CAE 464/517 HVAC Systems Design Spring 2021

March 09, 2021

Air distribution systems: Course project and pressure loss in fittings

Built Environment Research @ IIT] 🗫 🎧 🎮 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

HOMEWORK / PROJECT

RECAP

• We need to consider local friction and duct friction losses together:

$$H_{Lf} = \left[K + f\left(\frac{L}{D}\right)\right] \left(\frac{V^2}{2g}\right)$$

Can we have a simplified version for friction loss in ductwork?

Recap

• We define circular equivalent of rectangular ducts as:

$$D_e = 1.30 \frac{(ab)^{0.625}}{(a+b)^{0.25}}$$

- Where:
 - \square *D_e*: Circular equivalent of a rectangular duct (in)
 - \Box a: Height of duct (in)
 - \Box *b*: Width of duct (in)

Recap

										8										
Circular							Lei	ngth of	One Si	ide of F	Rectang	gular D	uct (a)	, in.						
Duct	4	5	6	7	8	9	10	12	14	16	18	20	22	24	26	28	30	32	34	36
in.							Leng	gth Adj	jacent S	Side of	Rectan	gular	Duct (<i>l</i>), in.						
5	5																			
5.5	6	5																		
6	8	6																		
6.5	9	7	6																	
7	11	8	7																	
7.5	13	10	8	7																
8	15	11	9	8																
8.5	17	13	10	9																
9	20	15	12	10	8															
9.5	22	17	13	11	9															
10	25	19	15	12	10	9														
10.5	29	21	16	14	12	10														
11	32	23	18	15	13	11	10													
11.5		26	20	17	14	12	11													
12		29	22	18	15	13	12													
12.5		32	24	20	17	15	13													
13		35	27	22	18	16	14	12												
13.5		38	29	24	20	17	15	13												
14			32	26	22	19	17	14												
14.5			35	28	24	20	18	15												
15			38	30	25	22	19	16	14											
16			45	36	30	25	22	18	15											
17				41	34	29	25	20	17	16										
18				47	39	33	29	23	19	17										
19				54	44	38	33	26	22	19	18									
20					50	43	37	29	24	21	19									
21					57	48	41	33	27	23	20									

Recap

• There are a couple of components required for the design of an air distribution

PRESSURE LOSS IN FITTINGS

 For all fittings except junctions, the pressure loss in a fitting can be written as

$$\Delta p_{total} = C_o \; p_{\nu,0}$$

- \Box *C*_o: Local loss coefficient of fitting (dimensionless)
- $\Box \Delta p_{total}$: Fitting total pressure loss (in w.c.)
- \square $p_{v,o}$: Velocity pressure at section "o" of fitting (in w.c.)

$$\square p_{\nu,o} = \left(\frac{V_o}{4,005}\right)^2$$

 \Box V_o: Velocity in section of fitting

• Pressure drop calculations (elbows and transitions)

$$p_{\nu,o} = \left(\frac{V_o}{4,005}\right)^2$$

Duct velocity V _o (fpm)	Duct pressure p_{v} (in w.c.)
4,000	1.00
3,000	0.56
2,000	0.25
1,000	0.06

 Pressure drop calculations for converging and diverging fittings are documents in the Handbook:

			Loss C	oefficient
Code	Description	Efficiency	Main ^a	Branch ^b
SD5-12	Tee, 45° entry branch	Highest	0.15	0.64
SD5-4	Wye, 45°, Straight body branch with 45° elbow, 90° to main	_	0.15	0.74
SD5-11	Tee, Conical branch	_	0.15	0.87
SD5-10	Tee, Conical branch tapered into body	_	0.15	1.10
SD5-9	Тее	Lowest	0.15	1.80

 Table 10
 Options for Selecting 90° Takeoff

- Local loss coefficient in elbow is a function of:
 - □ Turning angle of elbow
 - □ Relative radius of curvature of throat radius to width of duct
 - Installation of vanes
 - □ Shape of the cross section of the duct

 ASHRAE or SMACNA have different apps and documents for providing these losses

SHARE THIS 🔽 🖪 🖂 🧲

https://www.ashrae.org/technical-resources/bookstore/duct-fitting-database

- You can use other resources (e.g., Chapter 8 of the Price Industries Handbook)
- Older version of ASHRAE Handbook

