CAE 438/538 Control of Building Environmental Systems Fall 2021

September 07, 2021 Instrumentation (2)

Built Environment Research @ IIT] 🐋 🎧 🎮 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

• Signal Types:

□ Analog (mostly current or voltage)

- ✤ Analog Input (AI)
- Analog Output (AO)
- □ Digital (discrete signals)
 - Digital Input (DI)
 - Digital Output (DO)

• We look at the context of building automation system to define inputs and outputs to a controller:

 It is always good to look at drawings from different design firms:

 It is always good to look at drawings from different design firms:

• System vs. component

<u>TYPICAL - TOILET EXHAUST FAN - EF-1,</u> 3, 4, 5, 6, 15, 23

- Summary:
 - AI: Can be used to send a sensor measurement (e.g., supply air temperature)
 - DI: Can be used to indicate if a device is turned on or not (e.g., status)
 - □ AO: Control the speed or position of a device, (e.g., VFD)
 - DO: Open and close relays and switches (e.g., turn on lights)

- Voltage inputs are:
 - □ Most common types are:
 - 12 VAC
 - 12 VDC
 - 24 VAC
 - 24 VDC
 - 120 VAC

V: Volts AC: Alternating Current DC: Direct Current

- Analog output:
 - □ Can be used to read a variable measurement
 - Examples are temperature, humidity and pressure sensor (e.g., 4-20 mA, 0-10 volt)

There are two types of measurements:

- Primary measurements
- Derived measurements

- Sensor
- Transducer
- Transmitter

- Two main types of data transmission:
 - □ Hard-wired
 - □ Wireless

- Data acquisition is an interface system makes every transducer and sensor computer-compatible
- Integration of the transducer to the system leads to lose its identity
- A data acquisition system usually consists of:
 - □ Sensors
 - □ Data acquisition measurement hardware
 - □ A computer with programmable software

CLASS ACTIVITY

Class Activity

• Form 3 or 4 groups

 Look at "cae438_538_f21 lecture03 Instrumentation M703_T …" file on Blackboard

 Each pick one system and fill in the spreadsheet: <u>https://docs.google.com/spreadsheets/d/1duxKfuy1kpYNJx</u> <u>XT6e9bHjVBBqUXnwBSBuR8Dkz4f7c/edit#gid=134215219</u> <u>5</u>

TEMPERATURE SENSORS

- These techniques work based on:
 - □ Increase or decrease in size (e.g., expansion or contraction)
 - □ Increase in pressure
 - Change of color
 - □ Change of state
 - □ Change of surface radiation
 - □ Change of electrical resistance
 - Generation of electromotive force
- What factors influence the selection of measurement technique?

Temperature Sensors

- Temperature-sensing elements generally detect changes in either
 - □ Relative dimension (caused by differences in thermal expansion)
 - □ The state of a vapor or liquid
 - □ Some electrical property
- Within each category, there are a variety of sensing elements to measure room, duct, water, and surface temperatures

Temperature Sensors

- For example, in the case of temperature, common sensor types are:
 - Thermistor (electric resistance decreases as temperature increases)
 - RTDs (resistance temperature devices): Electric resistance increases as temperature increases

Liquid-in-Glass Mercy (Discontinued as of March 2011)

