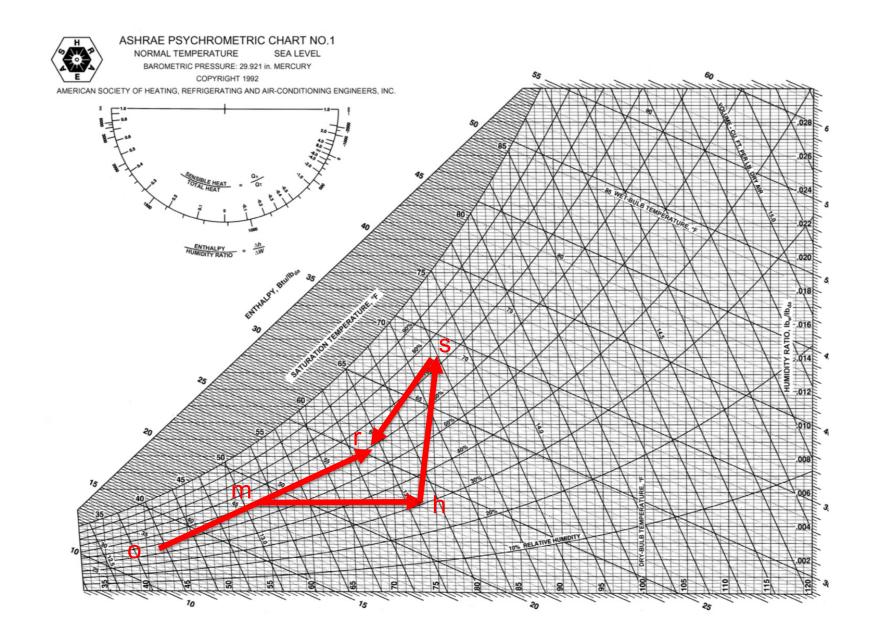



 A typical AC system may include outdoor air, mixing, return, and exhaust

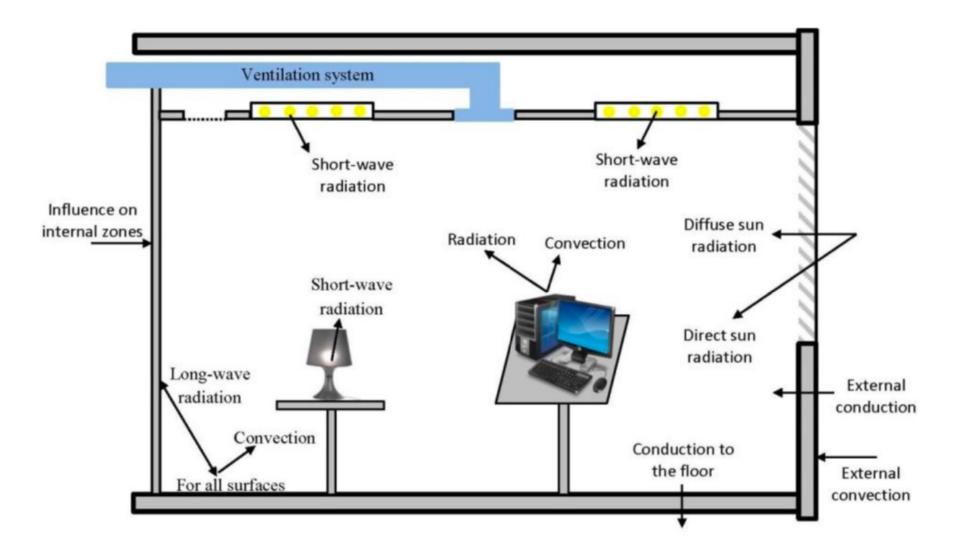


A typical AC system with the influence of the fan falls this process

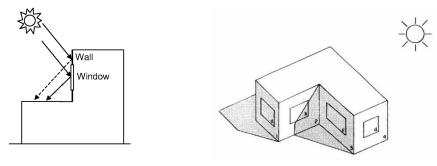



A typical winter heat conditioning space heat loss follows the following schematics

