# CAE 331/513 Building Science Fall 2019



# September 5, 2019 Radiation

Built Environment Research @ III ] 🐋 💮 🆄 🛹

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built\_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology brent@iit.edu





#### 38 ASHRAE Society Scholarships Available for 2020-2021

#### Applications due December 1 2019

- 13 Undergraduate Engineering Scholarships: \$3,000 \$10,000 each. Now accepting applications
- 15 Regional/Chapter & University-Specific Scholarships: \$3,000 \$5,000 each. Now accepting applications
- 5 Engineering Technology Scholarships: \$5,000 each. Now accepting applications
- 1 Freshman Engineering Scholarship: \$5,000
- 4 High School Senior Scholarships: \$3,000 each

#### Visit: http://ashrae.org/scholarships



#### MCA OF CHICAGO SCHOLARSHIPS – CLICK HERE

Each year, the MCA of Chicago and several of our member contractors sponsor scholarship programs for students enrolled in Industrial Technology, Construction Management, Engineering, and other disciplines related to the Mechanical Construction and Service industry.

Scholarships were presented at the September 18, 2018 MCA of Chicago Scholarship Awards. Congratulations to our winners! View photos from the event here.

Applications for 2019 scholarships must be submitted by September 13, 2019.

Get the PDF version of the application here.

# Last time: Convection

• **Convection**  
- Natural vs. forced  
- Internal vs. external  
- Laminar vs. turbulent  

$$Q_{conv} = h_{conv} \left(T_{fluid} - T_{surface}\right) \quad \begin{bmatrix} W \\ m^2 \end{bmatrix}$$
  
Forced:  
Nu =  $\frac{hL_c}{k}$  Nu =  $f(\text{Re, Pr})$  Re<sub>x</sub> =  $\frac{\rho \Im x}{\mu} = \frac{\Im x}{v}$  Pr =  $\frac{\mu C_p}{k}$   
Natural:  
Nu =  $\frac{hL_c}{k}$  Nu =  $f(\text{Re, Pr})$  Re<sub>x</sub> =  $\frac{\rho \Im x}{\mu} = \frac{\Im x}{v}$  Pr =  $\frac{\mu C_p}{k}$   
Natural:  
Nu =  $\frac{hL_c}{k} = f(\text{Ra}_{Lc}, \text{Pr})$  Gr<sub>L</sub> =  $\frac{g\beta(T_s - T_\infty)L^3}{v^2}$  for vertical flat plates  
• Advection  
 $Q_{bulk} = mC_p\Delta T$  [W]= $\left[\frac{\text{kg}}{\text{s}} \cdot \frac{\text{J}}{\text{kg} \cdot \text{K}} \cdot \text{K}\right]$   
 $m$  "dot" = mass flow rate of fluid (kg/s)  
 $C_p$  = specific heat capacity of fluid [J/(kgK)]

- Equations for forced convection •
  - From Chapter 4 of the ASHRAE Handbook of Fundamentals (SI):

|                                                                                                            | Table 8 Forced-Convection Correlat                                                                                                                                                                 | 10118                                                                              |                      |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|
| . General Correlation                                                                                      | Nu = f(Re, Pr)                                                                                                                                                                                     |                                                                                    |                      |
| I. Internal Flows for Pipes and D                                                                          | <b>ucts:</b> Characteristic length = $D$ , pipe diameter, or $D_h$ , hydrauli                                                                                                                      | c diameter.                                                                        |                      |
| $\operatorname{Re} = \frac{\rho V_{avg} D_h}{\mu} = \frac{\dot{m} D_h}{A_c \mu} = \frac{Q D_h}{A_c \nu} =$ | $= \frac{4\dot{m}}{\mu P_{wet}} = \frac{4Q}{\nu P_{wet}} \qquad \text{where } \dot{m} = \text{mass flow rate, } Q = \text{volume for } A_c = \text{cross-sectional area, and } \nu = \text{kinem}$ | flow rate, $P_{wet}$ = wetted perimeter,<br>atic viscosity ( $\mu/\rho$ ).         |                      |
|                                                                                                            | $\frac{\mathrm{Nu}}{\mathrm{Re}\mathrm{Pr}^{1/3}} = \frac{f}{2}$                                                                                                                                   | Colburn's analogy (turbulent)                                                      | (T8.1)               |
| <i>Laminar</i> : Re < 2300                                                                                 | $Nu = 1.86 \left(\frac{\text{Re Pr}}{L/D}\right)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$                                                                                                      | $\frac{L}{D} < \frac{\text{Re Pr}}{8} \left(\frac{\mu}{\mu_s}\right)^{0.42}$       | (T8.2) <sup>a</sup>  |
| Developing                                                                                                 | Nu = $3.66 + \frac{0.065(D/L)\text{Re Pr}}{1 + 0.04[(D/L)\text{Re Pr}]^{2/3}}$                                                                                                                     |                                                                                    | (T8.3)               |
| Fully developed, round                                                                                     | Nu = 3.66                                                                                                                                                                                          | Uniform surface temperature                                                        | (T8.4a)              |
|                                                                                                            | Nu = 4.36                                                                                                                                                                                          | Uniform heat flux                                                                  | (T8.4b)              |
| Turbulent:                                                                                                 | $Nu = 0.023 Re^{4/5} Pr^{0.4}$                                                                                                                                                                     | Heating fluid<br>Re ≥ 10 000                                                       | (T8.5a) <sup>b</sup> |
| Fully developed                                                                                            | $Nu = 0.023 Re^{4/5} Pr^{0.3}$                                                                                                                                                                     | Cooling fluid $\text{Re} \ge 10\ 000$                                              | (T8.5b) <sup>b</sup> |
| Evaluate properties at bulk<br>temperature $t_b$ except $\mu_s$<br>and $t_s$ at surface                    | Nu = $\frac{(f_s/2)(\text{Re} - 1000)\text{Pr}}{1 + 12.7(f_s/2)^{1/2}(\text{Pr}^{2/3} - 1)} \left[1 + \left(\frac{D}{L}\right)^{2/3}\right]$                                                       | $f_s = \frac{1}{\left(1.58 \ln \mathrm{Re} - 3.28\right)^2}$                       | (T8.6) <sup>c</sup>  |
| temperature                                                                                                | For fully developed flows, set $D/L = 0$ .                                                                                                                                                         | Multiply Nu by $(T/T_s)^{0.45}$ for gases<br>and by $(Pr/Pr_s)^{0.11}$ for liquids | 5                    |
|                                                                                                            | Nu = 0.027 Re <sup>4/5</sup> Pr <sup>1/3</sup> $\left(\frac{\mu}{\mu_e}\right)^{0.14}$                                                                                                             | For viscous fluids                                                                 | (T8.7) <sup>a</sup>  |