Resistance thermometers

Bimetallic Thermometers

Thermocouple

Measurement Means	Application	Approximate ion Range, °F		Limitations	
Liquid-in-glass thermometers					
Mercury-in-glass	Temperature of gases and liquids by contact	-36/1000	0.05 to 3.6	In gases, accuracy affected by radiation	
Organic fluid	Temperature of gases and liquids by contact	-330/400	0.05 to 3.6	In gases, accuracy affected by radiation	
Resistance thermometers					
Platinum	Precision; remote readings; temperature of fluids or solids by contact	-430/1800	Less than 0.0002 to 0.2	High cost; accuracy affected by radiation in gases	
Rhodium-iron	Transfer standard for cryogenic applications	-460/-400	0.0002 to 0.2	High cost	
Nickel	Remote readings; temperature by contact	-420/400	0.02 to 2	Accuracy affected by radiation in gases	
Germanium	Remote readings; temperature by contact	-460/-400	0.0002 to 0.2		
Thermistors	Remote readings; temperature by contact	Up to 400	0.0002 to 0.2		
Thermocouples					
Pt-Rh/Pt (type S)	Standard for thermocouples on IPTS-68, not on ITS-90	32/2650	0.2 to 5	High cost	
Au/Pt	Highly accurate reference thermom- eter for laboratory applications	-60/1800	0.1 to 2	High cost	
Types K and N	General testing of high temperature; remote rapid readings by direct contact	Up to 2300	0.2 to 18	Less accurate than Pt-Rh/Pt or Au/Pt thermocouples	
Iron/Constantan (type J)	Same as above	Up to 1400	0.2 to 10	Subject to oxidation	
Copper/Constantan (type T)	Same as above; especially suited for low temperature	Up to 660	0.2 to 5		
Ni-Cr/Constantan (type E)	Same as above; especially suited for low temperature	Up to 1650	0.2 to 13		
Bimetallic thermometers	For approximate temperature	-4/1200	2, usually much more	Time lag; unsuitable for remote use	
Pressure-bulb thermometers					
Gas-filled bulb	Remote reading	-100/1200	4	Use caution to ensure installation is correct	
Vapor-filled bulb	Remote testing	-25/500	4	Use caution to ensure installation is correct	
Liquid-filled bulb	Remote testing	-60/2100	4	Use caution to ensure installation is correct	
Optical pyrometers	For intensity of narrow spectral band of high-temperature radiation (remote)	1500 and up	30	Generally requires knowledge of surface emissivity	
Infrared (IR) radiometers	For intensity of total high- temperature radiation (remote)	Any range			
IR thermography	Infrared imaging	Any range		Generally requires knowledge of surface emissivity	
Seger cones (fusion pyrometers)	Approximate temperature (within temperature source)	1200/3600	90		

		Approximate	Uncertainty,		
Measurement Means	Application	Range, °F	°F	Limitations	
Liquid-in-glass thermometers					
Mercury-in-glass	Temperature of gases and liquids by contact	-36/1000	0.05 to 3.6	In gases, accuracy affected by radiation	
Organic fluid	Temperature of gases and liquids by contact	-330/400	0.05 to 3.6	In gases, accuracy affected by radiation	
Resistance thermometers					
Platinum	Precision; remote readings; temperature of fluids or solids by contact	-430/1800	Less than 0.0002 to 0.2	High cost; accuracy affected by radiation in gases	
Rhodium-iron	Transfer standard for cryogenic applications	-460/-400	0.0002 to 0.2	High cost	
Nickel	Remote readings; temperature by contact	-420/400	0.02 to 2	Accuracy affected by radiation in gases	
Germanium	Remote readings; temperature by contact	-460/-400	0.0002 to 0.2		
Thermistors	Remote readings; temperature by contact	Up to 400	0.0002 to 0.2		

Resistance Temperature Devices

- Categorized by the material:
 - Platinum
 - □ Rhodium-iron
 - Nickel
 - □ Nickel-iron
 - Tungsten
 - □ Copper
- Also by:
 - □ Simple circuit designs
 - □ High degree of linearity
 - □ Good sensitivity
 - Excellent stability

Resistance Temperature Devices

- Platinum RTDs:
 - □ Widely used for HVAC applications
 - □ Are extremely stable and corrosion-resistant
 - □ Are highly malleable and can thus be drawn into fine wires
 - □ Can be manufactured inexpensively as thin films
 - Have wide range of applications from 13.8033 K (triple point of equilibrium hydrogen) to 1234.93 K (freezing point of silver)
 - □ Have one of the most linear relationships
 - \square Designed with a resistance of 1000 Ω at 32 °F
- The most Platinum RTDs is "Pt-1000-sensor"
 - $0 \circ C = 1000 \Omega$
 - Temperature increases or decreases by 3.85 Ω/K

Resistance Temperature Devices

Thick Film Omega Film Element

Glass sealed Biflar Winding

Typical RTD Probes

Thin Film Omega TFD Element

Thermocouples

- When two wires of dissimilar metals are joined by soldering, welding, or twisting, they form a thermocouple junction or "thermo-junction"
- An electromotive force (emf) that depends on the wire materials and the junction temperature exists between the wires (create a voltage)

Thermocouples

- Thermocouples are:
 - The most common instruments of temperature measurement for the range of 32 to 1800°F (except platinum resistance thermometers)
 - Because of their low cost, moderate reliability, and ease of use, thermocouples are widely accepted