• A typical winter system follows this diagram



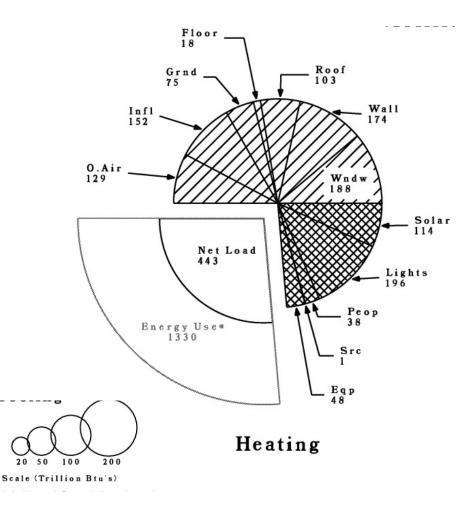
What do we need a humidifier?

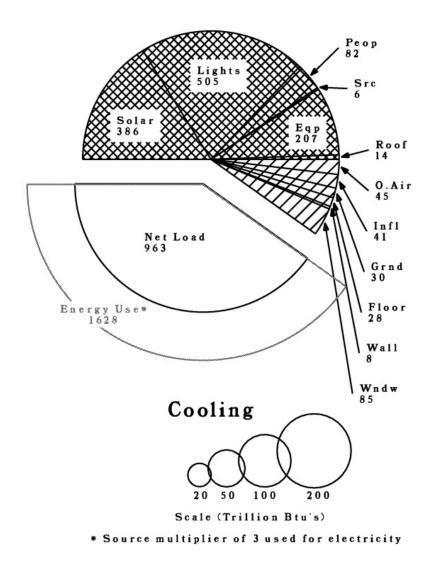


 Additional Problem: Conditioned air is supplied to a space at a dry bulb of 54 °F and relative humidity of 90% at the rate of 1,500 CFM. The sensible heat ratio for the space is 0.8, and the space is to be maintained at the 75 °F.
 Determine the sensible and latent cooling loads for the space.

CONTRIBUTION OF DIFFERENT LOAD COMPONENTS (CAE 331)

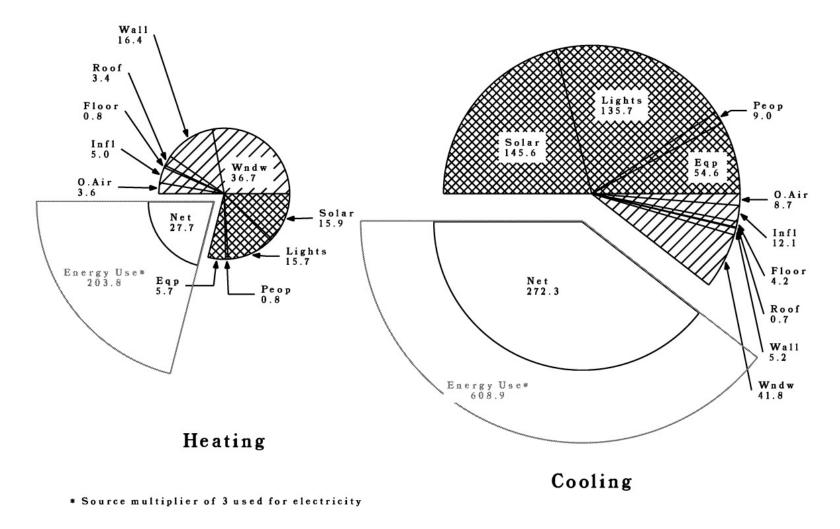
What heat transfer processes do we have in a building?
 Radiation (e.g., indoor and outdoor shortwave, longwave)

