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Last time 

•  Radiation 
–  Long wave (surface to surface radiation) 

–  Short wave (solar radiation) 
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Summary: Modes of heat transfer in a building 
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Summary to date: Modes of heat transfer in a building 
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Where are we going? Building energy balances 

•  Taken altogether, each of the heat transfer modes we’ve 
discussed can be combined with inputs for climate data, 
material properties, and geometry to make up a building’s 
energy balance 
–  We will also revisit this for heating and cooling load calculations 
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COMBINED MODE HEAT TRANSFER 

6 



Combined mode heat transfer: Series 
•  Nearly all heat transfer situations in buildings include more 

than one mode of heat transfer 
•  When more than one heat transfer mode is present, we can 

compute heat transfer (of all kinds) using resistances in 
series 
–  Sum resistances in series 
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Rtot = RA + RB + RC + Rfilm,in + Rfilm,out

q = 1
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Combined mode heat transfer: Series 
•  Remember our wood stud wall?  

–  Fiberglass batts in 2x6 inch stud cavities, with brick exterior and 
gypsum board interior (Rassembly = 18.7 IP) 

–  Just need to add the “film resistances” to calculate heat transfer from 
indoor air to outdoor air 
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Typical convective “film resistances” 
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•  We often use the values given below for most conditions 

 
Surface 
Conditions 

Horizontal 
Heat Flow 

Upwards  
Heat Flow 

Downwards 
Heat Flow 

Indoors: Rin 0.12 m2K/W (SI) 
0.68 h⋅ft2⋅°F/Btu (IP) 

 

0.11 m2K/W (SI) 
0.62 h⋅ft2⋅°F/Btu (IP) 

0.16 m2K/W (SI) 
0.91 h⋅ft2⋅°F/Btu (IP) 

Rout: 6.7 m/s wind 
(Winter) 

0.030 m2K/W (SI) 
0.17 h⋅ft2⋅°F/Btu (IP) 

Rout: 3.4 m/s wind 
(Summer) 

0.044 m2K/W (SI) 
0.25 h⋅ft2⋅°F/Btu (IP) 



Combined mode heat transfer: Parallel 
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•  When more than one mode of heat transfer exists at a 
location (e.g., convection and radiation), resistances get 
placed in parallel 
–  Example: Heat transfer in a building cavity 
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Combined modes of heat transfer: Parallel 

•  Example problem: Radiant barrier in a residential wall 
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A building designer wishes to evaluate 
the R-value of a 1-inch wide ventilated 
air gap in a wall for its insulation effect 
 
She finds the resistance to heat flow to 
be quite small, so she proposes lining 
the cavity’s inner and outer surfaces 
with a highly reflecting aluminum foil 
film whose emissivity is 0.05  
 
Find the R-value of this cavity with both 
emissivity conditions, including both 
radiation and convection effects in the 
cavity 
 
Assume the surface temperatures 
facing the gap are 7.2°C and 12.8°C 



Combined convection + conduction: Heat exchangers 

•  Heat exchangers are used widely in buildings 
•  Heat exchangers are devices in which two fluid streams, 

usually separated from each other by a solid wall, exchange 
thermal energy by both convection and conduction 
–  One fluid is typically heated, one is typically cooled 

•  Fluids may be gases, liquids, or vapors 
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kaluminum = 205 W/mK 
kcopper = 385 W/mK 



Combined convection + conduction: Heat exchangers 
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Combined convection + conduction: Heat exchangers 

•  The effectiveness of a heat exchanger depends on: 
–  The flow rates of fluids in the heat exchanger 
–  The overall UA-value of the heat exchanger 

•  U is governed by convection and conduction resistance 
•  A is governed by heat exchanger design (high surface A) 
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Combined convection + conduction: Heat exchangers 

•  Example from ASHRAE Handbook of Fundamentals (Ch. 4) 
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BUILDING ENERGY BALANCES 
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Building energy balances 

•  We know that multiple modes of heat transfer are typically 
acting at the same time at multiple points point within a 
building… 

 … So we can also write expressions to quantify heat flow/
 flux to/from these various points simultaneously by 
 accounting for all relevant modes of heat transfer 
–  Writing “building energy balances” 
–  Solving systems of equations 
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Building energy balances: Simplified 
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How is this helpful to us? 

•  Imagine the classroom wall behind me is being heated by 
the sun on the other side 

•  The exterior surface temperature is 122°F (50°C) 
•  The interior air temperature is 72°F (22°C) 
•  The R-value of the wall is R-13 (IP) (2.29 m2K/W) 
•  What is the interior surface temperature of the wall? 

•  This interior surface temperature impacts the heat flux to 
indoor air, as well as the surrounding surface temperatures 
(via radiation), which all impact the building’s energy balance 
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Building energy balance example 

•  Estimate the surface temperature of an interior wall whose 
exterior side is being warmed by the sun 
–  Assume that LWR can be ignored and assume steady-state 
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Set conduction = convection  
and solve 

Tsurf,out = 50 °C 
Tair,in = 22 °C 

Rwall = 2.29 m2K/W 



Building energy balance example 

•  Estimate the surface temperature of an interior wall whose 
exterior side is being warmed by the sun 
–  Assume that LWR can be ignored and assume steady-state 
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Tsurf,out = 50 °C 
Tair,in = 22 °C 

Rwall = 2.29 m2K/W 

Set conduction = convection  
and solve: 
Tsurf,in = 23.4 °C 



“SOL-AIR” TEMPERATURES 
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Sol-air temperatures 
•  In the last example, we were given that the exterior surface 

temperature was 122°F (50°C) 
–  How did we know that? 
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Tsurf,out = 50 °C 
Tair,in = 22 °C 

Rwall = 2.29 m2K/W 

Tsurf,in = 23.4 °C 



Sol-air temperatures 

•  If we take an external surface with a combined convective and radiative 
heat transfer coefficient, hconv+rad 

•  If that surface now absorbs solar radiation (αIsolar), the total heat flow at 
the exterior surface becomes: 

•  To simplify our calculations, we can define a “sol-air” temperature that 
accounts for all of these impacts: 

•  Now we can describe heat transfer at that surface as: 
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Example sol-air temperatures 
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Solar radiation and external surface temperatures 

•  We can also use air temperatures and material properties (absorptivity 
and emissivity) to estimate exterior surface temperatures that are 
exposed to radiation 

–  These are not extremely accurate but provide a reasonable estimate 
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Source: Straube and Burnett 



Next time 

•  HW #2 is due 

•  Fenestration (doors and windows) – applications of 
combined mode heat transfer 
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