
# CAE 331/513 **Building Science** Fall 2017







## August 29, 2017

Heat transfer in buildings: Conduction

Built Environment Research







Advancing energy, environmental, and sustainability research within the built environment

Civil, Architectural and Environmental Engineering

www.built-envi.com

Twitter: @built envi

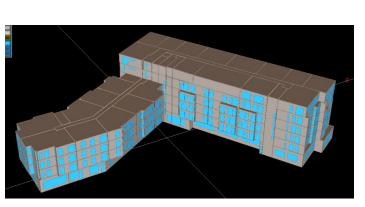
Illinois Institute of Technology

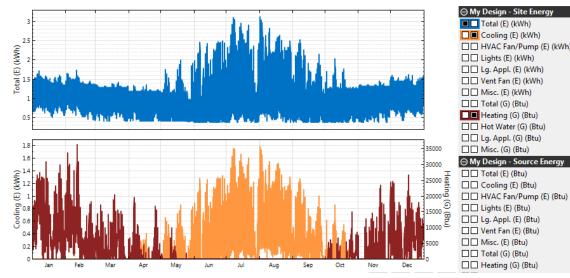
Dr. Brent Stephens, Ph.D.

brent@iit.edu

#### Last time

- Reviewed energy concepts and unit conversions
- Assigned HW 1 (due Thursday August 31)


## **Objectives for today's lecture**

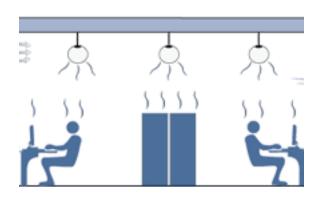

- Begin our review of heat transfer fundamentals
  - Generally follows HCB Chapter 2 (with some modifications)
  - Focus is on applications of heat transfer fundamentals in buildings

# BUILDING SCIENCE FUNDAMENTALS: HEAT TRANSFER IN BUILDINGS

## Heat transfer in buildings

- Heat transfer is the transfer of thermal energy between objects of different temperatures
- If we can understand heat transfer in buildings, we can:
  - Select and properly size HVAC equipment to maintain comfort
  - Predict annual building energy use and energy costs
  - Understand trade-offs in designing energy efficient buildings



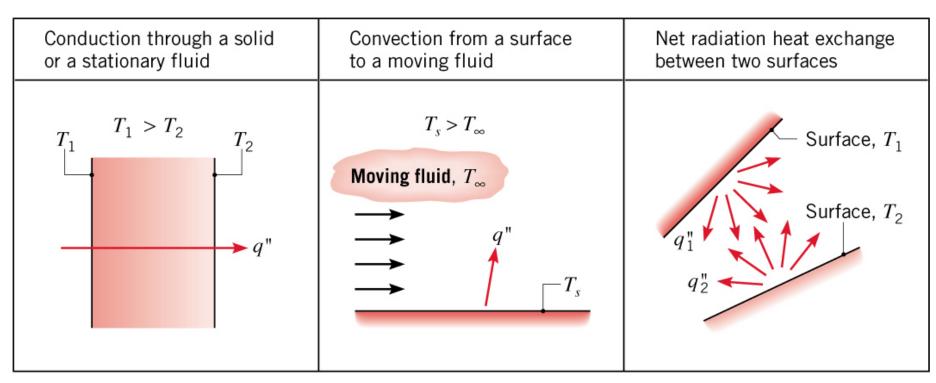



## Heat transfer in buildings

- In <u>building science</u>, we begin with temperature differences between the interior and exterior of the building
  - The element that separates indoors from outdoors is the **building enclosure** (or building envelope)
    - Walls, roofs, floors, windows, doors, etc.
- We also need to understand heat transfer to understand HVAC systems and plumbing systems
- We also have internal heat gains that impact heating and cooling loads