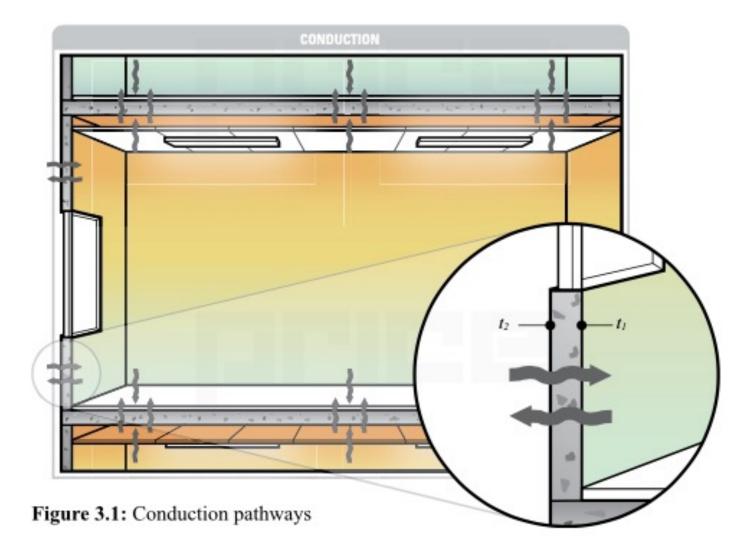

□ Conduction (e.g., through wall, window)


Convection (e.g., outdoor and indoor convection, infiltration, ventilation)

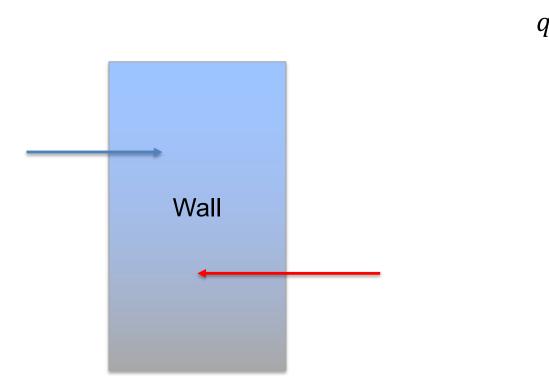
Residential buildings

Heat Losse	es e
Window Conduction	22%
Wall	21%
Infiltration	18%
Outside air	15%
Roof	12%
Ground	6%
Floor	2%

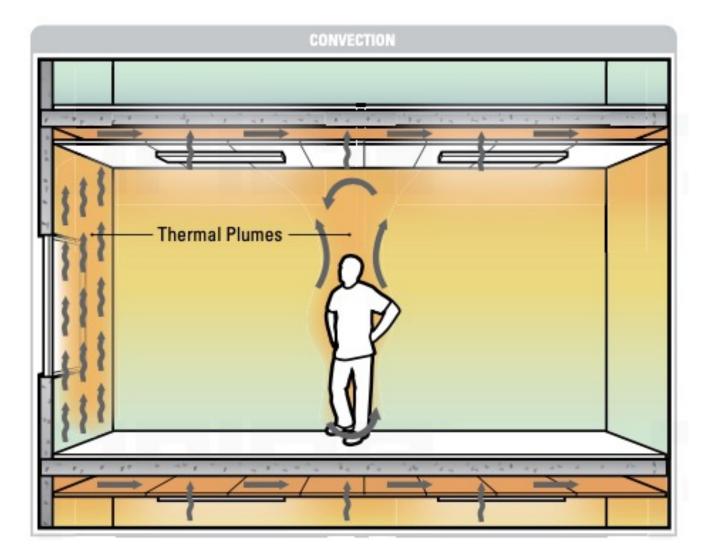

Residential buildings


Heat Gains	
Lighting	42%
Solar gain through windows	32%
Equipment	17%

A Bottom-Up Engineering Estimate of the Aggregate Heating and Cooling Loads of the Entire US Building Stock