Thermocouples

			Reference Junction Tolerance at 32°F ^a		
Thermocouple Type	Material Identification	Temperature Range, °F	Standard Tolerance (whichever is greater)	Special Tolerance (whichever is greater)	
Т	Copper versus Constantan	32 to 700	$\pm 1.8^{\circ}\text{F}$ or $\pm 0.75\%$	$\pm 0.9^{\circ}\!\mathrm{F}$ or $\pm 0.4\%$	
J	Iron versus Constantan	32 to 1400	$\pm4^{\circ}$ F or $\pm0.75\%$	± 2 °F or $\pm 0.4\%$	
Е	Nickel-10% Chromium versus Constantan	32 to 1600	$\pm 3.1^{\circ}$ F or $\pm 0.5\%$	$\pm 1.8^\circ F$ or $\pm 0.4\%$	
K	Nickel-10% Chromium versus 5% Aluminum, Silicon	32 to 2300	$\pm4^\circ F$ or $\pm0.75\%$	$\pm 2^{\circ}$ F or $\pm 0.4\%$	
Ν	Nickel-14% Chromium, 1.5% Silicon versus Nickel-4.5% Silicon, 0.1% Magnesium	32 to 2300	$\pm 4^{\circ}$ F or $\pm 0.75\%$	$\pm 2^{\circ}$ F or $\pm 0.4\%$	
R	Platinum-13% Rhodium versus Platinum	32 to 2700	$\pm 2.7^\circ F$ or $\pm 0.25\%$	$\pm 1.1^{\circ}$ F or $\pm 0.1\%$	
S	Platinum-10% Rhodium versus Platinum	32 to 2700	$\pm 2.7^\circ F$ or $\pm 0.25\%$	$\pm 1.1^{\circ}$ F or $\pm 0.1\%$	
В	Platinum-30% Rhodium versus Platinum-6% Rhodium	1600 to 3100	$\pm 0.5\%$	$\pm 0.25\%$	
T ^b	Copper versus Constantan	-328 to 32	$\pm 1.8^{\circ}$ F or $\pm 1.5\%$	с	
E ^b	Nickel-10% Chromium versus Constantan	-328 to 32	$\pm 3.1^{\circ}$ F or $\pm 1\%$	с	
K ^b	Nickel-10% Chromium versus 5% Aluminum, Silicon	-328 to 32	$\pm 4^{\circ}$ F or $\pm 2\%$	с	

Table 2 Thermocouple Tolerances on Initial Values of Electromotive Force Versus Temperature

Source: ASTM *Standard* E230, Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples.

^aTolerances in this table apply to new thermocouple wire, normally in the size range of 0.01 to 0.1 in. diameter and used at temperatures not exceeding the recommended limits. Thermocouple wire is available in two grades: standard and special.

^bThermocouples and thermocouple materials are normally supplied to meet the tolerance specified in the table for temperatures above 32 °F. The same materials, however, may not fall within the tolerances given in the second section of the table when operated below freezing (32 °F). If materials are required to meet tolerances at subfreezing temperatures, the purchase order must state so.

^cLittle information is available to justify establishing special tolerances for belowfreezing temperatures. Limited experience suggests the following special tolerances for types E and T thermocouples:

Type E -328 to $32^{\circ}F$; $\pm 2^{\circ}F$ or $\pm 0.5\%$ (whichever is greater)

Type T -328 to $32^{\circ}F$; $\pm 1^{\circ}F$ or $\pm 0.8\%$ (whichever is greater)

These tolerances are given only as a guide for discussion between purchaser and supplier.

Temperature Sensors

Some sources

SIEMENS

Temperature sensors

Reliable and precise measurement

Symaro offers temperature sensors with all important active al signals. The active sensors can be quickly adapted to the situar number of different, easily adjustable measurement ranges.

😹 🚱 🛛 Search for ..

o active filters		1-10 of 85	1-10 of 85 hits		
Rasic attribut	05		2 3 4 >>		
basic attribut	C 5	10	FK-TP/200		
Category		80	Duct temperature sensor Pt100, for high temperature		
Basic	(1)				
Standard	(76)	-	FT-TP/100		
High Quality	(8)	Ŧ	Immersion temperature sensor 100 mm, Pt100, -70260°C, direct immersion		
Application					
Room	(22)	-	FT-TP/100-200		
Duct	(11)	T.	Immersion temperature sensor Pt100, short time constant, for high temperature		
Immersion	(28)	T			
Clamp-on	(2)	1	FT-TP/400		
Cable	(11)				
Show all (9)		T	initial solution temperature sensor 400 min, r trob, anect initial solution		
Output signal					
LG-Ni1000	(28)	-	QAA2010 Room temperature concer Pt100		
Modbus RTU	(2)		Koom temperature sensor Pt100		
DC 010 V	(6)				
420 mA	(7)	-	QAA2012		
NTC	(11)		Room temperature sensor Pt1000		
Show all (8)					
Probe length			QAA2030		
400 mm	(7)		Room temperature sensor NTC10k		
2000 mm	(2)				