• Dampers (e.g., parallel blade):

$$C_0 = \frac{\Delta p_0}{p_v}$$

Coeffici	Coefficient C												
I/D		θ											
L/K	80°	70°	60°	50°	40°	30°	20°	10°	0° fully open				
0.3	116	32	14	9.0	5.0	2.3	1.4	0.79	0.52				
0.4	152	38	16	9.0	6.0	2.4	1.5	0.85	0.52				
0.5	188	45	18	9.0	6.0	2.4	1.5	0.92	0.52				
0.6	245	45	21	9.0	5.4	2.4	1.5	0.92	0.52				
0.8	284	55	22	9.0	5.4	2.5	1.5	0.92	0.52				
1.0	361	65	24	10	5.4	2.6	1.6	1.0	0.52				
1.5	576	102	28	10	5.4	2.7	1.6	1.0	0.52				

• Dampers (e.g., opposed blade):

$$C_0 = \frac{\Delta p_0}{p_v}$$

Abrupt	Exit - Co	oefficien	t <i>C</i>						
I/D					θ				
L/K	80°	70°	60°	50°	40°	30°	20°	10°	0° fully open
0.3	807	284	73	21	9.0	4.1	2.1	0.85	0.52
0.4	915	332	100	28	11	5.0	2.2	0.92	0.52
0.5	1045	377	122	33	13	5.4	2.3	1.0	0.52
0.6	1121	411	148	38	14	6.0	2.3	1.0	0.52
0.8	1299	495	188	54	18	6.6	2.4	1.1	0.52
1.0	1521	547	245	65	21	7.3	2.7	1.2	0.52
1.5	1654	677	361	107	28	9.0	3.2	1.4	0.52

$$\frac{L}{R} = \frac{NW}{2(H+W)}$$

• Supply outlets (from the same performance data tables):

PDF/PDN/PDC/PDMC/PDSP

Perforated Face Supply Diffuser

PERFORMANCE DATA

PDF/PDFE - 16 in. x 16 in.

Inlet	Neck Velocity (fpm)	300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure (in. w.g	.) .006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure (in. w.g.)	.012	.021	.033	.047	.064	.084	.106	.131	.189	.257
	Flow Rate (cfm)	59	78	98	118	137	157	176	196	235	274
	Sound (NC)	-	-	-	19	24	28	32	35	41	46
6 Ø	4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
	Throw 3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
	(ft.) 2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
	1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
	Total Pressure (in. w.g.)	.013	.024	.037	.054	.073	.096	.121	.150	.215	.293
	Flow Rate (cfm)	75	100	125	150	175	200	225	250	300	350
	Sound (NC)	-	-	17	22	27	31	35	38	44	48
6 x 6	4 Way	1-1-5	1-2-7	2-4-9	2-5-9	3-6-10	4-7-11	5-8-11	6-9-12	7-9-13	8-10-14
	Throw 3 Way	1-2-6	1-3-8	2-5-10	3-6-11	4-7-12	5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
	(ft.) 2 Way	1-2-8	2-4-11	3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
	1 Way	1311	2514	3817	5 11 19	7 12 20	0 14 22	11 16 23	12 17 24	14 19 26	16 20 20
	Total Pressure (in. w.g.)	.017	.029	.046	.066	.090	.118	.149	.184	.265	.360
	Flow Rate (cfm)	105	140	175	209	244	279	314	349	419	489
	Sound (NC)	-	-	21	26	31	35	39	42	48	52
8 Ø	4 Way	1-2-7	2-3-9	2-5-10	3-7-11	5-8-12	6-9-13	7-10-14	7-10-14	9-11-16	10-12-17
	Throw 3 Way	1-2-8	2-4-11	3-7-12	4-8-13	6-9-14	7-11-15	8-11-16	9-12-17	11-13-19	12-14-20
	(ft.) 2 Way	1-3-11	2-6-14	4-9-16	6-11-18	8-12-19	9-14-20	11-15-22	12-16-23	14-18-25	16-19-27
	1 Way	2-4-13	3-7-18	5-11-20	7-13-22	10-15-24	12-18-26	13-19-27	15-20-29	18-22-31	19-24-34
	Total Pressure (in. w.g.)	.019	.034	.053	.076	.104	.136	.172	.212	.305	.415

Can you calculate the static and dynamic pressure drops?