Large office building

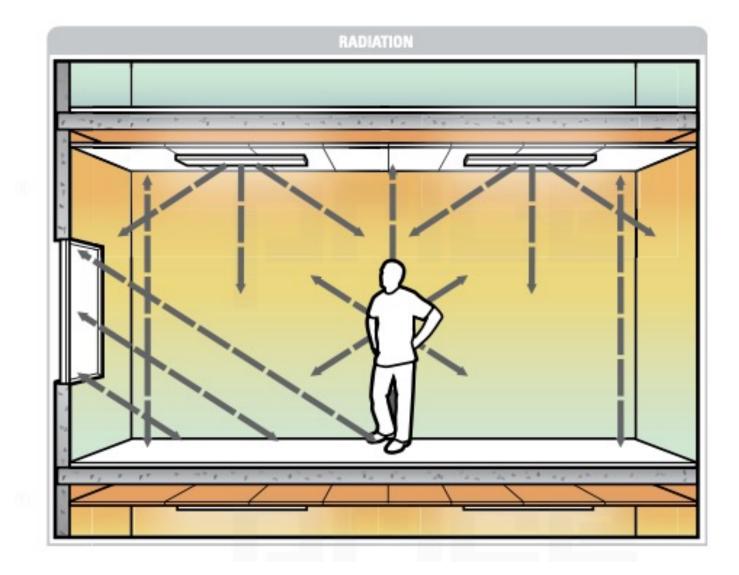
Conduction



Conduction

$$q_x'' = \frac{q_x}{A_x} = -k \frac{\Delta T}{\Delta x}$$
 $q = \frac{\Delta T}{R_{cond}}$
 $R_{cond} = \frac{L}{kA}$

Convection


Convection

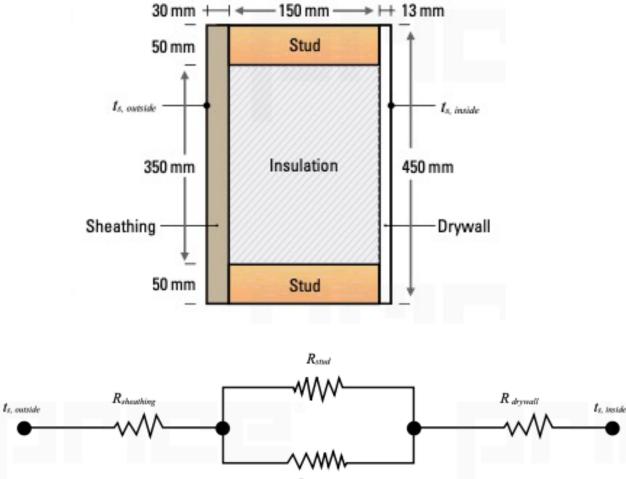
$$q_x^{\prime\prime} = \frac{q_x}{A_S} = h \times \Delta T$$

$$q = \frac{\Delta T}{R_{Conv}}$$

$$R_{conv} = \frac{1}{hA_s}$$

Radiation

Radiation


$$q_x^{\prime\prime} = \frac{q_x}{A} = \varepsilon \sigma T^4$$

$$\sigma = 0.1712 \times 10^{-8} \frac{Btu}{h - ft^2 - R^4}$$

$$\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$$

$$R_{rad} = \frac{1}{h_{rad}A}$$

 For a wall assembly, a combination of series and parallel resistances is typical

• Overall heat transfer coefficient (U) is defined as:

$$q_x = \frac{T_{oudoor\ air} - T_{indoor\ air}}{\sum R_t}$$

 $q_x = UA\Delta T_{overall}$

$$\sum R_t = \frac{1}{UA}$$

DESIGN CONDITIONS

Design Conditions

• Temperature difference is the main driver for the heat transfer (How about moisture?):

$$\Delta T = T_i - T_o$$

• *T_i*:

- Varies from space to space (e.g., from an office space to a classroom)
- Exists reference for various environments
- Uses rules of thumbs
- *T*_o:
 - Outdoor design conditions

Design Conditions

- Indoor design conditions
 - □ Temperature
 - □ Relative humidity

- Outdoor design conditions
 - □ Temperature (e.g., dry bulb, wet bulb, …)
 - □ Solar radiation
 - **D** ...

Design Conditions

- Relevant standards to determine the indoor and outdoor conditions are:
 - ASHRAE Handbook-Fundamentals
 - ASHRAE 55 Thermal Environmental Conditions for Human Occupancy
 - ASHRAE 62.1: Ventilation for Acceptable Indoor Air Quality (IAQ) (Commercial)
 - ASHRAE 62.2: Ventilation for Acceptable Indoor Air Quality (IAQ) (Residential)
 - ASHRAE 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings

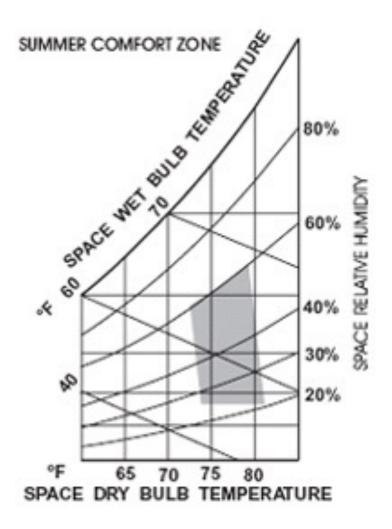
Access to standards: <u>https://www.ashrae.org/technical-resources/standards-and-guidelines</u>

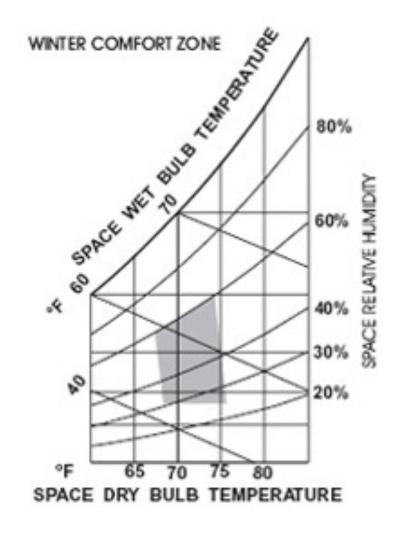
INDOOR DESIGN CONDITIONS

(Please, see Chapter 9 for additional materials)

• Indoor heating design condition:

```
    Temperature: 70 °F – 72 °F
    RH = 30%
```


• Indoor cooling design condition:


Temperature: 75°F – 78 °F
 RH = 50%

What do these temperatures and relative humidity mean?

Where do you find more accurate values?

 Consider the middle of the ASHRAE comfort zone for the appropriate season

Other resources to find the setpoints:
 ASHRAE 170 for healthcare facilities (e.g., Table 7-1, 2017):

Function of Space	Design Temperature (°F)
Inpatient nursing – all room	70 - 75
Physical therapy	72 – 80

• Other resources to find the setpoints:

DOE Reference Buildings:

Table B-4 Large Office Hourly Operation Schedules

Schedule	Day of Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
ALWAYS_ON	All	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
BLDG_ELEVATORS	All	0.05	0.05	0.05	0.05	0.1	0.2	0.4	0.5	0.5	0.35	0.15	0.15	0.15	0.15	0.15	0.15	0.35	0.5	0.5	0.4	0.4	0.3	0.2	0.1
INFIL_QUARTER_ON_SCH	WD, SummerDesign	1	1	1	1	1	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	1
	Sat, WinterDesign	1	1	1	1	1	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	1	1	1	1	1
	Sun, Hol, Other	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
BLDG_OCC_SCH	SummerDesign	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.05	0.05
	WD	0	0	0	0	0	0	0.1	0.2	0.95	0.95	0.95	0.95	0.5	0.95	0.95	0.95	0.95	0.7	0.4	0.4	0.1	0.1	0.05	0.05
	Sat	0	0	0	0	0	0	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0	0	0	0	0	0	0
	Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BLDG_LIGHT_SCH	WD	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.7	0.5	0.5	0.3	0.3	0.1	0.05
	Sat	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.15	0.15	0.15	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	SummerDesign	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	WinterDesign	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Other	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
BLDG_EQUIP_SCH	WD	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.8	0.6	0.6	0.5	0.5	0.4	0.4
	Sat	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.35	0.35	0.35	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	SummerDesign	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	WinterDesign	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Other	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
ACTIVITY_SCH	All	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
WORK_EFF_SCH	All	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AIR_VELO_SCH	All	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
CLOTHING_SCH	All	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	All	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	All	1	1	1	1	1	1	T	1	1		1	1	1	1	1	-	1	1	1	1	1	1	1	1
CLGSETP_SCH	WD, SummerDesign	26.7	26.7	26.7	26.7	26.7	26.7	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	26.7	26.7
	Sat	26.7	26.7	26.7	26.7	26.7	26.7	24	24	24	24	24	24	24	24	24	24	24	24	26.7	26.7	26.7	26.7	26.7	26.7
	WinterDesign	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7
	Other	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7
HTGSETP_SCH	WD	15.6	15.6	15.6	15.6	15.6	15.6	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	15.6	15.6
	SummerDesign	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6
	Sat	15.0	15.0	15.6	15.6	15.6	15.6		21	21	21	ZT	21	zl	21	21	21	21	21	15.0	15.6	15.6	15.6		15.6
	WinterDesign	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
	Other	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6	15.6
Seasonal-Reset-Supply-Air-Temp-Sch	All	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8
MinOA_MotorizedDamper_Sched	WD, SummerDesign	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
	Sat, WinterDesign	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dual Zone Control Type Sched	All	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
HVACOperationSchd	WD, SummerDesign	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
	Sat, WinterDesign	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CW-Loop-Temp-Schedule	All	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
HW-Loop-Temp-Schedule	All	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2	82.2