| LUDIC C LUICCU COMPECTION COTTENUION | Table 8 | <b>Forced-Convection</b> | Correlation |
|--------------------------------------|---------|--------------------------|-------------|
|--------------------------------------|---------|--------------------------|-------------|

For noncircular tubes, use hydraulic mean diameter  $D_h$  in the equations for Nu for an approximate value of h.

Equations for <u>forced convection</u>

#### - From Chapter 4 of the ASHRAE Handbook of Fundamentals (SI):

**III. External Flows for Flat Plate:** Characteristic length = L = length of plate. Re = VL/v.

All properties at arithmetic mean of surface and fluid temperatures.

| Laminar boundary layer:                                          | $Nu = 0.332 \ Re^{1/2} Pr^{1/3}$               | Local value of h                            | (T8.8)  |
|------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|---------|
| $\text{Re} < 5 \times 10^3$                                      | $Nu = 0.664 Re^{1/2}Pr^{1/3}$                  | Average value of $h$                        | (T8.9)  |
| Turbulent boundary layer:<br>Re > $5 \times 10^5$                | $Nu = 0.0296 Re^{4/5} Pr^{1/3}$                | Local value of h                            | (T8.10) |
| Turbulent boundary layer<br>beginning at leading edge:<br>All Re | $Nu = 0.037 Re^{4/5} Pr^{1/3}$                 | Average value of <i>h</i>                   | (T8.11) |
| Laminar-turbulent boundary layer:<br>Re > $5 \times 10^5$        | $Nu = (0.037 \text{ Re}^{4/5} - 871) Pr^{1/3}$ | Average value $\text{Re}_c = 5 \times 10^5$ | (T8.12) |

IV. External Flows for Cross Flow over Cylinder: Characteristic length = D = diameter. Re = VD/v.

All properties at arithmetic mean of surface and fluid temperatures.

| $0.62 \text{ Ps}^{1/2} \text{ Ps}^{1/3}$                                                                                                      | 0177                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $Nu = 0.3 + \frac{0.62 \text{ Re}}{[1 + (0.4/\text{Pr})^{2/3}]^{1/4}} \left[ 1 + \left(\frac{\text{Re}}{282\ 000}\right)^{3/5} \right]^{3/5}$ | (T8.14) <sup>d</sup> |