• Some sources

https://sensing.honeywell.com/2

• Some sources

SIEMENS

♠ > Products & Services > Building technology > HVAC products > Sensors

Sensors

Symaro - Sensors from Siemens

Symaro sensors ensure a healthy and productive indoor climate. They record and transmit readings extremely quickly and accurately, providing an optimal basis for precise and therefore energy- and cost-efficient control of the entire HVAC plant. With innovations such as the integrated test function and highly versatile multi-sensors for different applications, Symaro sensors are a secure investment in the future. And thanks to an installation concept that has been refined for decades, they can be quickly installed and put into operation – so your investment pays off right from the start.

Search for ..

× 63

Would you like to know more?

Download the Symaro Sensors overview brochures 0

https://new.siemens.com/global/en/products/buildings/hvac/sensors.html

• Some sources

Advanced Technology for Unsurpassed Reliability, Accuracy & Efficiency

At Johnson Controls, we've designed our HVAC Sensors to work seamlessly within your HVAC system. Our Control Sensors aren't just engineered for performance – they're engineered to help reduce expenses and time spent on installation. Choose from our humidity sensors, HVAC temperature sensors, pressure sensors, carbon dioxide sensors, occupancy sensors and network sensors – all designed with advanced technology to deliver the reliability you need.

https://www.johnsoncontrols.com/building-automation-and-controls/hvac-controls/control-sensors ³³

https://ebtron.com/document-library/

Some sources

Home / Sensors and Sensing Equipment / Temperature / Sensors

Sensors

Omega is a leading supplier of sensors. We carry cryogenic sensors, infrared sensors, RTD sensors, solid state sensors, and others. No matter what your application, we have the sensors you need to complete or repair it. At Omega, our sensors are industrial-grade, so you can buy with confidence knowing that your sensors will deliver outstanding and accurate results for years to come. Stock up on temperature sensors today and enjoy greater savings when you buy from Omega.

Surface Sensors Measure the temperature of any flat, curved. or moving surface accurately with Solid State Sensors The solid-state temperature sensors sold by Omega are economical and versatile. Thermistors Surface mount thermistor temperature sensors designed to provide a practical

Some sources

Humidity and Temperature Transmitters HMD60

±1.5%RH transmitters for demanding HVAC, with a certificate

The sturdy and reliable duct mounted Vaisala HUMICAP® Humidity Transmitter Series HMD60 is designed for monitoring relative humidity in demanding HVAC and light industrial applications. The combination of high accuracy, stability and reliable operation makes this product series an ideal choice for demanding applications. 5-year warranty is valid for instruments purchased in 2021 and beyond.

The HMD60 and HMD65 have been certified by the BACnet Testing Laboratories (BTL) with the BACnet Conformance Certificate.
HUMIDITY MEASUREMENT

Humidity Sensors

- Humidity sensors, also known as hygrometers, measure humidity or psychrometric state of air
- A hygrometer can encompass:
 - □ Wet-bulb temperature
 - □ Relative humidity
 - □ Humidity (mixing) ratio
 - Dew point
 - □ Frost point