- Any other components in the duct system to consider?
 - □ Heating coil
 - □ Cooling coil
 - Outdoor air louvers

- Although they often account for a major portion of the total pressure loss, the additional losses due to entries and exits, fittings and dampers are traditionally referred to as minor losses
- These losses represent additional energy dissipation in the flow, usually caused by secondary flows induced by curvature or recirculation
- The minor losses are any total pressure loss present in addition to the total pressure loss for the same length of straight pipe

CLASS ACTIVITY

Class Activity

- Problem:
 - Compute the lost pressure in a 6 in, 90-degree plated elbow that has 150 cfm of airflow through it
 - □ The ratio of turning radius to diameter is 1.5

CD3-5 Elbow, Pleated, 90 Degree, r/D = 1.5

<i>D</i> , in.	4	6	8	10	12	14	16
C_o	0.57	0.43	0.34	0.28	0.26	0.25	0.25

Class Activity

• Solution (IP Unit):

CD3-5 Elbow, Pleated, 90 Degree, r/D = 1.5

<i>D</i> , in.	4	6	8	10	12	14	16
C_o	0.57	0.43	0.34	0.28	0.26	0.25	0.25
		1					

Calculate velocity

$$V = \frac{Q}{A} = \frac{Q}{\left(\frac{\pi}{4}\right)D^2} = \frac{150 \times 4 \times 144}{\pi \times 36} = 764 \, fpm$$

• Calculate pressure (IP Unit):

$$p_v = \left(\frac{V}{4,005}\right)^2 = \left(\frac{746}{4,005}\right)^2 = 0.036 \text{ in w.c.}$$

• Calculate fitting total pressure loss:

$$p_T = C_0 p_v = 0.43 \times 0.036 = 0.016$$
 in w. c.

Class Activity

• Solution (SI Unit):

CD3-5 Elbow, Pleated, 90 Degree, r/D = 1.5

<i>D</i> , in.	4	6	8	10	12	14	16
C_o	0.57	0.43	0.34	0.28	0.26	0.25	0.25
		1					

Calculate velocity

$$V = \frac{Q}{A} = \frac{Q}{\left(\frac{\pi}{4}\right)D^2} = \frac{(4.25\frac{m^3}{min})\times 4}{\pi \times (0.1524)^2 (60\frac{s}{min})} = 3.88\frac{m}{s}$$

Calculate pressure

$$p_{\nu} = \left(\frac{V}{1.29}\right)^2 = \left(\frac{3.88}{1.29}\right)^2 = 3.89 \ Pa$$

$$p_T = C_0 p_v = 0.43 \times 3.89 = 1.627 \ Pa$$

DESIGN RULES

- The most important is that the duct fitting loss is a function of the velocity pressure in the duct, and that duct velocity pressure is a function of the square of the flow rate:
 - In practical terms, it means that the pressure losses associated with a poor fitting in a low velocity duct system will be much less than the losses associated with the same fitting in a higher velocity duct system

- A second important rule is that the ratio of perimeter to cross sectional area for a large duct is generally much smaller than it is for a small duct:
 - In practical terms, the velocities in a large duct will be much higher than they are in a smaller duct when designed at equal friction rates
 - As a result, the potential for a poor fitting to cause a static pressure problem is much higher in the larger ducts associated with an air handling system

• Some common fitting terminology are:

Fitting Function	Geometry	Category	Sequential Number
S: S upply	D: Round (D iameter)	1. Entries	1, 2, 3,
		2. Exits	
E: Exhaust / Return	R: R ectangular	3. Elbows	
		4. Transitions	
C: C ommon (supply/ return)	F: F lat oval	5. Junctions	
		6. Obstructions	
		7. Fan and system interactions	
		8. Duct-mounted equipment	
		9. Dampers	
		10. Hoods	

- A few items to consider are:
 - □ Space pressure relationships
 - □ Fire and smoke control
 - Duct insulation
 - Duct system leakage
 - □ System and duct noise
 - □ Testing and balancing

• See Table 12 for the recommended maximum airflow velocities:

	NC or RC Rating	Maximum Airf fpn	low Velocity, 1
Duct Location	in Adjoining Occupancy	Rectangular Duct	Round Duct
1	2	3	4
In shaft or above	45	3500	5000
solid drywall ceilir	35	2500	3500
	25 or less	1500	2500
Above suspended	45	2500	4500
acoustical ceiling	35	1750	3000
	25 or less	1000	2000
Duct within occupied	45	2000	3900
space	35	1450	2600
	25 or less	950	1700

 Table 12
 Recommended Maximum Airflow Velocities to Achieve

 Specified Acoustic Design Criteria*

 Look at Table 9 for different design criterion for recommended duct velocity and diameter:

A. Design Criterion: 0.08 in. of water per 10	00 ft or 2500 fpm N	laximum				
Minimum Clearance for Duct, in.	18	22	26	30	34	38
Single Round Duct						
Duct diameter, in.	14	18	22	26	30	34
Airflow, cfm	950	1900	3200	4900	7300	10,000
Velocity, fpm	889	1075	1212	1329	1487	1586
Rectangular Duct with Aspect Ratio $= 2$						
Rectangular $W \times H$, in.	28×14	36 × 18	44×22	52 × 26	60 × 30	68×34
Airflow, cfm	2900	5500	9800	14,900	21,200	30,000
Velocity, fpm	1065	1222	1458	1587	1696	1869
Equivalent diameter D_e , in.	21.3	27.4	33.5	39.6	45.7	51.8
Flat Oval Duct with Aspect Ratio = 2						
Flat oval $A \times a$, in.	28×14	36 × 18	44×22	52×26	60 × 30	68×34
Airflow, cfm	2700	5400	9000	14,000	21,000	28,000
Velocity, fpm	1111	1344	1500	1670	1882	1954
Equivalent diameter D_e , in.	20.7	26.6	32.5	38.4	44.4	50.3
Two Round Ducts in Parallel						
Duct diameter, in.	Two 12	Two 16	Two 20	Two 24	Two 28	Two 32
Airflow, cfm	630 each	1350 each	2450 each	3950 each	5950 each	8500 each
Velocity, fpm	802	967	1123	1257	1391	1522

 Table 9
 Maximum Airflow of Round, Flat Oval and Rectangular Ducts as Function of Available Ceiling Space

EXAMPLE

• **Example:** Compute the loss in total pressure for a round 90-dgree branch and straight-through section, a tee. The common section is 12 in. in diameter, and the straight-through section has a 10 in. diameter with a flow rate of 1,100 cfm. The branch flow rate is 250 cfm through a 6 in. duct.

				C_{t}	, Values	1						
					Q_b/Q_c							
A_b/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
0.1	1.20	0.62	0.80	1.28	1.99	2.92	4.07	5.44	7.02			
0.2	4.10	1.20	0.72	0.62	0.66	0.80	1.01	1.28	1.60			
0.3	8.99	2.40	1.20	0.81	0.66	0.62	0.64	0.70	0.80			
0.4	15.89	4.10	1.94	1.20	0.88	0.72	0.64	0.62	0.63			
0.5	24.80	6.29	2.91	1.74	1.20	0.92	0.77	0.68	0.63			
0.6	35.73	8.99	4.10	2.40	1.62	1.20	0.96	0.81	0.72			
0.7	48.67	12.19	5.51	3.19	2.12	1.55	1.20	0.99	0.85			
0.8	63.63	15.89	7.14	4.10	2.70	1.94	1.49	1.20	1.01			
0.9	80.60	20.10	8.99	5.13	3.36	2.40	1.83	1.46	1.20			
	C _s Values											
					Q_s/Q_c							
A_s/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
0.1	0.13	0.16										
0.2	0.20	0.13	0.15	0.16	0.28							
0.3	0.90	0.13	0.13	0.14	0.15	0.16	0.20					
0.4	2.88	0.20	0.14	0.13	0.14	0.15	0.15	0.16	0.34			
0.5	6.25	0.37	0.17	0.14	0.13	0.14	0.14	0.15	0.15			
0.6	11.88	0.90	0.20	0.13	0.14	0.13	0.14	0.14	0.15			
0.7	18.62	1.71	0.33	0.18	0.16	0.14	0.13	0.15	0.14			
0.8	26.88	2.88	0.50	0.20	0.15	0.14	0.13	0.13	0.14			
0.9	36.45	4.46	0.90	0.30	0.19	0.16	0.15	0.14	0.13			