Amore and we had of h

| V. Simplified Approximate Ec  | <b>quations:</b> h is in W/(m <sup>2</sup> ·K), V is in m/s, L               | P is in m, and t is in °C.                                                                                                           |                                                                         |
|-------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Flows in pipes<br>Re > 10 000 | Atmospheric air (0 to 200°C):<br>Water (3 to 200°C):<br>Water (4 4 to 104°C: | $h = (3.76 - 0.00497t)V^{0.8}/D^{0.2}$<br>$h = (1206 + 23.9t)V^{0.8}/D^{0.2}$<br>$h = (1431 + 20.9t)V^{0.8}/D^{0.2} $ (McAdams 1954) | (T8.15a) <sup>e</sup><br>(T8.15b) <sup>e</sup><br>(T8.15c) <sup>g</sup> |
| Flow over cylinders           | Atmospheric air: $0^{\circ}C < t < 200^{\circ}$<br>and surface temperature.  | °C, where $t =$ arithmetic mean of air                                                                                               |                                                                         |
|                               | $h = 2.755 V^{0.471} / D^{0.529}$                                            | 35 < Re < 5000                                                                                                                       | (T8.16a)                                                                |
|                               | $h = (4.22 - 0.002 57t) V^{0.63}$                                            | $3/D^{0.367}$ 5000 < Re < 50 000                                                                                                     | (T8.16b)                                                                |
|                               | Water: $5^{\circ}C < t < 90^{\circ}C$ , where t surface temperature.         | = arithmetic mean of water and                                                                                                       |                                                                         |
|                               | $h = (461.8 + 2.01t) V^{0.471}/D$                                            | 0.529 35 < Re < 5000                                                                                                                 | (T8.17a)                                                                |
|                               | $h = (1012 + 9.19t) V^{0.633}/D$                                             | 0.367 5000 < Re < 50 000                                                                                                             | (T8.17b) <sup>f</sup>                                                   |

#### Equations for <u>natural convection</u>

- From Chapter 4 of the ASHRAE Handbook of Fundamentals (SI):

| I. General relationships                                                                                                                             | Nu = f(Ra, Pr)  or  f(Ra)                                                                                                                                                                                |                                                                                                                                 | (T9.1)                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Characteristic length depends on geometry                                                                                                            | Ra = Gr Pr Gr = $\frac{g\beta\rho^2 \Delta t L^3}{\mu^2}$                                                                                                                                                | $\Pr = \frac{c_p \mu}{k}  \Delta t =  t_s - t_{\infty} $                                                                        |                                                                                          |
| II. Vertical plate                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                                                 |                                                                                          |
| $t_s = \text{constant}$                                                                                                                              | Nu = $0.68 + \frac{0.67 \text{Ra}^{1/4}}{[1 + (0.492/\text{Pr})^{9/16}]^{4/9}}$                                                                                                                          | $10^{-1} < Ra < 10^9$                                                                                                           | (T9.2) <sup>a</sup>                                                                      |
| Characteristic dimension: $L = \text{height}$<br>Properties at $(t_s + t_{\infty})/2$ except $\beta$ at $t_{\infty}$                                 | Nu = $\left\{ 0.825 + \frac{0.387 \text{Ra}^{1/6}}{\left[1 + (0.492/\text{Pr})^{9/16}\right]^{8/27}} \right\}^2$                                                                                         | $10^9 < Ra < 10^{12}$                                                                                                           | (T9.3) <sup>a</sup>                                                                      |
| $q''_s = \text{constant}$<br>Characteristic dimension: $L = \text{height}$<br>Properties at $t_{s, L/2} - t_{\infty}$ except $\beta$ at $t_{\infty}$ | Nu = $\left\{ 0.825 + \frac{0.387 \text{Ra}^{1/6}}{\left[1 + (0.437/\text{Pr})^{9/16}\right]^{8/27}} \right\}^2$                                                                                         | $10^{-1} < \text{Ra} < 10^{12}$                                                                                                 | (T9.4) <sup>a</sup>                                                                      |
| Equations (T9.2) and (T9.3) can be used for vertical cylinders if $D/L > 35/\text{Gr}^{1/4}$ where D is diameter and L is axial length of cylinder   | er                                                                                                                                                                                                       |                                                                                                                                 |                                                                                          |
| III. Horizontal plate                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                 |                                                                                          |
| Characteristic dimension = $L = A/P$ , where A is plate area and P i<br>Properties of fluid at $(t_s + t_{\infty})/2$                                | s perimeter                                                                                                                                                                                              |                                                                                                                                 |                                                                                          |
| Downward-facing cooled plate and upward-facing heated plate                                                                                          | $\begin{split} \mathbf{Nu} &= 0.96 \; \mathbf{Ra}^{1/6} \\ \mathbf{Nu} &= 0.59 \; \mathbf{Ra}^{1/4} \\ \mathbf{Nu} &= 0.54 \; \mathbf{Ra}^{1/4} \\ \mathbf{Nu} &= 0.15 \; \mathbf{Ra}^{1/3} \end{split}$ | 1 < Ra < 200<br>$200 < Ra < 10^{4}$<br>$2.2 \times 10^{4} < Ra < 8 \times 10^{6}$<br>$8 \times 10^{6} < Ra < 1.5 \times 10^{9}$ | (T9.5) <sup>b</sup><br>(T9.6) <sup>b</sup><br>(T9.7) <sup>b</sup><br>(T9.8) <sup>b</sup> |
| Downward-facing heated plate and upward-facing cooled plate                                                                                          | $Nu = 0.27 Ra^{1/4}$                                                                                                                                                                                     | $10^5 < Ra < 10^{10}$                                                                                                           | (T9.9) <sup>b</sup>                                                                      |

