CAE 464/517 HVAC Systems Design Spring 2021

January 28, 2021

Psychrometrics Processes and Space Conditioning

Built Environment Research @ IIT] 🗫 🎧 🍂 🥂

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

RECAP OF INTRO TO PSYCHROMETRICS

• If needed, additional resources are available:

http://built-envi.com/courses/cae-331-513-building-science-fall-2019/

Recap

• Summary of Psychrometric Processes

• Enthalpy of moist air is given as:

$$h_a = 0.24 T_{db} + W(1061 + 0.444 T_{db})$$
 IP
 $h_a = 1.006 T_{db} + W(2501 + 1.86 T_{db})$ SI

Recap

- Thermodynamic properties of moist air
- See Table 2 of Chapter 1

Temp., °F	Humidity Ratio <i>W_s</i> , lb _w /lb _{da}	Specific Volume, ft ³ /lb _{da}			Specifi	c Enthalpy,	Btu/lb _{da}	Specific Entropy, Btu/lb _{da} ·°F		Temp., °F	
t		v _{da}	v _{as}	vs	h _{da}	h _{as}	h _s	S _{da}	s _s	t	
60	0.011087	13.096	0.233	13.329	14.415	12.052	26.467	0.02947	0.05389	60	
61	0.011496	13.122	0.242	13.364	14.655	12.502	27.157	0.02994	0.05522	61	
62	0.011919	13.147	0.251	13.398	14.895	12.966	27.862	0.03040	0.05657	62	
63	0.012355	13.172	0.261	13.433	15.135	13.446	28.582	0.03086	0.05795	63	
64	0.012805	13.198	0.271	13.468	15.376	13.942	29.318	0.03132	0.05936	64	
65	0.013270	13.223	0.281	13.504	15.616	14.454	30.071	0.03178	0.06080	65	
66	0.013750	13.248	0.292	13.540	15.856	14.983	30.840	0.03223	0.06226	66	
67	0.014246	13.273	0.303	13.577	16.097	15.530	31.626	0.03269	0.06376	67	
68	0.014758	13.299	0.315	13.613	16.337	16.094	32.431	0.03315	0.06529	68	
69	0.015286	13.324	0.326	13.650	16.577	16.677	33.254	0.03360	0.06685	69	
70	0.015832	13.349	0.339	13.688	16.818	17.279	34.097	0.03406	0.06844	70	
71	0.016395	13.375	0.351	13.726	17.058	17.901	34.959	0.03451	0.07007	71	
72	0.016976	13.400	0.365	13.764	17.299	18.543	35.841	0.03496	0.07173	72	
73	0.017575	13.425	0.378	13.803	17.539	19.204	36.743	0.03541	0.07343	73	
74	0.018194	13.450	0.392	13.843	17.779	19.889	37.668	0.03586	0.07516	74	
75	0.018833	13.476	0.407	13.882	18.020	20.595	38.615	0.03631	0.07694	75	
76	0.019491	13.501	0.422	13.923	18.260	21.323	39.583	0.03676	0.07875	76	
77	0.020170	13.526	0.437	13.963	18.500	22.075	40.576	0.03721	0.08060	77	
78	0.020871	13.551	0.453	14.005	18.741	22.851	41.592	0.03766	0.08250	78	
79	0.021594	13.577	0.470	14.046	18.981	23.652	42.633	0.03811	0.08444	79	

= = = = Table 2 Thermodynamic Properties of Moist Air at Standard Atmospheric Pressure, 14.696 psia (Continued)

• Additional tables in Chapter 30

Example: A closed vessel contains 0.1 ft³ of saturated liquid and 0.9 ft³ of saturated vapor R-134a in equilibrium at 90 F.

- 1. Determine the percent vapor on a mass basis.
- 2. Calculate the quality of the mixture

Solution: (From Page 30.16 and 30.17)

$$V_{liquid} = m_{liquid} v_f$$

$$m_{liquid} = \frac{V_{liquid}}{v_f} = \frac{0.1}{\frac{1}{73.58}} = 7.358 \ lbm$$

$$V_{vapor} = m_{vapor} v_g$$

$$m_{vapor} = \frac{V_{vapor}}{v_g} = \frac{0.9}{0.3999} = 2.250 \ lbm$$

Recap

Solution: (From Page 30.16 and 30.17)

$$m = m_{liquid} + m_{vapor} = 7.358 + 2.250 = 9.608$$
 lbm

$$x = \frac{m_{vapor}}{m} = \frac{2.250}{9.608} = 0.234 \ lbm$$

CLASSIFICATION OF AIR PROCESSES (CAE 331, MMAE 320)