- Solution:
- Calculate velocity in each section:

$$V_c = \frac{Q_c}{A_c} = \frac{Q_c}{\left(\frac{\pi}{4}\right)D_c^2} = \frac{1,100}{\frac{\pi}{4} \times \left(\frac{12}{12}\right)^2} = 1,400 \, fpm$$

$$V_b = \frac{Q_b}{A_b} = \frac{Q_b}{\left(\frac{\pi}{4}\right)D_b^2} = \frac{250}{\frac{\pi}{4} \times \left(\frac{6}{12}\right)^2} = 1,273 \, fpm$$

$$V_{s} = \frac{Q_{s}}{A_{s}} = \frac{Q_{s}}{\left(\frac{\pi}{4}\right)D_{s}^{2}} = \frac{850}{\frac{\pi}{4} \times \left(\frac{10}{12}\right)^{2}} = 1,558 \, fpm$$

- Solution:
- The ratio of the branch to the common flow rate is:

$$\frac{Q_b}{Q_c} = \frac{250}{1,100} = 0.23$$

• The ratio of the main to the common flow rate is:

$$\frac{Q_s}{Q_c} = \frac{850}{1,100} = 0.77$$

- Solution:
- The ratio of the branch to the common are is:

$$\frac{A_b}{A_c} = \left(\frac{6}{12}\right)^2 = 0.25$$

• The ratio of the main to the common are is:

$$\frac{A_s}{A_c} = \left(\frac{10}{12}\right)^2 = 0.69$$

- Solution:
- Using the loss coefficient for the branch, we have

$$\Delta p_{0b} = C_b \left(\frac{V_b}{4,005}\right)^2 = 1.55 \left(\frac{1,273}{4,005}\right)^2 = 0.16 \text{ in } w.c.$$

	C _b Values											
	Q_b/Q_c											
A_b/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
0.1	1.20	0.62	0.80	1.28	1.99	2.92	4.07	5.44	7.02			
0.2	4.10	1.20	0.72	0.62	0.66	0.80	1.01	1.28	1.60			
0.3	8.99	2.40	1.20	0.81	0.66	0.62	0.64	0.70	0.80			
0.4	15.89	4.10	1.94	1.20	0.88	0.72	0.64	0.62	0.63			
0.5	24.80	6.29	2.91	1.74	1.20	0.92	0.77	0.68	0.63			
0.6	35.73	8.99	4.10	2.40	1.62	1.20	0.96	0.81	0.72			
0.7	48.67	12.19	5.51	3.19	2.12	1.55	1.20	0.99	0.85			
0.8	63.63	15.89	7.14	4.10	2.70	1.94	1.49	1.20	1.01			
0.9	80.60	20.10	8.99	5.13	3.36	2.40	1.83	1.46	1.20			

$$\frac{A_b}{A_c} = 0.25$$

$$\frac{Q_b}{Q_c} = 0.23$$

- Solution:
- Using the loss coefficient for the branch, we have

$$\Delta p_{0s} = C_s \left(\frac{V_s}{4,005}\right)^2 = 0.14 \left(\frac{1,558}{4,005}\right)^2 = 0.021 \text{ in } w.c.$$

C Values

		C _s values										
		Q_s/Q_c										
	A_s/A_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
A_{s}	0.1	0.13	0.16									
$\frac{1}{4} = 0.69$	0.2	0.20	0.13	0.15	0.16	0.28						
A _C	0.3	0.90	0.13	0.13	0.14	0.15	0.16	0.20				
	0.4	2.88	0.20	0.14	0.13	0.14	0.15	0.15	0.16	0.34		
0.	0.5	6.25	0.37	0.17	0.14	0.13	0.14	0.14	0.15	0.15		
$\frac{4s}{10} = 0.77$	0.6	11.88	0.90	0.20	0.13	0.14	0.13	0.14	0.14	0.15		
Q_c	0.7	18.62	1.71	0.33	0.18	0.16	0.14	0.13	0.15	0.14		
- •	0.8	26.88	2.88	0.50	0.20	0.15	0.14	0.13	0.13	0.14		
	0.9	36.45	4.46	0.90	0.30	0.19	0.16	0.15	0.14	0.13		

EXAMPLE

 Example: Converging Tee 90° Round Main and Branch. Main is 10", Branch is 7". Air flow Main is 1000 cfm. Air flow Branch is 500 cfm.