 Design HVAC system capacity based on the peak loads which is a combination of:

Internal loads

External loads

What does this mean for heating and cooling loads?

OUTDOOR DESIGN CONDITIONS

(Please, see Chapter 14)

• Winter design conditions:

□ Use ASHRAE Design Data from the Fundamentals Handbook

☐ The 99.6% and 99% indicate the risk level desired

- When 99% is selected, it means the outdoor temperatures have been equaled or exceeded by 99% of the total number of hours in a year (8760 hours):
 - 99.6% (0.4%) ~ 35 hours
 - 99.0% (1.0%) ~ 88 hours
 - 98.0 (2.0%) ~ 175 hours
 - 95.0 (5.0%) ~ 438 hours

- Summer design conditions
 - □ DB is dry-bulb temperature
 - □ MWB is the mean-coincident-wet-bulb temperature
 - The 0.4%, 1% and 2% mean the percentile of the total hours may not meet indoor design conditions

		2005 ASHRAE Handbook - Fundamentals (IP) © 2005 ASHRAE, Inc.
		Design conditions for CHICAGO, IL, USA
Basic Information	\longrightarrow	Station Information Station name WMO# Lat Long Elev StdP Hours +/- UTC Time zone code Period 1a 1b 1c 1d 1f 1g 1h 1i 1a 1b 1c 1d 1f 1g 1h 1i CHICOCO 735200 3100N 37340N 4328 600 NAC 7304
Annual Heating	\longrightarrow	CHICAGO 72530 42.00N 87.88W 623 14.368 -6.00 NAC 7201 Annual Heating Alternative Andread State Alternative Alternatin Alternative Alternatin Alternative Alternatin Alterna
Annual Cooling	>	1 -5.0 0.8 -15.7 2.4 -3.5 -9.8 3.3 1.7 28.6 23.5 26.3 24.6 10.9 270 Annusi Gooling, Dehum-Idification, and Enthalpy Design Conditions Mottest Cooling DB/MCWB Evaporation WB/MCDB MCWS/PCWD Mottest Cooling DB/MCWB Evaporation WB/MCDB MCWS/PCWD Mottest Cooling DB/MCWB B MCWB DB MCDB WB MCDB WB MCDB MCB WCB MCDB WB MCDB MCWS PCWD 7 8 9 9 9 9 7 100 100 100 101 111 111 7 19.2 91.7 74.9 88.7 73.4 85.9 71.8 77.8 88.1 76.1 85.2 74.3
		Dehumidification DP/MCDB and HR Color File Octo File File Octo File Enthalpy/MCDB 0.4% 1% 2% 0.4% 1% 2% 0.4% 2% DP HR MCDB DP HR MCDB Enth MCDB Enth MCDB 12a 12a 12a 12i 12a 13a 13a 13i 74.8 133.3 84.2 73.0 125.6 82.1 71.4 118.4 80.1 34.0 88.2 32.2 85.2 30.4 82.5
Extreme Annual	\longrightarrow	Extreme Annual WS Extreme Max Extreme Annual DB n-Year Return Period Values of Extreme DB 1% 2.5% 5% WB Max Min
		Monthly Design Dry Edib and Mean Coincident Wet Buib Temporatores Monthly Design Dry Edib and Mean Coincident Wet Buib Temporatores Apr May Jun % DB MCWB DB MCWB DB MCWB DB MCWB 78a 78b 18c 18d 18e 18f 18f 18f 18f 0.4% 54.4 51.3 60.3 51.4 74.1 60.9 82.9 64.0 88.5 69.1 93.3 72.4 1% 50.6 47.1 56.5 78.8 63.1 86.7 91.3 72.3 2% 45.8 42.0 52.9 46.8 67.1 56.5 76.0 61.7 84.2 67.8 89.3 71.6
Monthly Design	\longrightarrow	Juli Aug Sep Oct Nov Dec Nov Dec Dec 18m