Humidity Sensors

Type of Sensor	Sensor Category	Method of Operation	Approximate Range	Some Uses	Approximate Accuracy
Psychrometer	Evaporative cooling	Temperature measurement of	32 to 180°F	Measurement, standard	±3 to 7% rh
Adiabatic saturation psychrometer	Evaporative cooling	Temperature measurement of thermodynamic wet bulb	40 to 85°F	Measurement, standard	± 0.2 to 2% rh
Chilled mirror	Dew point	Optical determination of moisture formation	-110 to 200°F dp	Measurement, control, meteorology	± 0.4 to $4^{\circ}F$
Heated saturated salt solution	Water vapor pressure	Vapor pressure depression in salt solution	-20 to 160°F dp	Measurement, control, meteorology	±3°F
Hair	Mechanical	Dimensional change	5 to 100% rh	Measurement, control	$\pm 5\%$ rh
Nylon	Mechanical	Dimensional change	5 to 100% rh	Measurement, control	$\pm 5\%$ rh
Dacron thread	Mechanical	Dimensional change	5 to 100% rh	Measurement	$\pm 7\%$ rh
Goldbeater's skin	Mechanical	Dimensional change	5 to 100% rh	Measurement	$\pm 7\%$ rh
Cellulosic materials	Mechanical	Dimensional change	5 to 100% rh	Measurement, control	$\pm 5\%$ rh
Carbon	Mechanical	Dimensional change	5 to 100% rh	Measurement	$\pm 5\%$ rh
Dunmore type	Electrical	Impedance	7 to 98% rh at 40 to 140°F	Measurement, control	$\pm 1.5\%$ rh
Polymer film electronic hygrometer	Electrical	Impedance or capacitance	10 to 100% rh		± 2 to 3% rh
Ion exchange resin	Electrical	Impedance or capacitance	10 to 100% rh at -40 to 190°F	Measurement, control	$\pm 5\%$ rh
Porous ceramic	Electrical	Impedance or capacitance	Up to 400°F	Measurement, control	±1 to 1.5% rh
Aluminum oxide	Electrical	Capacitance	5 to 100% rh	Measurement, control	±3% rh
	Electrical	Capacitance	-110 to 140°F dp	Trace moisture measurement, control	±2°F dp
Electrolytic hygrometer	Electrolytic cell	Electrolyzes due to adsorbed moisture	1 to 1000 ppm	Measurement	
Infrared laser diode	Electrical	Optical diodes	0.1 to 100 ppm	Trace moisture measurement	± 0.1 ppm
Surface acoustic wave	Electrical	SAW attenuation	85 to 98% rh	Measurement, control	$\pm 1\%$ rh
Piezoelectric	Mass sensitive	Mass changes due to adsorbed moisture	-100 to 0°F	Trace moisture measurement, control	± 2 to 10 °F dp
Radiation absorption	Moisture absorption	Moisture absorption of UV or IR radiation	0 to 180°F dp	Measurement, control, meteorology	±4°F dp, ±5% rh
Gravimetric	Direct measurement of mixing ratio	Comparison of sample gas with dry airstream	120 to 20,000 ppm mixing ratio	Primary standard, research and laboratory	±0.13% of reading
Color change	Physical	Color changes	10 to 80% rh	Warning device	±10% rh

Notes:

1. This table does not include all available technology for humidity measurement.

Approximate range for device types listed is based on surveys of device manufacturers. 3. Approximate accuracy is based on manufacturers' data.

 Presently, NIST only certifies instruments with operating ranges within -103 to 212°F dew point.

Humidity Sensors

https://sensing.honeywell.com/sensors/humidity-sensors

AIRFLOW & PRESSURE

- How do we measure airflow rates?
 - □ Fan power (need fan curve)
 - Clip-on amp meter
 - Differential pressure
 - Manometer (various kinds)
 - □ Velocity
 - Pitot static tube
 - Anemometer (various kinds: deflecting vane, revolving vane, propeller, hot-wire, thermal mass)
 - □ Airflow
 - Cross-sectional velocity
 - Flow hoods (i.e., velocity through known area)
 - Various kinds

- Pressure measurements using manometer
 - □ Advantage:
 - Easy to fabricate
 - Accurate for steady-state measurements

Disadvantages:

- Not suitable for very high or very low measurements
- Very poor frequency response
- A little bit of dirt in the tube or bubble in a line or presence of condensate can result in anomalous readings

 Calculate velocity based on total and static pressure using the Bernoulli equation

• Look at some options:

- Mechanical pressure gauges couple a pressure sensor to a mechanical readout, typically a pointer and dial
- Common type uses a Bourdon tube sensor, which is essentially a coiled metal tube of circular or elliptical cross section

- Electromechanical transducers work based on producing a total strain produced on the diaphragm is proportional to the pressure applied
- For circular diaphragm:

$$\delta = \frac{3pa^4}{16Et^2}(1-\mu_r^2)$$

- δ : deflection
- p: pressure
- a: radius of the diaphragm
- E: Young's module
- t: thinness of the diaphragm
- μ_r : Poisson's ratio

- Velocity in a duct is not uniform across:
 - Any section
 - Pitot tube reading
 - Thermal anemometer
- Avoid measuring at only one location

- Understand:
 - Lowest velocity occurs near the edges or corners
 - Greatest at or near the center