B. CONVERGING TEE, 90°, ROUND

Branch, Coefficient C (See Note 8)											
O _b /Q _c	A_b/A_c										
	0.1	0.2	0.3	0.4	0.6	0.8	1.0				
0.1	0.40	-0.37	-0.51	-0.46	-0.50	-0.51	-0.52				
0.2	3.8	0.72	0.17	-0.02	-0.14	-0.18	-0.24				
0.3	9.2	2.3	1.0	0.44	0.21	0.11	-0.08				
0.4	16	4.3	2.1	0.94	0.54	0.40	0.32				
0.5	26	6.8	3.2	1.1	0.66	0.49	0.42				
0.6	37	9.7	4.7	1.6	0.92	0.69	0.57				
0.7	43	13	6.3	2.1	1.2	0.88	0.72				
0.8	65	17	7.9	2.7	1.5	1.1	0.86				
0.9	82	21	9.7	3.4	1.8	1.2	0.99				
1.0	101	26	12	4.0	2.1	1.4	1.1				

Main, Coefficient C (See Note 8)										
O_b/Q_c	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9								1.0	
С	0.16	0.27	0.38	0.46	0.53	0.57	0.59	0.60	0.59	0.55

• Solution

$$A_c = \frac{\left(\frac{\pi \times 10^2}{4}\right)}{144} = 0.55 \, ft^2$$

$$A_b = \frac{\left(\frac{\pi \times 7^2}{4}\right)}{144} = 0.24 \, ft^2$$

$$V_c = \frac{1,000}{0.55} = 1818 \, fpm$$

$$V_b = \frac{2,083}{0.24} = 2083 \, fpm$$

• Solution

$$p_{v,c} = \left(\frac{1818}{4005}\right)^2 = 0.21 \text{ in w. c.}$$

$$p_{\nu,b} = \left(\frac{2083}{4005}\right)^2 = 0.27 \text{ in w. c.}$$

$$\frac{Q_b}{Q_c} = \frac{500}{1000} = 0.50$$

$$\frac{A_b}{A_c} = \frac{0.24}{0.5} = 0.44$$

• Solution

B. CONVERGING TEE, 90°, ROUND

	Branch, Coefficient C (See Note 8)										
	O _b /Q _c	<u>Ab</u> /Ac									
A _b Q _b		0.1	0.2	0.3	0.4	ł	0.6	0.8	3	1.0	
	0.1	0.40	-0.37	-0.51	-0.4	6	-0.50	-0.5	51	-0.52	
	0.2	3.8	0.72	0.17	-0.0	2	-0.14	-0.1	8	-0.24	
As 902	0.3	9.2	2.3	1.0	0.4	4	0.21	0.1	1	-0.08	
	0.4	16	4.3	2.1	0.9	4	0.54	0.4	0	0.32	
	0.5	26	6.8	3.2	1.1		0.66	0.4	9	0.42	
$\langle \rangle \langle \rangle$	0.6	37	9.7	4.7	1.0)	0.92	0.6	9	0.57	
	0.7	43	13	-6.3	2.1	L.	1.2	0.8	8	0.72	
	0.8	65	1-7	7.9	2.7	7	1.5	1.1	l	0.86	
Qc	0.9	82	21	9.7	3.4	ł	1.8	1.2	2	0.99	
	1.0	101	26	12	4.()	2.1	1.4	1	1.1	
			Mai	Caefficia	ent C (S	a No	(to 8)				
	Wiam, Coefficient C (See Note 8)										
	O _b /Q _c	0.1	0.2 0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
$C_{h} = 1.0$	С	0.16	0.27 0.38	0.46	0.53	0.57	0.59	0.60	0.59	0.55	
D											

 $\Delta p_{t,b-c} = 1 \times 0.21 = 0.21$ in w.c.

$$\Delta p_{t,b-c} = 053 \times 0.27 = 0.14$$
 in w.c.