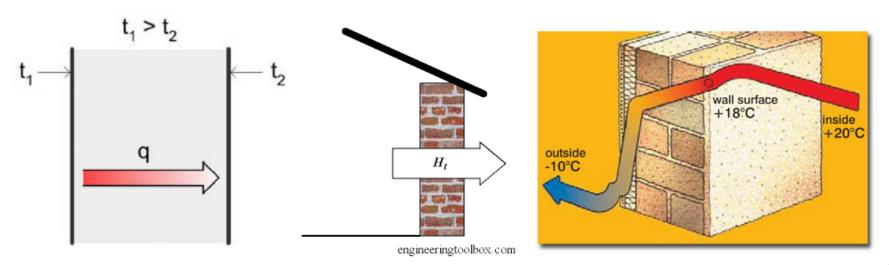

## Heat transfer in buildings

- Heat transfer is the science and art of predicting the <u>rates</u> at which heat flows through substances under various conditions
- The laws of heat transfer govern the rate at which heat energy must be supplied to or removed from a building to maintain the comfort of occupants or to meet other thermal requirements of buildings
- We will review heat transfer fundamentals here and then use these concepts later in the course to estimate <u>heating and</u> <u>cooling loads</u> for whole buildings

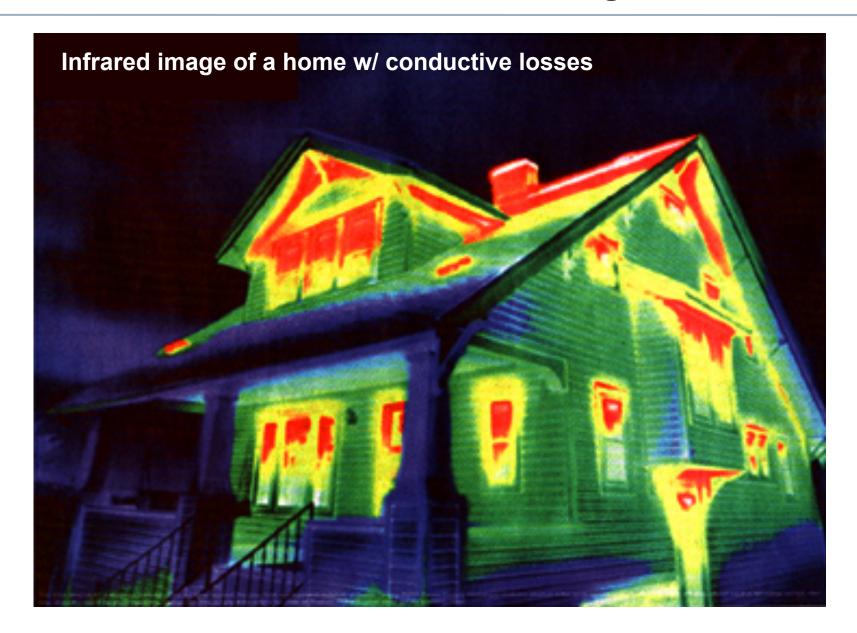
#### **Heat transfer**

Three primary modes of heat transfer:



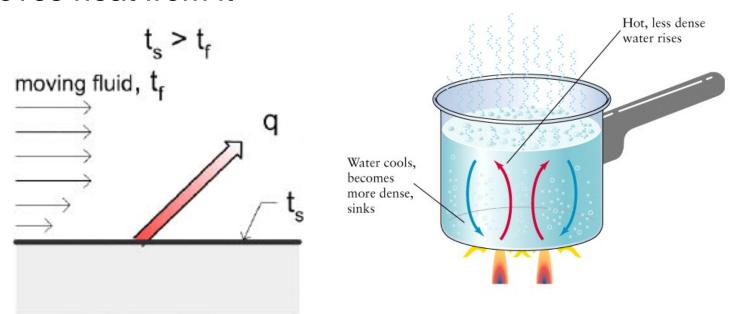

Conduction

Convection

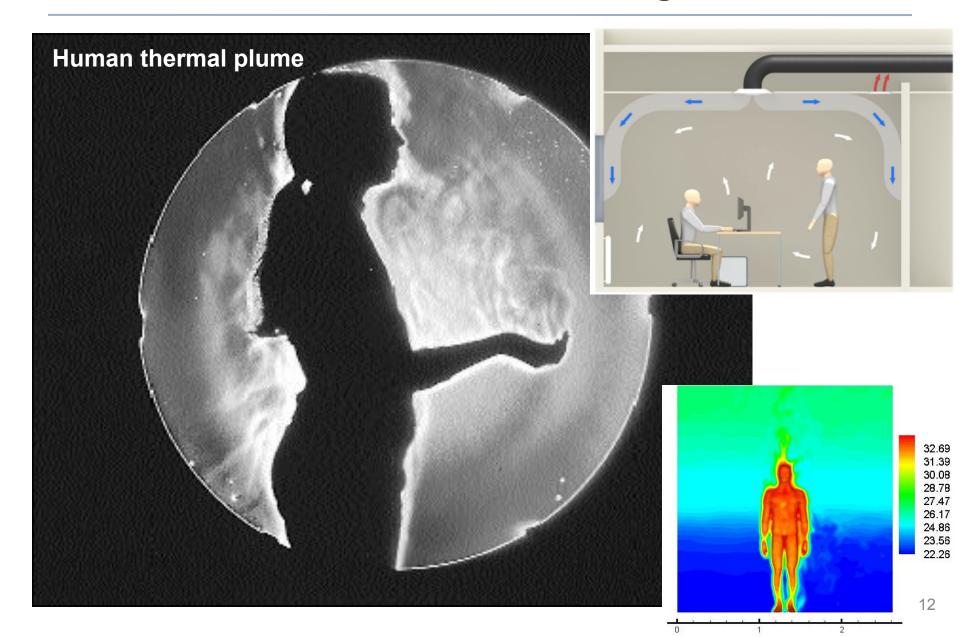

**Radiation** 

#### Conduction

- Conduction heat transfer is a result of molecular-level kinetic energy transfers in solids, liquids, and gases
  - Analogous electrical conduction in solids
- Conduction heat flow occurs in the direction of decreasing temperature
  - From high temperature to low temperature
- Example: heat loss through opaque walls in winter