		Monthly Design Wat Bulb and Mean Coincident Dry Bulb Temporatures Jan Feb Mar Apr May Jun % WB MCDB WB MCDB WB MCDB B Mother May Jun 19a 19b 19c 19f Mother
		1% 47.5 50.6 50.1 56.0 60.9 68.6 65.3 75.3 72.1 81.6 76.2 86.7 2% 42.6 44.9 46.8 52.2 58.4 64.9 63.7 72.2 70.6 79.7 75.1 85.3 y Jul Aug Sep Oct Nov Dec WB MCDB WB MCDB WB MCDB WB MCDB WB MCDB 19m 19n 19n 19p
		0.4% 80.8 91.9 79.5 90.2 76.0 85.1 67.9 75.8 62.2 66.1 58.8 61.8 1% 79.5 89.8 78.5 88.8 74.6 83.1 66.3 73.8 60.7 64.7 56.3 59.0 2% 78.3 88.7 77.6 87.5 73.1 81.3 64.9 72.3 59.2 63.3 51.3 54.1 Monthly Mean Daily Temporature Range
		Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 20a 20b 20c 20d 20e 20f 20g 20h 20i 20i 20i 14.2 14.3 16.2 18.7 20.7 20.6 19.2 17.9 19.2 19.0 14.8 13.5
		WMO/# World Meteorological Organization number Lat Latitude, * Long Long Long Elevation, ft StdP Standard pressure at station elevation, pai Long Longitude, * DB Dry hulb temperature, *F PP Dew colin, ft W4 bubb temperature, *F WS Wind speed, mph Enth Enthalpy, Btu/b HR Humidity ratio, grains of moisture perito d'ny air MCDB Mean coincident dry bubb temperature, *F DCDP Mean coincident dry bubb temperature, *F MCVB MCWS Mean coincident dry bubb temperature, *F PCWD Prevailing coincident wind direction, *, 0 = North, 90 = East North, 90 = East

Heating Load Design

Design conditions for CHICAGO, IL, USA

Station Information								
Station name	WMO#	Lat	Long	Elev	StdP	Hours +/- UTC	Time zone code	Period
1a	1b	1c	1d	1e	1f	1g	1h	1i
CHICAGO	725300	42.00N	87.88W	623	14.368	-6.00	NAC	7201
Annual Heating and Humidification De	sign Conditions							
r 1 1			D/11000					

Coldest	Heatir	ng DB		Hum	nidification D	P/MCDB and	d HR		(Coldest mont	MCWS/PCWD			
month	Пеаш	IG DB		99.6%		99%			0.4	4%	1	%	to 99.6% DB	
monu	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD
2	3a	Зb	4a	4b	4c	4d	4e	4f	5a	5b	5c	5d	6a	6b
1	-5.0	0.8	-15.7	2.4	-3.5	-9.8	3.3	1.7	28.6	23.5	26.3	24.6	10.9	270

Cooling Load Design

Annual Cooling, Dehumidification, and Enthalpy Design Conditions

Hottest	Hottest			Cooling D	DB/MCWB					Evaporation	NWB/MCDB			MCWS	/PCWD
	month	0.4	1%	1	%	2	%	0.	4%	1	%	2	%	to 0.4	% DB
month	DB range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	9a	9b	9c	9d	9e	9f	10a	10b	10c	10d	10e	10f	11a	11b
7	19.2	91.7	74.9	88.7	73.4	85.9	71.8	77.8	88.1	76.1	85.2	74.3	82.6	11.8	230
															'
			Dehumidific	ation DP/M0	CDB and HR						Enthalp	y/MCDB			
	0.4%			1%			2%		0.4	4%	1	%	2	%	
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB]
12a	12b	12c	12d	12e	12f	12g	12h	12i	13a	13b	13c	13d	13e	13f	5
74.8	133.3	84.2	73.0	125.6	82.1	71.4	118.4	80.1	34.0	88.2	32.2	85.2	30.4	82.5	