Duct Dimensions	No. of Points for Traverse Lines	Position Relative to Inner Wall
18 in. < <i>H</i> , <i>W</i> < 30 in.	5	0.074, 0.288, 0.500, 0.712, 0.926
30 in. $\le H, W \le$ 36 in.	6	0.061, 0.235, 0.437, 0.563, 0.765, 0.939
<i>H</i> , <i>W</i> > 36 in.	7	0.053, 0.203, 0.366, 0.500, 0.634, 0.797, 0.947

Log-Tchebycheff Rule for Rectangular Ducts

Note: Example duct has 5×6 ($H \times W$) measurement pattern, as for rectangular duct of 24×30 in.

 log-Tchebycheff (log-T) rule or, if care is taken, by the equal-area method

No. of Measuring Points per Diameter	Position Relative to Inner Wall
6	0.032, 0.135, 0.321, 0.679, 0.865, 0.968
8	0.021, 0.117, 0.184, 0.345, 0.655, 0.816, 0.883, 0.979
10	0.019, 0.077, 0.153, 0.217, 0.361, 0.639, 0.783, 0.847, 0.923, 0.981

Log-Linear Rule for Circular Ducts

MEASURING FLOW IN DUCTS BY VELOCITY

- Ebtron GP1 Flow Station (insertion probes): <u>https://ebtron.com/wp-content/uploads/documents/IG_P_INT.pdf</u>
- Ebtron GTx116 analog output transmitter: <u>https://ebtron.com/wp-content/uploads/documents/GTx116-P+ Overview.pdf</u>

CLASS ACTIVITY

Class Activity

- Form 3-4 groups
- Fill in the spreadsheet (at least 3 air flow rates sensors):

https://docs.google.com/spreadsheets/d/1duxKfuy1kpYNJxXT6e9bHjVBBq UXnwBSBuR8Dkz4f7c/edit#gid=1229752403

WATER FLOW STATION

Water Flow Station

Home / Sensors and Sensing Equipment / Flow / Variable Area Flow Meters / Flow Meter with Analog Outputs

ргсомад Flexibility in flow me Multi-variable measurement and relia	easurement able monitoring of conductive liquids.	Now
States States States States	D0 Item# FLR9310D-BSPP ADD TO CART ADD TO CART Lead Time (If not in Stock): 6 weeks Lead Time (If not in Stock): 6 weeks Category Meter Meter Water Gas Flow Range Not Applicable Liguid Flow Range 10 to 100 GPM Accuracy aight Pipe Run Required sin Any Position mA, 0 to 5 Vdc and 0 to 10 Vdc Outputs Standard Flow Rate and Total Flow Indicator Compensation for: fic Gravity of All Fluids sity of Petroleum-Based Fluids fic Gravity, Pressure, and Temperature of Pneumatic tions DF)	View all models are valid. Options compatible ons will be in bold.

https://www.omega.com/en-us/sensors-and-sensingequipment/flow/variable-area-flow-meters/p/FLR-D

Water Flow Station

CO_2 CONCENTRATIONS

CO₂ Concentrations

- Common CO₂ measurement techniques are:
 - □ Non-dispersive infrared (NDIR) \rightarrow most common
 - □ Electrochemical (reduce $CO_2 \rightarrow$ generate current)
 - □ Photoacoustic (CO₂ absorbs light energy → measure pressure change)
 - Photoacoustic effect relates pressure change to CO₂
 concentration
 - □ Potentiometric (CO₂ into solution changes pH)
 - □ Gas chromatography w/ MS or TCD
 - High sensitivity
 - ✤ High cost

CO₂ Concentrations

- Non-dispersive infrared (NDIR) sensor measures the infrared light absorbed by CO₂ as it passes through a flowthrough IR absorption cell
 - CO_2 peak absorbance @ 4.3 µm (higher CO_2 , higher absorption)
 - Possible interference from other species (H₂O, CO)
 - Interferences from other IR-absorbing gases are minimized by use of a highly wavelength-specific detector

CO₂ Concentrations

• Examples of CO₂ sensors are:

Manufacturer/Supplier	Accuracy Range	Response Time	Price	Model
Extech	$\pm 3\%$ of reading or ± 50 ppm	600 sec (90%)	\$800	Indoor Air Quality Meter/Datalogger Model EA80
TSI	$\pm 3\%$ of reading or ± 50 ppm		\$2,000	Q-TRAK [™] Indoor Air Quality Monitor Model 7575
TSI	$\pm 3\%$ of reading or ± 50 ppm	20 sec (63%)	\$650	TSI [™] IAQ-Calc [™] CO ₂ meter
Vaisala	$\pm 1.5\%$ of range $+2\%$ of reading	30 sec (63%)	\$2,100	Vaisala GM70 Hand-Held Carbon Dioxide Meter
Extech	\pm 5% of reading or \pm 50ppm	120 sec (63%)	\$400	Model CO250
Bacharach®	$\pm 2\%$ over range	N/A	\$2,600	IEQ Chek Indoor Air Quality Monitor for Incubators, with CO ₂ sensor, sampling pump, remote probe
GE (Telaire)	$\pm 5\%$ of reading or ± 50 ppm	60 sec (90%)	\$550	Dual-Position CO2/Temperature Meter
Davis	$\pm 3\%$ of reading or ± 50 ppm	40 sec (63%)	\$610	Indoor Air Quality Meter WO-81973-25
	$\pm 3\%$ of reading or ± 75 ppm	60 sec (90%)	\$660	TPI 1008 Indoor Air Quality IAQ Meter
	$\pm 3\%$ of reading or ± 50 ppm, whichever is greater	45 sec (90%)	\$1,880	Kanomax 2211 Indoor Air Quality Monitor
	$\pm 2\%$ of reading $\pm 1\%$ range	20 sec (90%)	\$2,700	Viasensor G150-02N IAQ Indoor Air Quality Meter CO2 with RH/T probe
Testo	$\pm 50 \text{ ppm CO}_2 \pm 2\% \text{ of mv}$	120 sec (90%)	\$800	Testo 535 Ambient CO ₂ Analyzer
Telaire	$\pm 100 \text{ ppm} \pm 3\%$ of reading	120 sec (63%)	\$161	Ventostat 8001
Telaire	± 50 ppm value at 20°C (68°F)	60 sec (90%)	\$550	7001
Digital Control System, Inc.	$\pm 5\%$ of reading or ± 75 ppm	60 sec (63%)	\$195	Airsense M307
Greystone Energy Systems, Inc. ± 75 ppm or 3% of reading (15°C to 32°C (59°F to 90°F))		120 sec (90%)	\$402-\$500	CDDIA2000
Johnson Controls, Inc. ±100 ppm at 75C (wall mount)		60 sec (63%)	\$280	5001
Intec Controls	$\pm 5\%$ of reading or ± 75 ppm, whichever is greater	60 sec (63%)	\$231	I-310e

LIGHTING SENSORS

- A few vendors in the US are:
 - Lutron
 - □ Wattstopper
 - Nlight
 - Leviton
 - Amatis

Wattstopper examples are:

HOME / LIGHTING CONTROLS AND SYSTEMS / OCCUPANCY AND VACANCY SENSORS

Occupancy and Vacancy Sensors

Occupancy and Vacancy Sensors maximize energy savings, ensuring that lights are turned on when occupied and turned off or to a lower level when spaces are unoccupied or adequate daylight exists.

https://www.legrand.us/lighting-controls-building-systems/sensors.aspx

• Lutron examples are:

<u>https://www.lutron.com/en-</u> <u>US/Products/Pages/Sensors/Occupa</u> <u>ncy-Vacancy/Occupancy.aspx</u>

• Lutron examples are:

Radio Powr Savr Wireless Occupancy/Vacancy Ceiling Sensor

Lutron Radio Powr Savr occupancy/vacancy sensors are wireless, battery-powered, passive infrared (PIR) sensors that automatically control lights via RF communication to compatible dimming and switching devices. These sensors detect the heat (IR radiation of 9.5 µm) from people moving within an area to determine when the space is occupied. The sensors then wirelessly transmit the appropriate commands to the associated dimming and switching devices to turn the lights on or off automatically. They combine both convenience and exceptional energy savings potential along with ease of installation.

• Lutron examples are:

Sensor Coverage Chart (for sensor mounted in center of room)

Ceiling Height	Maximum Square Coverage Area*		
8 ft (2.4 m)	18 ft × 18 ft (5.5 m × 5.5 m)	324 ft ² (30.2 m ²)	
9 ft (2.7 m)	20 ft × 20 ft (6.1 m × 6.1 m)	400 ft ² (37.2 m ²)	
10 ft (3.0 m)	22 ft × 22 ft (6.7 m × 6.7 m)	484 ft ² (44.9 m ²)	
12 ft (3.7 m)	26 ft × 26 ft (7.9 m × 7.9 m)	676 ft ² (62.4 m ²)	

* 12 ft (3.7 m) is the recommended maximum mounting height

Lutron examples are:

<u>https://www.lutron.com/en-</u> <u>US/Products/Pages/Sensors/RadioPowrSavrDaylightSensor/Overview.aspx</u>

• nLight examples are:

https://www.acuitybrands.com/products/detail/1085254/nlight/rcmsb/nlight-airwireless-ceiling-mount-sensor

• Amatis examples:

Detect MLTH with:

SENSOR 1

Mesh network enabled motion, light, temperature and humidity sensor

PRODUCT OVERVIEW

ONFIGURATIONS

The Amatis Controls Sensor1 MLTH communicates wirelessly with other connected Amatis devices using our proprietary 6LoWireless protocol to enable controls for vacancy, occupancy, daylight harvesting, temperature and humidity.