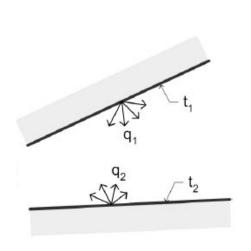


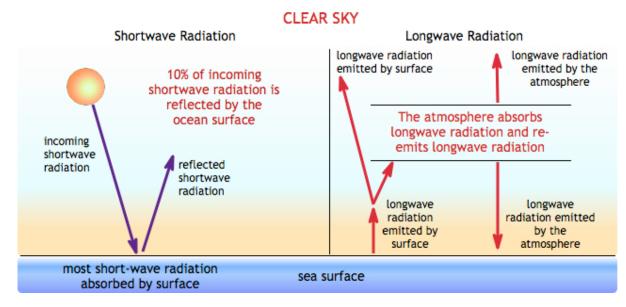

## **Conduction in buildings**



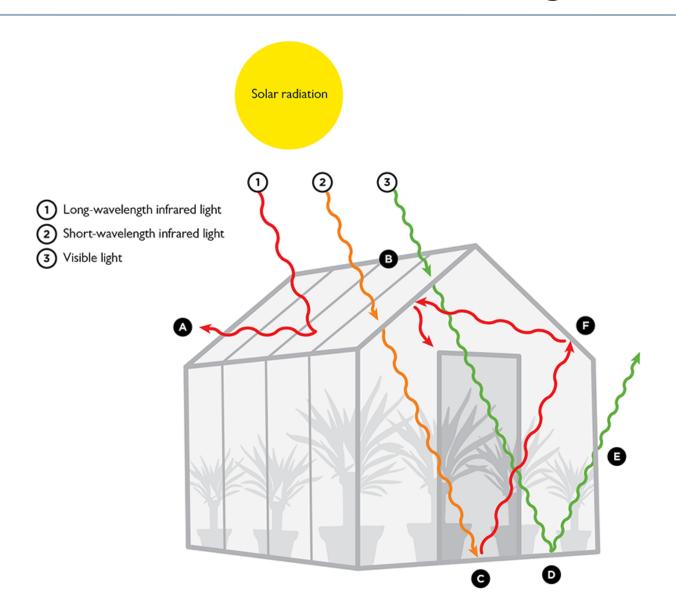

#### Convection

- Convection heat transfer is a result of larger-scale motions of a fluid, either liquid or gas
- The higher the velocity of fluid flow, the higher the rate of convection heat transfer
  - Also the greater the temperature difference the greater the heat flow
- Example: when a cold wind blows over a person's skin and removes heat from it

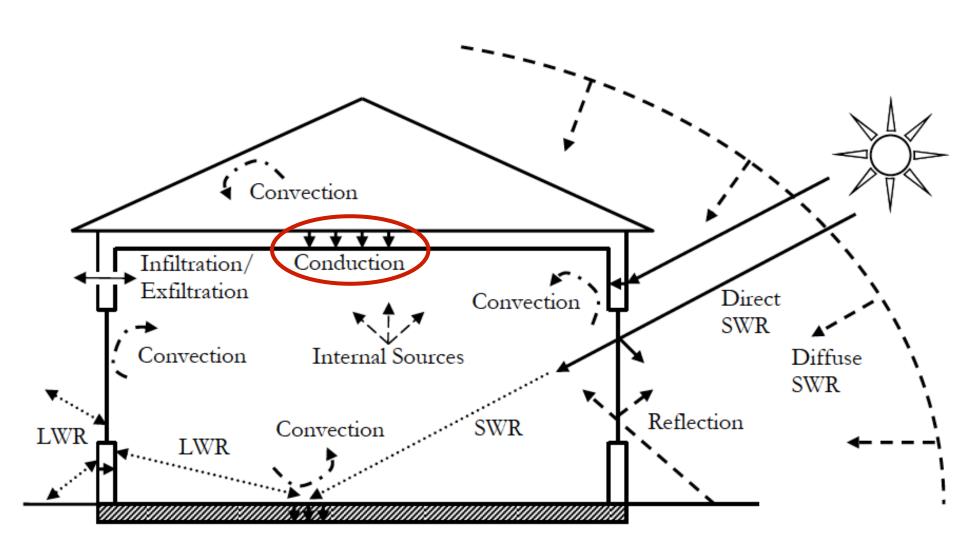


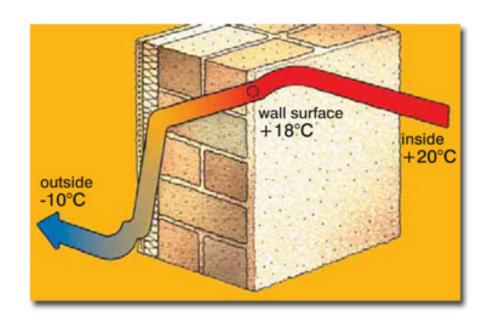


## **Convection in buildings**




#### Radiation

- Radiation heat transfer is the transport of energy by electromagnetic waves
  - Exchange between two surfaces at different temperatures
- Radiation must be absorbed by matter to produce internal energy
- Example: energy transported from the sun to the earth (short wave) or from the earth to the sky (long wave)




## Radiation in buildings



## Primary modes of heat transfer in buildings





## CONDUCTION

## **Conduction equation**

• Conduction follows Fourier's Law:  $q = -k\nabla T$ 

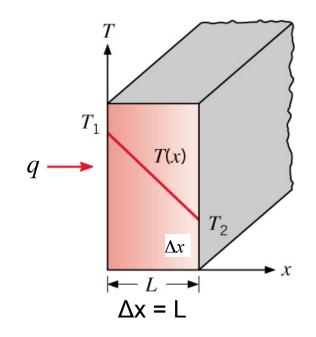
$$q = -k\nabla T = -k\left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z}\right)$$

"The time rate of heat transfer through a material is proportional to the negative gradient in the temperature and to the area, at right angles to that gradient, through which heat flows."