Monthly Me	ean Daily Te	mperature	Range									
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1
20a	20b	20c	20d	20e	20f	20g	20h	20i	20j	20k	201	•
14.2	14.3	16.2	18.7	20.7	20.6	19.2	17.9	19.2	19.0	14.8	13.5	

$$t = t_{peak} - DR \sum_{i=0}^{11} \left[a_i \cos\left(\frac{2 \times \pi \times \theta}{24}\right) + b_i \sin\left(\frac{2 \times \pi \times \theta}{24}\right) \right]$$

•
$$t$$
 = air temperature °F

- t_{peak} = peak design temperature °F
- DR = daily range °F • a_i, b_i = coefficients from
 - = coefficients from the ASHRAE Load Calculation Table
- *θ* = T
- = The apparent solar time in decimal form, dimensionless

i	0	1	2	3	4	5	6	7	8	9	10	11
a _i	0.5363	0.3482	-0.0732	0.002	0.0104	-0.0041	0.0025	-0.0004	-0.0038	-0.0003	0.0032	-0.0005
b _i	0	0.3426	-0.0491	-0.0194	0.0123	0.0049	-0.0017	-0.0027	0.0036	0.0006	0	0.0002

• Use proxy for the series part of calculation:

$$t = t_{peak} - DR \times f$$

Time (Hr)	f	Time (Hr)	f	Time (Hr)	f
1	0.88	9	0.55	17	0.14
2	0.92	10	0.38	18	0.24
3	0.95	11	0.23	19	0.39
4	0.98	12	0.13	20	0.5
5	1	13	0.05	21	0.59
6	0.98	14	0	22	0.68
7	0.91	15	0	23	0.75
8	0.74	16	0.06	24	0.82

CLASS ACTIVITY

Class Activity

- Question: From the tables, calculate the following variables (Use both the uploaded page and your handbook):
 - □ 1% condition in Chicago for the hottest month
 - Daily range
 - □ Temperature at 5 PM

Class Activity

Annual Cooling, Dehumidification, and Enthalpy Design Conditions

Hottest	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDB			MCWS	/PCWD
month	month	0.4	1%	1	%	2	%	0.4	4%	1	%	2	%	to 0.4	% DB
monui	DB range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	9a	9b	9C	9d	9e	9f	10a	10b	10c	10d	10e	10f	11a	11b
7	19.2	91.7	74.9	88.7	73.4	85.9	71.8	77.8	88.1	76.1	85.2	74.3	82.6	11.8	230
			Dehumidific	ation DP/MC	DB and HR						Enthalp	y/MCDB			
	0.4%			1%			2%		0.4	4%	1	%	2	%	
DP	0.4% HR	MCDB	DP	1% HR	MCDB	DP	2% HR	MCDB	0.4 Enth	4% MCDB	1 Enth	% MCDB	2 Enth	% MCDB	
DP 12a		MCDB 12c	DP 12d		MCDB 12f	DP 12g		MCDB 12i							

Time (<u>Hr</u>)	f	Time (Hr)	f	Time (<u>Hr</u>)	<u>_ f</u> _
1	0.88	9	0.55	17	0.14
22	0.92	10	0.38	18	0.24
3	0.95	11	0.23	19	0.39
4	0.98	12	0.13	20	0.5
5	1	13	0.05	21	0.59
6	0.98	14	0	22	0.68
7	0.91	15	0	23	0.75
8	0.74	16	0.06	24	0.82

 $t = 88.7 \ ^{\circ}F \ -0.14 \times 19.2 \ ^{\circ}F = 86.01 \ ^{\circ}F$

Class Activity

 How does the daily hourly design temperature profile look like?