Processes

Sensible heating or cooling:
Steady-state the energy balance is:

$$\dot{m}_a h_2 = \dot{m}_a h_1 + \dot{q}$$

Sensible heating or cooling:
Sensible

$$W_1 = W_2$$

Moist air

$$h_1 = h_{da1} + W_1 h_{\nu 1}$$
$$h_2 = h_{da2} + W_2 h_{\nu 2}$$

□ From perfect gas assumption

$$\dot{q}_{s} = \dot{m}_{a}c_{p}(T_{2} - T_{1})$$
 heating
 $\dot{q}_{s} = \dot{m}_{a}c_{p}(T_{1} - T_{2})$ cooling

CLASS ACTIVITY

 Example (sensible heating or cooling): Moist air, saturated at 35°F, enters a heating coil at a rate of 20,000 CFM. Air leaves the coil at 100°F. Find the required rate of heat addition.

Class Activity

• Solution (Psychrometric Chart)

Class Activity

• Solution (Psychrometric Chart):

$$\dot{q} = \dot{m}_{da}(h_2 - h_1)$$

$$\dot{m}_{da} = 20,000 \ CFM \times \frac{60}{12.55} = 95,620 \ lb_{da}/h$$

$$\dot{m}_{da} = (95,620) \times (28.77 - 13.01) = 1,507,000 \frac{Btu}{h}$$

• Adiabatic mixing of two moist stream:

$$\dot{m}_{da1}h_1 + \dot{m}_{da2}h_2 = \dot{m}_{da3}h_3$$

$$\dot{m}_{da1} + \dot{m}_{da2} = \dot{m}_{da3}$$

$$\frac{h_2 - h_3}{h_3 - h_1} = \frac{W_2 - W_3}{W_3 - W_1} = \frac{segment2 - 3}{segment3 - 1} = \frac{\dot{m}_{da1}}{\dot{m}_{da2}}$$

Processes

Adiabatic mixing of two moist stream

SPACE CONDITIONING

• Step 1: Develop state condition property table

Point	ΟΑ	RA	MA	DA	SA	Exhaust Return
Dry bulb						r
Wet bulb						L. Ť
RH						$q_s \longrightarrow Room$
Enthalpy						
W						Î
V						$\sim \qquad m$ Conditioner s
m _a						Outdoor Mixed
Airflow						↓ ↓

• Step 2: Develop Psychrometric chart

• Sensible Heat Ratio (SHR)

Sensible Heat $SHR = \frac{SURE}{Total Heat}$

- Which space can potentially have the lowest SHR?
 - □ Server room
 - □ Auditorium
 - □ An individual office
 - School
 - Restaurant
 - Grocery store

 Important factor to have a good understanding of heating and cooling loads known as "space loads"

- r: Return air
- s: Supply air
- Q_l : Latent heat transfer
- Q_s : Sensible heat transfer

• A simple cooling process is the "re-circulation" process

• Cooling coil load is different than the space loads

 A typical AC system may include outdoor air, mixing, return, and exhaust

A typical AC system with the influence of the fan falls this process

A typical winter heat conditioning space heat loss follows the following schematics

• A typical winter system follows this diagram

What do we need a humidifier?

CLASS ACTIVITY

 Question: Conditioned air is supplied to a space at a dry bulb of 54 °F and relative humidity of 90% at the rate of 1,500 CFM. The sensible heat ratio for the space is 0.8, and the space is to be maintained at the 75 °F. Determine the sensible and latent cooling loads for the space.

CONTRIBUTION OF DIFFERENT LOAD COMPONENTS (CAE 331)

What heat transfer processes do we have in a building?
Radiation (e.g. indoor and outdoor shortwave, longwave)

□ Conduction (e.g. through wall, window)

Convection (e.g. outdoor and indoor convection, infiltration, ventilation)

Residential buildings

Heat Losses						
Window Conduction	22%					
Wall	21%					
Infiltration	18%					
Outside air	15%					
Roof	12%					
Ground	6%					
Floor	2%					

A Bottom-Up Engineering Estimate of the Aggregate Heating and Cooling Loads of the Entire US Building Stock

Residential buildings

Heat Gains					
Lighting	42%				
Solar gain through windows	32%				
Equipment	17%				

A Bottom-Up Engineering Estimate of the Aggregate Heating and Cooling Loads of the Entire US Building Stock

• Large office building