#### where:

 $q = \text{heat flux per unit area } [\text{Btu/(h·ft}^2) \text{ or W/m}^2]$ 

 $k = \text{thermal conducitivity } [Btu/(h \cdot ft \cdot \circ F) \text{ or } W/(m \cdot K)]$ 


 $T = \text{temperature } [^{\circ}F \text{ or } K]$ 

• In 1-dimension, this becomes:  $q = -k \frac{dT}{dx}$ 

## Simplified conduction equation: 1-dimension

If a material has <u>uniform thermal</u> <u>conductivity</u> throughout & consists of <u>parallel surfaces</u> with <u>uniform</u> <u>temperatures</u>, then, in one dimension:

$$q = k \frac{\Delta T}{\Delta x} = k \frac{T_1 - T_2}{x_2 - x_1} = \frac{k}{L} (T_1 - T_2)$$



Here  $T_1$  and  $T_2$  are the surface temperatures at  $x_1$  and  $x_2$ Notice that this equation differs from the last by a minus sign I suggest you use the  $\Delta T/\Delta x$  formulation and note that heat will always flow from high to low temperature

## Conduction: Heat flow vs. heat flux

• To get Q in [W], simply multiply q [W/m<sup>2</sup>] by A [m<sup>2</sup>]

$$Q = qA = A\frac{k}{L}(T_1 - T_2)$$

where:

Q = heat flux [Btu/h or W]

A = area normal to heat flow [m<sup>2</sup>]

#### Thermal conductance and resistance

Conductivity and length can also be described in other terms

$$Q = A \frac{k}{L} \left( T_1 - T_2 \right)$$
 
$$\frac{k}{L} = U \quad \text{and} \quad R = \frac{1}{U}$$

where:

 $U = \text{unit thermal conductance } \left[\frac{\text{Btu}}{\text{h·ft}^2 \cdot ^{\circ} \text{F}}\right] \text{ or } \left[\frac{\text{W}}{\text{m}^2 \text{K}}\right]$ 

 $R = \text{unit thermal resistance } \left[\frac{\text{h·ft}^2 \cdot ^{\circ} \text{F}}{\text{Btu}}\right] \text{ or } \left[\frac{\text{m}^2 \text{K}}{\text{W}}\right]$ 

Conductive heat flux: 
$$q = \frac{k}{L} \left( T_1 - T_2 \right) = U \left( T_1 - T_2 \right) = \frac{1}{R} \left( T_1 - T_2 \right)$$

#### Units of R-values and U-values

- R-values are typically used for insulating materials
  - For example: wall insulation materials
- U -values are typically used for conductive materials
  - For example: windows
- SI units are often easier to work with, but most products in the US are sold in IP units
  - Remember this conversion!  $R(IP) = R(SI) \times 5.678$

$$1\frac{\text{m}^2\text{K}}{\text{W}} = 5.678\frac{\text{h} \cdot \text{ft}^2 \cdot \text{°F}}{\text{Btu}}$$

R-IP

## Thermal conductivity of some typical materials (k)

| Representative Magnitudes of Thermal Conductivity |                                |                          |  |  |  |
|---------------------------------------------------|--------------------------------|--------------------------|--|--|--|
| Material                                          | Conductivity,<br>Btu/(h·ft·°F) | Conductivity,<br>W/(m·K) |  |  |  |
| Atmospheric-pressure gases                        | 0.004-0.10                     | 0.007-0.17               |  |  |  |
| Insulating materials                              | 0.02-0.12                      | 0.034-0.21               |  |  |  |
| Nonmetallic liquids                               | 0.05-0.40                      | 0.086-0.69               |  |  |  |
| Nonmetallic solids (brick, stone, concrete)       | 0.02-1.50                      | 0.034-2.6                |  |  |  |
| Metal alloys                                      | 8–70                           | 14–120                   |  |  |  |
| Pure metals                                       | 30–240                         | 52-410                   |  |  |  |