Equations for <u>natural convection</u>

- From Chapter 4 of the ASHRAE Handbook of Fundamentals (SI):

| IV. Horizontal cylinder                                                      | $\left[ 287         $                                                         |                                                          |                      |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|
| Characteristic length $= d =$ diameter                                       | $Nu = \left\{ 0.6 + \frac{0.387 \text{ Ka}}{56 - 60.587 \text{ Ka}} \right\}$ | $10^9 < Ra < 10^{13}$                                    | (T9.10) <sup>c</sup> |
| Properties of fluid at $(t_s + t_{\infty})/2$ except $\beta$ at $t_{\infty}$ | $\left[1 + (0.559/Pr)^{5/10}\right]^{5/25}$                                   |                                                          |                      |
| V. Sphere                                                                    | 0.580 Pa <sup>1/4</sup>                                                       |                                                          |                      |
| Characteristic length $= D =$ diameter                                       | $Nu = 2 + \frac{0.589 \text{ Ka}}{500000000000000000000000000000000000$       | Ra < 10 <sup>11</sup>                                    | (T9.11) <sup>d</sup> |
| Properties at $(t_s + t_{\infty})/2$ except $\beta$ at $t_{\infty}$          | $[1 + (0.469/Pr)^{10}]^{10}$                                                  |                                                          |                      |
| VI. Horizontal wire                                                          | 2 ( 22)                                                                       |                                                          |                      |
| Characteristic dimension $= D =$ diameter                                    | $\frac{2}{Nu} = \ln \left( 1 + \frac{3.3}{n} \right)$                         | $10^{-8} < \text{Ra} < 10^{6}$                           | (T9.12) <sup>e</sup> |
| Properties at $(t_s + t_\infty)/2$                                           | cRa /                                                                         |                                                          |                      |
| VII. Vertical wire                                                           |                                                                               |                                                          |                      |
| Characteristic dimension = $D$ = diameter; $L$ = length of wire              | Nu = $c (\text{Ra } D/L)^{0.25} + 0.763 c^{(1/6)} (\text{Ra } D/L)^{(1/2)}$   | 4) $c (\operatorname{Ra} D/L)^{0.25} > 2 \times 10^{-3}$ | (T9.13) <sup>e</sup> |
| Properties at $(t_s + t_{\infty})/2$                                         | In both Equations (T9.12) and (T9.13), $c = -$                                | 0.671 and                                                |                      |
|                                                                              | 1                                                                             | $[1 + (0.492/Pr)^{(9/16)}]^{(4/9)}$                      |                      |
|                                                                              | $n = 0.25 + \frac{10}{10 + 5(\text{Ra})^{0.175}}$                             |                                                          |                      |
| VIII. Simplified equations with air at mean temperature of 21                | <b>°C:</b> h is in W/(m <sup>2</sup> ·K), L and D are in m, and $\Delta t$    | is in °C.                                                |                      |
| Vertical surface                                                             | $h = 1.33 \left( \Delta t \right)^{1/4}$                                      | $10^5 < R_2 < 10^9$                                      | (T9 14)              |
| Voldoal Sullace                                                              | $n = 1.55(\overline{L})$                                                      | 10 4 Ra 4 10                                             | (19.14)              |
|                                                                              | $h = 1.26(\Delta t)^{1/3}$                                                    | $Ra > 10^9$                                              | (T9.15)              |
| Horizontal cylinder                                                          | $h = 1.04 \left(\frac{\Delta t}{\Delta t}\right)^{1/4}$                       | $10^5 < Ra < 10^9$                                       | (T9 16)              |
|                                                                              |                                                                               |                                                          | (12.10)              |
|                                                                              | $h = 1.23 (\Delta t)^{1/3}$                                                   | Ra > 10 <sup>9</sup>                                     | (T9.17)              |

#### **Simplifications** of convective heat transfer coefficients

- For practical purposes in building science, we usually simplify convective heat transfer coefficients to common values for relatively common cases
  - Sometimes these are fundamentally estimated
  - Sometimes these are empirical (measured) in different scenarios

| Arrangement                                 | $W/(m^2 \cdot K)$ | $Btu/(h \cdot ft^2 \cdot F)$ |
|---------------------------------------------|-------------------|------------------------------|
| Air, free convection                        | 6–30              | 1–5                          |
| Superheated steam or air, forced convection | 30–300            | 5–50                         |
| Oil, forced convection                      | 60-1800           | 10-300                       |
| Water, forced convection                    | 300-6000          | 50-1000                      |
| Water, boiling                              | 3000-60,000       | 500-10,000                   |
| Steam, condensing                           | 6000-120,000      | 1000-20,000                  |