The Sensor1 MLTH is a stand alone device that does not require a driver or controller to communicate with the 6LoWireless mesh network. Amatis provides one of the smallest and most powerful combination motion and light sensors on the market.

https://static.amatiscontrols.com/1942_Sensor1-2%20Spec%20Sheets.pdf

• Lighting sensors and lighting fixtures

	9 No. 19	M	
FLR	WALL	CLG	
	\$ _Р		LIGHT SWITCH - WITH PILOT LIGHT
	\$то		SWITCH - WITH THERMAL OVERLOAD
	D		DIMMER
	OS ±	(OS)	OCCUPANCY SENSOR
	PC		PHOTOCELL
		PP	OCCUPANCY SENSOR POWER PACK
			OVERRIDE SWITCH
CLASS ACTIVITY

- Form 3-4 groups
- Fill in the spreadsheet

https://docs.google.com/spreadsheets/d/1duxKfuy1kpYNJxXT6e9bHjVBBq UXnwBSBuR8Dkz4f7c/edit#gid=1229752403

SHADING DEVICES

Shading Devices

https://www.somfysystems.com/en-us/products/smart-home-controls/controls/sensors

CLASS ACTIVITY

- Form 3-4 groups
- Identify a few other vendors and fill in the spreadsheet

https://docs.google.com/spreadsheets/d/1duxKfuy1kpYNJxXT6e9bHjVBBq UXnwBSBuR8Dkz4f7c/edit#gid=1229752403

CLASS ACTIVITY

 Consider designing and selecting sensors to measure temperature, humidity, air flow, and water flow for the ASHRAE AHU facility

	Expansion Tank		Fan	ADDITIONAL NOTES: 1. USE ENGINEERING JUDGEMENT WHEN MEASURING. 2. THE DIMENSIONS SHOWN ARE BASED ON ESTIMATES. 3. TOLERANCE: WITHIN 1" TO 1.5".
N	Check Valve	ч Ц	Pump	 SUPPORT SYSTEMS BELOW CHILLER AND HEATER ARE INTENDED TO BE STEEL PLATFORMS WITH WELDED CONNECTIONS. SUPPORT SYSTEMS BELOW CHILLER AND HEATER
	Drain/Inlet		Hot Water Supply	 SHALL BE ATTACHABLE AND DETACHABLE FROM THE MAIN TABLE. 6. SUPPORT FRAME ABOVE TABLE SHALL BE STEEL WITH PLEXIGLAS SURFACES COVERING THE RIGHT AND THE
			Hot Water Return	LEFT TOP OPENINGS, THE AREAS NOTED AS 11.50" BY 22.50". USE ADHESIVE TO ATTACH PLEXIGLASS TO
	90deg. Elbow	\bigcirc	Water Heater	STEEL FRAME.
9	Two 90deg. Elbow		Cold Water Supply	
	90deg. Tee		Cold Water Return	
	Flow Gauge		Chiller	
	Temperature Gauge		Reducer	
us us us us 💽 us	Electrical Outlets		Clear PVC Pipe	
	-		Steel	
日日の日本	Electrical Line	11 11 11	Plexiglass	
	Wheels	11 11 11		
	Ground Fault Circuit Interruptor		Table Surface	

LEGEND & ADDITIONAL NOTES

SCALE: 0'3" = 1'0" NOTE: USE ENGINEERING JUDGEMENT WHEN MEASURING. THE DIMENSIONS SHOWN ARE BASED ON ESTIMATES. **AIR HANDLING UNIT**

AUTHOR: KARI MILLER LAST EDITED: 04/16/2020

SCALE: 0'3" = 1'0" NOTE: USE ENGINEERING JUDGEMENT WHEN MEASURING.

THE DIMENSIONS SHOWN ARE BASED ON ESTIMATES.

AUTHOR: KARI MILLER LAST EDITED: 04/16/2020