## Thermal conductivity of building materials (k)

| Material                     | k, Btu/(h·ft·°F) | T, °F  | k, W/(m·K) | T, °C |
|------------------------------|------------------|--------|------------|-------|
| Construction materials       |                  |        |            |       |
| Asphalt                      | 0.43-0.44        | 68–132 | 0.74-0.76  | 20–55 |
| Cement, cinder               | 0.44             | 75     | 0.76       | 24    |
| Glass, window                | 0.45             | 68     | 0.78       | 20    |
| Concrete                     | 1.0              | 68     | 1.73       | 20    |
| Marble                       | 1.2–1.7          | _      | 2.08-2.94  | ~ —   |
| Balsa                        | 0.032            | 86     | 0.055      | 30    |
| White pine                   | 0.065            | 86     | 0.112      | 30    |
| Oak                          | 0.096            | 86     | 0.166      | 30    |
| Insulating materials         |                  |        |            |       |
| Glass fiber                  | 0.021            | 75     | 0.036      | 24    |
| Expanded polystyrene         | 0.017            | 75     | 0.029      | 24    |
| Polyisocyanurate             | 0.012            | 75     | 0.020      | 24    |
| Gases at atmospheric pressur | re               |        |            |       |
| Air                          | 0.0157           | 100    | 0.027      | 38    |
| Helium                       | 0.0977           | 200    | 0.169      | 93    |
| Refrigerant 12               | 0.0048           | 32     | 0.0083     | 0     |
| MOIN Pariet OF CAMERON       | 0.0080           | 212    | 0.0038     | 100   |
| Oxygen                       | 0.00790          | -190   | 0.0137     | -123  |
| ISSALATION & SAPIN (192)     | 0.02212          | 350    | 0.0383     | 175   |

Source: Courtesy of Karlekar, B. and Desmond, R.M., Engineering Heat Transfer, West Publishing, St. Paul, MN, 1982. With permission.

## Thermal properties of building materials (ASHRAE)

| Table 1 | Building and | Insulating | Materials: D | esign Values <sup>a</sup> |
|---------|--------------|------------|--------------|---------------------------|
|         |              |            |              |                           |