#### **TABLE 2.9**

#### **Simplifications** of convective heat transfer coefficients

- Convective heat transfer coefficients can depend upon details of the surface-fluid interface
  - Rough surfaces have higher rates of convection
  - Orientation is important for natural convection
  - Convective heat transfer coefficients for natural convection can depend upon the actual fluid temperature and not just the temperature difference



Khalifa and Marshall (1990) Int J Heat Mass Transfer





Khalifa and Marshall (1990) Int J Heat Mass Transfer

#### Empirical: $h_{conv}$ vs. $\Delta T$ for interior walls



Khalifa and Marshall (1990) Int J Heat Mass Transfer

#### Empirical: $h_{conv}$ vs. $\Delta T$ for interior ceilings



Khalifa and Marshall (1990) Int J Heat Mass Transfer

#### Free convection in air from a tilted surface: Simplified

SI units (IP equations are different! – see ASHRAE HOF Ch. 4)



 $h_{conv}$  in [W/(m<sup>2</sup> K)]

For natural convection to or from either side of a vertical surface or a sloped surface with  $\beta > 30^{\circ}$ 

For laminar:  $h_{conv} = 1.42 \left(\frac{\Delta T}{L} \sin \beta\right)^{\frac{1}{4}}$  [Kreider 2.18SI] For turbulent:  $h_{conv} = 1.31 \left(\Delta T \sin \beta\right)^{\frac{1}{3}}$  [Kreider 2.19SI]

Note that these equations are *dimensional*, so they are <u>different</u> for IP and SI

## Free convection from horizontal pipes in air

• For cylindrical pipes of outer diameter, *D*, in [m]

For turbulent: 
$$h_{conv} = 1.24 (\Delta T)^{\frac{1}{3}}$$

For laminar:  $h_{conv} = 1.32 \left(\frac{\Delta T}{D}\right)^{\overline{4}}$  [Kreider 2.20SI]

[Kreider 2.21SI]



#### Free convection for surfaces: Simplified

- Warm horizontal surfaces facing up
  - e.g. up from a warm floor to a cold ceiling

$$L=Average \\ side length$$

$$q$$

$$L=Average \\ side length$$

$$laminar: h_{conv} \approx 1.32 \left(\frac{\Delta T}{L}\right)^{1/4}$$
 [Kreider 2.22SI]
$$turbulent: h_{conv} \approx 1.52 \left(\Delta T\right)^{1/3}$$
 [Kreider 2.23SI]

### Free convection for surfaces: Simplified

- Warm horizontal surface facing down
  - Convection is reduced because of stratification
    - e.g. a warm ceiling facing down (works against buoyancy)
    - Also applies for cooled flat surfaces facing up (like a cold floor)



#### Forced convection over planes: Simplified







laminar: 
$$h_{conv} \approx 2.0 \left(\frac{v}{L}\right)^{1/2}$$
 [Kreider 2.24SI]  
turbulent:  $h_{conv} \approx 6.2 \left(\frac{v^4}{L}\right)^{1/5}$  [Kreider 2.25SI]

\*Velocity is in m/s

# $h_{conv}$ for exterior forced convection

 For forced convection, *h*<sub>conv</sub> depends upon surface roughness and air velocity but not orientation



## Most used $h_{conv}$ for exterior forced convection

There are two relationships for  $h_{conv}$  (forced convection) which are commonly used, depending on wind speed:

- For  $1 < v_{wind} < 5 \text{ m/s}$  $h_c = 5.6 + 3.9 v_{wind}$  [W/(m<sup>2</sup>·K)] [Straube 5.15]
- For 5 <  $v_{wind}$  < 30 m/s  $h_c = 7.2 v_{wind}^{0.78}$  [W/(m<sup>2</sup>·K)] [Straube 5.16]

\*Good for use with external surfaces like walls and windows

#### **Internal convection** within building HVAC systems

- Flows of fluids confined by boundaries (such as the sides of a duct) are called <u>internal flows</u>
- Mechanisms of convection are different
  - And so are the equations for  $h_c$



#### Forced convection for fully developed turbulent flow

• Airflow through ducts:

$$h_{conv} \approx 8.8 \left(\frac{v^4}{D_h}\right)^{1/5}$$

1

[Kreider 2.26SI]

 $D_h$  = the hydraulic diameter: 4 times the ratio of the flow conduit's cross-sectional area divided by the perimeter of the conduit

$$D_{h} = \frac{4\left(\frac{\pi D^{2}}{4}\right)}{\pi D}$$
 [Kreider 2.27SI]

• Water flow through pipes:

$$h_{conv} \approx 3580(1+0.015T) \left(\frac{v^4}{D_h}\right)^{1/5}$$
 [Kreider 2.28SI]

#### **Convection visualizations**



# **Energy2D** Interactive Heat Transfer Simulations for Everyone



# Radiation

- Radiation heat transfer is the transport of energy by electromagnetic waves
  - Oscillations of electrons that comprise matter
  - Exchange between matter at different temperatures
- Radiation must be absorbed by matter to produce internal energy; emission of radiation corresponds to reduction in stored thermal energy





