CAE 331/513 Building Science Fall 2017

October 31, 2017 Air and water distribution systems

Built Environment Research @ III] 🐋 🚓 M 💜

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology brent@iit.edu

Exam 2 graded

- Average grade = 77.2%
- Minimum = 13%
- Maximum = 100% (3 of these)
- Graduate vs. undergraduate split:
 - Undergraduate student average = 76%
 - Graduate student average = 79%

Last time

- Refrigeration cycles
 - Ideal and non-ideal vapor compression cycles
 - P-h and T-s diagrams
 - COP/EER/SEER

Today

- Finish HVAC systems
 - Including air and water distribution systems

AC capacity and efficiency changes with outdoor T, indoor T/RH, and airflow rates

		Condenser Air °F (°C)								
Evaporator Air		75 (23.9)			95 (35)			105 (40.6)		
cfm	EWB °F (°C)	Capacity kBtu/h		Total	Capacity kBtu/h		Total	Capacity kBtu/h		Total
		Total ¹	Sens ^{1,2}	Sys kW ³	Total ¹	Sens ²	Sys kW ³	Total ¹	Sens ²	Sys kW ³
875	72 (22)	34.32	17.27	1.96	31.24	16.13	2.44	29.59	15.54	2.71
	67 (19)	31.45	21.21	1.96	28.59	20.05	2.43	27.04	19.44	2.71
	63 (17)	29.35	20.58	1.96	26.66	19.40	2.43	25.19	18.78	2.70
	62 (17)	28.82	25.13	1.95	26.24	23.94	2.43	24.86	23.29	2.70
	57 (14)	28.00	28.00	1.95	25.89	25.89	2.43	24.74	24.74	2.70
1000	72 (22)	34.88	18.05	2.01	31.66	16.90	2.48	29.96	16.30	2.76
	67 (19)	31.98	22.49	2.01	29.00	21.31	2.48	27.40	20.68	2.75
	63 (17)	29.88	21.78	2.00	27.07	20.58	2.48	25.55	19.95	2.75
	62 (17)	29.44	26.90	2.00	26.81	26.81	2.48	25.62	25.62	2.75
	57 (14)	29.10	29.10	2.00	26.85	26.85	2.48	25.62	25.62	2.75
1125	72 (22)	35.27	18.78	2.06	17.61	17.61	2.53	30.22	17.07	2.81
	67 (19)	32.36	23.68	2.05	22.50	22.50	2.53	27.66	21.88	2.80
	63 (17)	30.25	22.90	2.05	21.70	21.70	2.52	25.82	21.07	2.80
	62 (17)	30.02	28.49	2.05	27.62	27.62	2.52	26.32	26.32	2.80
	57 (14)	29.99	29.99	2.05	27.62	27.62	2.52	26.32	26.32	2.80

Table 4. Example Manufacturer EPT (Subset of Data Displayed)

¹ Total and sensible capacities are net capacities. Blower motor heat has been subtracted.

² Sensible capacities shown are based on 80°F (27°C) entering air at the indoor coil. For sensible capacities at other than 80°F (27°C), deduct 835 Btu/h (245 W) per 1000 cfm (480 L/S) of indoor coil air for each degree below 80°F (27°C), or add 835 Btu/h (245 W) per 1000 cfm (480 L/s) of indoor coil air per degree above 80°F (27°C).

³ System kilowatt is the total of indoor and outdoor unit kilowatts.

AC capacity and efficiency changes with outdoor T, indoor T/RH, and airflow rates

Dynamic conditions affect HVAC performance

- Many systems operate at their highest efficiency (highest COP) at design load conditions
 - Maximum load
- But systems don't always operate at peak load conditions
 - "Part-load" conditions are common
- The "part-load ratio" quantifies COP at part-load conditions

COMMERCIAL COOLING EQUIPMENT

Single-stage vapor compression cycle

Single-stage vapor compression cycle

Compressor

Commercial buildings: Chillers

 In bigger commercial buildings, central systems use chillers to produce chilled water for cooling spaces

Commercial buildings: Chillers

Air-cooled chillers

 Chillers use vapor compression or absorption systems to produce chilled water for cooling spaces

Water-cooled chillers (i.e., "cooling tower")

Water-cooled chillers (i.e., "cooling tower")

Air vs. water cooled chillers

Air-Cooled Chiller Advantages

- Lower installed cost
- Quicker availability
- No cooling tower or condenser pumps required
- Less maintenance
- No mechanical room required

Water-Cooled Chiller Advantages

- Higher efficiency
- Custom selections in larger sizes
- Large tonnage capabilities
- Indoor chiller location
- Longer life

HEAT PUMPS

Air- and ground-source heat pumps

Heat pumps

Heat pumps are basically air-conditioners run in reverse

Heat pumps

Heat pumps

Ground source heat pumps

22

Ground source heat pumps

23

Ground coupled heat pumps

AIR AND WATER DISTRIBUTION SYSTEMS

Fluid flows and fan/pump power

Air and water distribution systems

Air and water distribution systems

- We use **fans** to move air around buildings
- We use **pumps** to move water/steam around buildings
- There are a few principles we need to understand to characterize **fan/pump energy and performance**

Fig. 4 Velocity Profiles of Flow in Pipes

Fluid flows in buildings: Overcoming pressure losses

- We use liquids and gases to deliver/extract heating or cooling energy in building mechanical systems

 Water, refrigerants, and air
- We often need to understand fluid motion, pressure losses, and pressure rises by pumps and fans in order to correctly size systems and predict their performance
- We can use the Bernoulli equation to describe fluid flows in HVAC systems

$$p_{1} + \frac{1}{2}\rho_{1}v_{1}^{2} + \rho_{1}gh_{1} = p_{2} + \frac{1}{2}\rho_{2}v_{2}^{2} + \rho_{2}gh_{2} + p_{friction}$$
Static Velocity Pressure head Friction losses

If friction and head are negligible, we can relate velocity to pressure:

$$v = \sqrt{\frac{2\Delta P}{\rho}}$$

We often need to find the pressure drop in pipes and ducts
 Most flows in HVAC systems are turbulent

$$\Delta p_{friction} = f\left(\frac{L}{D_h}\right) \left(\frac{1}{2}\rho v^2\right) = K\left(\frac{1}{2}\rho v^2\right)$$
$$D_h = \frac{4A}{P} = \text{hydraulic diameter}$$
$$f = \text{friction factor (-)}$$
$$L = \text{length (m)}$$
$$D_h = \text{hydraulic diameter (m)}$$
$$P = \text{fluid density (kg/m^3)}$$
$$v = \text{fluid velocity (m/s)}$$
$$K = f\left(\frac{L}{D_h} + \sum_{fittings} K_f\right) \text{ In a straight pipe with fittings}$$

Friction factor, f

Duct friction charts

Duct friction charts (IP units)

Duct friction plots

Pressure losses and rises in HVAC systems

- Fans (and pumps) are used to overcome pressure drops in air and water distribution systems
- Their size and power draw are functions of the magnitude of pressure rise required
- We characterize performance by <u>fan or pump performance curves</u>

We characterize distribution systems (e.g., pipes or ducts) with a system curve

We then characterize the performance of a fan (or pump) with the <u>intersection</u> of its fan (or pump) curve and system curve

Example:

What is the fan power draw at point A, assuming 250 Pa and 0.5 m³/s?

One last inefficiency: Duct heat losses or gains

Ducts are not perfectly insulated or sealed

- We often lose heat through ducts when heating
- Or gain heat from ducts when cooling

Duct heat losses

Investigation of HVAC system in this room