| Density, Conductivity k, Resistance R, Specific Heat,  |                   |                |                       |           | ,                               |
|--------------------------------------------------------|-------------------|----------------|-----------------------|-----------|---------------------------------|
| Description                                            | kg/m <sup>3</sup> | W/(m·K)        | (m <sup>2</sup> ·K)/W | kJ/(kg·K) | Referencel                      |
| Insulating Materials                                   |                   |                |                       |           |                                 |
| Blanket and batt <sup>c,d</sup>                        |                   |                |                       |           |                                 |
| Glass-fiber batts                                      |                   |                |                       | 0.8       | Kumaran (2002)                  |
|                                                        | 7.5 to 8.2        | 0.046 to 0.048 | _                     | _         | Four manufacturers (2011)       |
|                                                        | 9.8 to 12         | 0.040 to 0.043 | _                     |           | Four manufacturers (2011)       |
|                                                        | 13 to 14          | 0.037 to 0.039 |                       |           | Four manufacturers (2011)       |
|                                                        | 22                | 0.033          | _                     | _         | Four manufacturers (2011)       |
| Rock and slag wool batts                               |                   | _              | _                     | 0.8       | Kumaran (1996)                  |
| · · · · · · · · · · · · · · · · · · ·                  | 32 to 37          | 0.036 to 0.037 |                       |           | One manufacturer (2011)         |
|                                                        | 45                | 0.033 to 0.035 | _                     | _         | One manufacturer (2011)         |
| Mineral wool, felted                                   | 16 to 48          | 0.040          | _                     | _         | CIBSE (2006), NIST (2000)       |
| <b>,</b>                                               | 16 to 130         | 0.035          | _                     | _         | NIST (2000)                     |
| Board and slabs                                        |                   |                |                       |           |                                 |
| Cellular glass                                         | 120               | 0.042          | _                     | 0.8       | One manufacturer (2011)         |
| Cement fiber slabs, shredded wood with Portland cement |                   |                |                       |           | ,                               |
| binder                                                 | 400 to 430        | 0.072 to 0.076 | _                     |           |                                 |
| with magnesia oxysulfide binder                        | 350               | 0.082          | _                     | 1.3       |                                 |
| Glass fiber board                                      | _                 | _              | _                     | 0.8       | Kumaran (1996)                  |
|                                                        | 24 to 96          | 0.033 to 0.035 | _                     | _         | One manufacturer (2011)         |
| Expanded rubber (rigid)                                | 64                | 0.029          | _                     | 1.7       | Nottage (1947)                  |
| Extruded polystyrene, smooth skin                      |                   | _              | _                     | 1.5       | Kumaran (1996)                  |
| aged per Can/ULC Standard S770-2003                    |                   | 0.026 to 0.029 | _                     | _         | Four manufacturers (2011)       |
| aged 180 days                                          |                   | 0.029          |                       |           | One manufacturer (2011)         |
| European product                                       |                   | 0.030          |                       |           | One manufacturer (2011)         |
| aged 5 years at 24°C                                   |                   | 0030           | _                     | _         | One manufacturer (2011)         |
| blown with low global warming potential (GWP) (<5)     |                   |                |                       |           | ,                               |
| blowing agent                                          |                   | 0.035 to 0.036 | _                     | _         | One manufacturer (2011)         |
| Expanded polystyrene, molded beads                     |                   | _              | _                     | 1.5       | Kumaran (1996)                  |
|                                                        | 16 to 24          | 0.035 to 0.037 | _                     | _         | Independent test reports (2008) |
|                                                        | 29                | 0.033          | _                     | _         | Independent test reports (2008) |
| 41 4011045 004011 11                                   |                   | 0.055          |                       |           | macpondent toot reports (2000)  |

## Thermal properties of building materials (ASHRAE)

Table 1 Building and Insulating Materials: Design Valuesa (Continued)