# Radiation

- Radiation needs to be dealt with in terms of <u>wavelength</u> ( $\lambda$ )
  - Different wavelengths of solar radiation pass through the earth's atmosphere more or less efficiently than other wavelengths
  - Materials also *absorb* and *re-emit* solar radiation of different wavelengths with different efficiencies
- For our purposes, it's generally appropriate to treat radiation in two groups:
  - <u>Short-wave</u> (solar radiation)
  - <u>Long-wave</u> (emitted and re-emitted radiation)

#### **Radiation: the electromagnetic spectrum**

• <u>Thermal radiation</u> is confined to the infrared, visible, and ultraviolet regions  $(0.1 < \lambda < 100 \ \mu m)$ 



#### Black body radiation: Spectral (Planck) distribution

- Radiation from a perfect radiator follows the "black body" curve (ideal, black body *emitter*)
- The peak of the black body curve depends on the object's temperature
  - Lower T, larger  $\lambda$  peak
- Peak radiation from the sun is in the visible region
  - About 0.4 to 0.7 μm
- Radiation involved in building surfaces is in the infrared region
  - Greater than 0.7 µm

 $q = \sigma T^4$ 

 $\sigma$  = Stefan-Boltzmann constant = 5.67 × 10<sup>-8</sup>  $\frac{W}{m^2 \cdot K^4}$ 

*T* = Absolute temperature [K]



#### **Radiation: Short-wave and Long-wave**



# **SOLAR (SHORT-WAVE) RADIATION**



# **Solar radiation**

- Solar radiation is a very important term in the <u>energy balance</u> of a building
  - We must account for it while calculating loads
  - This is particularly true for <u>perimeter zones</u> and for <u>peak cooling loads</u>
- Solar radiation is also important for <u>daylighting</u> design
- We won't cover the full equations for predicting solar geometry and radiation striking a surface in this class
  - CAE 463/524 Building Enclosure Design goes into more detail
  - But will discuss basic relationships and where to get solar data

#### Solar radiation striking a surface (high temperature)

• Most solar radiation is at short wavelengths



Solar radiation striking a surface:

 $I_{solar}$   $\left|\frac{W}{m^2}\right|$ 

#### Solar radiation striking a surface (high temperature)

 Solar radiation data (*I<sub>solar</sub>*) can be used on opaque surfaces to help determine surface temperatures

$$q_{solar} = \alpha I_{solar}$$

 Solar radiation data (*I*<sub>solar</sub>) can also be used on exterior fenestration (e.g. windows and skylights) to determine how much solar radiation enters an indoor environment

$$q_{solar} = \tau I_{solar}$$

# Absorptivity, transmissivity, and reflectivity

- The absorptivity, α, is the fraction of energy hitting an object that is actually absorbed
- Transmissivity, τ, is a measure of how much radiation passes through an object
- Reflectivity,  $\rho$ , is a measure of how much radiation is reflected off an object
- We use these terms primarily for solar radiation
  - For an opaque surface ( $\tau = 0$ ):  $q_{solar} = \alpha I_{solar}$
  - For a transparent surface ( $\tau > 0$ ):  $q_{solar} = \tau I_{solar}$



 $\alpha + \tau + \rho = 1$ 

### Absorptivity ( $\alpha$ ) for solar (short-wave) radiation

| Surface                                                                    | Absorptance<br>for Solar<br>Radiation |
|----------------------------------------------------------------------------|---------------------------------------|
| A small hole in a large box, sphere,<br>furnace, or enclosure              | 0.97 to 0.99                          |
| Black nonmetallic surfaces such as<br>asphalt, carbon, slate, paint, paper | 0.85 to 0.98                          |
| stone, rusty steel and iron, dark<br>paints (red, brown, green, etc.)      | 0.65 to 0.80                          |
| Yellow and buff brick and stone,<br>firebrick, fire clay                   | 0.50 to 0.70                          |
| White or light-cream brick, tile, paint<br>or paper, plaster, whitewash    | 0.30 to 0.50                          |
| Window glass                                                               | -                                     |
| Bright aluminum paint; gilt or bronze paint                                | 0.30 to 0.50                          |
| Dull brass, copper, or aluminum;<br>galvanized steel; polished iron        | 0.40 to 0.65                          |
| Polished brass, copper, monel metal                                        | 0.30 to 0.50                          |
| Highly polished aluminum, tin plate,<br>nickel, chromium                   | 0.10 to 0.40                          |

# Components of solar radiation (*I*<sub>solar</sub>)

• Solar radiation striking a surface consists of three main components:





- Diffuse
- Reflected



## **Components of solar radiation**

- Direct solar radiation  $(I_{direct})$  is a function of the normal incident irradiation  $(I_{DN})$  on the earth's surface and the solar incidence angle of the surface of interest,  $\theta$ 
  - Where  $I_{DN}$  is the amount of solar radiation received per unit area by a surface that is always perpendicular to the sun's direct rays
  - Function of day of the year and atmospheric properties

$$I_D = I_{DN} \cos \theta$$

- **Diffuse solar radiation** ( $I_{diffuse}$ ) is the irradiation that is **scattered** by the atmosphere
  - Function of  $I_{DN}$ , atmospheric properties, and surface's tilt angle
- **<u>Reflected solar radiation</u>** (*I<sub>reflected</sub>*) is the irradiation that is **reflected** off the ground (it becomes diffuse)
  - Function of  $I_{DN}$ , solar geometry, ground reflectance, and surface tilt angle

# Solar radiation: earth-sun relationships

- Earth rotates about its axis every 24 hours
- Earth revolves around sun every 365.2425 days
- Earth is titled at an angle of 23.45°
  - Therefore, different locations on earth receive different levels of solar radiation during different times of the year (and different times of the day)



# Solar radiation striking an exterior surface

- The amount of solar radiation received by a surface depends on the **incidence angle**,  $\theta$
- This is a function of:
  - Solar geometry  $(I_{DN})$ 
    - Location
    - Time
  - Surface geometry
  - Shading/obstacles



#### Visualizing solar relationships



http://energy.concord.org/energy3d/

## **Downloading solar data**

- For hourly sun positions, you can build a calculator or use one from the internet
  - <u>http://www.susdesign.com/sunposition/index.php</u>
  - <u>http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html</u>
- For solar position and intensity (from time and place)
  - <u>http://www.nrel.gov/midc/solpos/solpos.html</u>
  - Output of interest = "global irradiance on a tilted surface"
- For *actual* hourly solar data (direct + diffuse in W/m<sup>2</sup>)
  - <u>http://rredc.nrel.gov/solar/old\_data/nsrdb/</u>
  - Output of interest = "direct normal radiation"  $\rightarrow$  adjust using  $\cos\theta$ 
    - Note: "typical meteorological years"

# Typical meteorological year (TMY)

- For heating and cooling load calculations and for hourly building energy simulations, we often rely on a collection of weather data for a specific location
- We generate this data to be representative of more than just the previous year
  - Represents a wide range of weather phenomena for our location
  - TMY3: Data for 1020 locations from 1960 to 2005
    - Composed of 12 typical meteorological months
    - Each month is pulled from a random year in the range
    - Actual time-series climate data
    - Mixture of measured and modeled solar values
    - <u>http://rredc.nrel.gov/solar/old\_data/nsrdb/1991-2005/tmy3/</u>
  - Variables include: outdoor temperature, direct normal radiation, wind speed, wind direction, outdoor RH, cloud cover, and more

#### Typical meteorological year (TMY): Solar data



# **SURFACE (LONG-WAVE) RADIATION**



# Surface radiation (lower temperature: long-wave)

 All objects above absolute zero radiate electromagnetic energy according to:

"Gray bodies"

$$q_{rad} = \varepsilon \sigma T^2$$

Where  $\varepsilon$  = emissivity



 $\sigma$  = Stefan-Boltzmann constant = 5.67 × 10<sup>-8</sup>  $\frac{W}{m^2 \cdot \kappa^4}$ 

*T* = Absolute temperature [K]

- Net radiation heat transfer occurs when an object radiates a different amount of energy than it absorbs
- If all the surrounding objects are at the same temperature, the net will be zero

### Radiation heat transfer (surface-to-surface)

 We can write the net thermal radiation heat transfer between surfaces 1 and 2 as:

$$Q_{1\to 2} = \frac{A_1 \sigma \left(T_1^4 - T_2^4\right)}{\frac{1 - \varepsilon_1}{\varepsilon_1} + \frac{A_1}{A_2} \frac{1 - \varepsilon_2}{\varepsilon_2} + \frac{1}{F_{12}}} \qquad q_{1\to 2} = \frac{Q_{1\to 2}}{A_1}$$

where  $\varepsilon_1$  and  $\varepsilon_2$  are the surface emittances,  $A_1$  and  $A_2$  are the surface areas and  $F_{1\rightarrow 2}$  is the view factor from surface 1 to 2  $F_{1\rightarrow 2}$  is a function of geometry only



# Emissivity ("gray bodies")

- Real surfaces emit less radiation than ideal "black" ones
  - The ratio of energy radiated by a given body to a perfect black body at the same temperature is called the emissivity:  $\varepsilon$
- ε is dependent on wavelength, but for most common building materials (e.g. brick, concrete, wood...), ε = 0.9 at most wavelengths

### **Emissivity (***ɛ***) of common materials**

|                                                                                                           | Emittance    |
|-----------------------------------------------------------------------------------------------------------|--------------|
| Surface                                                                                                   | 50-100°F     |
| A small hole in a large box, sphere,<br>furnace, or enclosure                                             | 0.97 to 0.99 |
| Black nonmetallic surfaces such as asphalt, carbon, slate, paint, paper                                   | 0.90 to 0.98 |
| Red brick and tile, concrete and<br>stone, rusty steel and iron, dark<br>paints (red, brown, green, etc.) | 0.85 to 0.95 |
| Yellow and buff brick and stone,<br>firebrick, fire clay                                                  | 0.85 to 0.95 |
| White or light-cream brick, tile, paint<br>or paper, plaster, whitewash                                   | 0.85 to 0.95 |
| Window glass                                                                                              | 0.90 to 0.95 |
| Bright aluminum paint; gilt or bronze paint                                                               | 0.40 to 0.60 |
| Dull brass, copper, or aluminum;<br>galvanized steel; polished iron                                       | 0.20 to 0.30 |
| Polished brass, copper, monel metal                                                                       | 0.02 to 0.05 |
| Highly polished aluminum, tin plate,<br>nickel, chromium                                                  | 0.02 to 0.04 |

### **Emissivity (***ɛ***) of common building materials**

| TABLE 2.11              |                    |                        |            |
|-------------------------|--------------------|------------------------|------------|
| Emissivities of Some Co | mmon Building Mate | erials at Specified Te | mperatures |
| Surface                 | Temperature, °C    | Temperature, °F        | ε          |
| Brick                   |                    |                        |            |
| Red, rough              | 40                 | 100                    | 0.93       |
| Concrete                |                    |                        |            |
| Rough                   | 40                 | 100                    | 0.94       |
| Glass                   |                    |                        |            |
| Smooth                  | 40                 | 100                    | 0.94       |
| Ice                     |                    |                        |            |
| Smooth                  | 0                  | 32                     | 0.97       |
| Marble                  |                    |                        |            |
| White                   | 40                 | 100                    | 0.95       |
| Paints                  |                    |                        |            |
| Black gloss             | 40                 | 100                    | 0.90       |
| White                   | 40                 | 100                    | 0.89-0.97  |
| Various oil paints      | 40                 | 100                    | 0.92-0.96  |
| Paper                   |                    |                        |            |
| White                   | 40                 | 100                    | 0.95       |
| Sandstone               | 40-250             | 100-500                | 0.83-0.90  |
| Snow                    | -126               | 10-20                  | 0.82       |
| Water                   |                    |                        |            |
| 0.1 mm or more thick    | 40                 | 100                    | 0.96       |
| Wood                    |                    |                        |            |
| Oak, planed             | 40                 | 100                    | 0.90       |
| Walnut, sanded          | 40                 | 100                    | 0.83       |
| Spruce, sanded          | 40                 | 100                    | 0.82       |
| Beech                   | 40                 | 100                    | 0.94       |

Source: Courtesy of Sparrow, E.M. and Cess, R.D., Radiation Heat Transfer, augmented edn, Hemisphere, New York, 1978. With permission.

- Radiation travels in directional beams
  - Thus, areas and angle of incidence between two exchanging surfaces influences radiative heat transfer



Figure 5.6: View factors for common situations in building enclosures [Hagentoft 2000]

### **Typical view factors**

Other common view factors from the ASHRAE Handbook of Fundamentals:



**B. ALIGNED PARALLEL RECTANGLES** 

#### Long-wave radiation example

• What is the net radiative exchange between the two interior wall surfaces below if the room is 5 m x 5 m x 3 m?



Q: What if T<sub>surf1,in</sub> dropped to 50°F (10°C)?

• We can also often simplify radiation from:

$$Q_{1 \to 2} = \frac{A_1 \sigma \left(T_1^4 - T_2^4\right)}{\frac{1 - \varepsilon_1}{\varepsilon_1} + \frac{A_1}{A_2} \frac{1 - \varepsilon_2}{\varepsilon_2} + \frac{1}{F_{12}}}$$

• To: 
$$Q_{1\rightarrow 2} = \varepsilon_{surf} A_{surf} \sigma F_{12} \left( T_1^4 - T_2^4 \right)$$

Particularly when dealing with large differences in areas, such as sky-surface or ground-surface exchanges

# **Simplifying radiation**

 We can also define a <u>radiation heat transfer coefficient</u> that is analogous to other heat transfer coefficients

$$Q_{rad,1\to2} = h_{rad} A_1 (T_1 - T_2) = \frac{1}{R_{rad}} A_1 (T_1 - T_2)$$

• When  $A_1 = A_2$ , and  $T_1$  and  $T_2$  are within ~50°F of each other, we can approximate  $h_{rad}$  with a simpler equation:

$$h_{rad} = \frac{4\sigma T_{avg}^3}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \qquad \text{where} \\ T_{avg} = \frac{T_1 + T_2}{2}$$

#### **Radiation visualizations**



# **Energy2D** Interactive Heat Transfer Simulations for Everyone

## **Moving forward**

- HW #2 is assigned and available on BB due Thurs Sep 12
- Next lecture:
  - Combined mode heat transfer