| Table 1 Building and Insulating Materials. Design values (Continueu) |                   |              |                       |           |                          |
|----------------------------------------------------------------------|-------------------|--------------|-----------------------|-----------|--------------------------|
| Density, Conductivity $k$ , Resistance $R$ , Specific Heat,          |                   |              |                       |           |                          |
| Description                                                          | kg/m <sup>3</sup> | W/(m·K)      | (m <sup>2</sup> ·K)/W | kJ/(kg·K) | Reference                |
|                                                                      | 1760              | 0.71 to 0.85 | _                     | _         | Valore (1988)            |
|                                                                      | 1600              | 0.61 to 0.74 | _                     | _         | Valore (1988)            |
|                                                                      | 1440              | 0.52 to 0.62 | _                     | _         | Valore (1988)            |
|                                                                      | 1280              | 0.43 to 0.53 | _                     | _         | Valore (1988)            |
|                                                                      | 1120              | 0.36 to 0.45 | _                     | _         | Valore (1988)            |
| Clay tile, hollow                                                    |                   |              |                       |           |                          |
| 1 cell deep 75 mm                                                    | _                 | _            | 0.14                  | 0.88      | Rowley and Algren (1937) |
| 100 mm                                                               | _                 | _            | 0.20                  | _         | Rowley and Algren (1937) |
| 2 cells deep 150 mm                                                  | _                 | _            | 0.27                  | _         | Rowley and Algren (1937) |
| 200 mm                                                               | _                 | _            | 0.33                  | _         | Rowley and Algren (1937) |
| 250 mm                                                               | _                 | _            | 0.39                  | _         | Rowley and Algren (1937) |
| 3 cells deep                                                         | _                 | _            | 0.44                  | _         | Rowley and Algren (1937) |
| ightweight brick                                                     | 800               | 0.20         | _                     | _         | Kumaran (1996)           |
|                                                                      | 770               | 0.22         | _                     | _         | Kumaran (1996)           |
| Concrete blocks <sup>f, g</sup>                                      |                   |              |                       |           |                          |
| imestone aggregate                                                   |                   |              |                       |           |                          |
| ~200 mm, 16.3 kg, 2200 kg/m3 concrete, 2 cores                       | _                 | _            |                       | _         |                          |
| with perlite-filled cores                                            | _                 | _            | 0.37                  | _         | Valore (1988)            |
| ~300 mm, 25 kg, 2200 kg/m <sup>3</sup> concrete, 2 cores             | _                 |              | _                     | _         |                          |
| with perlite-filled cores                                            | _                 | _            | 0.65                  | _         | Valore (1988)            |
| ormal-weight aggregate (sand and gravel)                             |                   |              |                       |           | , ,                      |
| ~200 mm, 16 kg, 2100 kg/m <sup>3</sup> concrete, 2 or 3 cores        | _                 | _            | 0.20 to 0.17          | 0.92      | Van Geem (1985)          |
| with perlite-filled cores                                            | _                 | _            | 0.35                  | _         | Van Geem (1985)          |
| with vermiculite-filled cores                                        | _                 | _            | 0.34 to 0.24          |           | Valore (1988)            |
| ~300 mm, 22.7 kg, 2000 kg/m3 concrete, 2 cores                       | _                 | _            | 0.217                 | 0.92      | Valore (1988)            |
| fedium-weight aggregate (combinations of normal and ligh             | tweight age       | regate)      |                       |           | , ,                      |
| ~200 mm, 13 kg, 1550 to 1800 kg/m <sup>3</sup> concrete, 2 or 3 core |                   | _            | 0.30 to 0.22          | _         | Van Geem (1985)          |
| with perlite-filled cores                                            | _                 | _            | 0.65 to 0.41          | _         | Van Geem (1985)          |
| with vermiculite-filled cores                                        | _                 | _            | 0.58                  | _         | Van Geem (1985)          |
| with molded-EPS-filled (beads) cores                                 | _                 | _            | 0.56                  | _         | Van Geem (1985)          |
| with molded EPS inserts in cores                                     | _                 | _            | 0.47                  | _         | Van Geem (1985)          |
| THE HOUSE LT O HISTIG III COLO                                       |                   |              | VT/                   |           | Tun (1705)               |

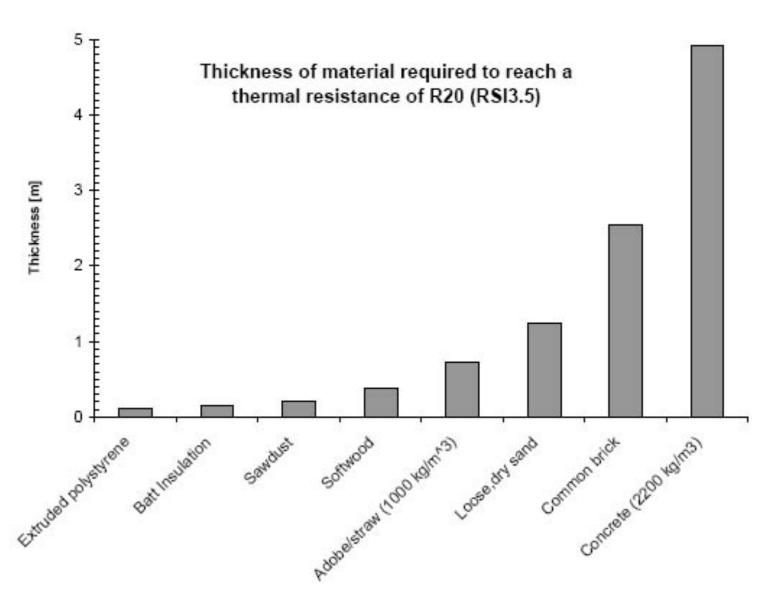
## How building materials are actually sold

Insulation manufacturers often sell their products in terms of "R-value per inch"



#### PRODUCT OVERVIEW

FOAMULAR 150 extruded polystyrene (XPS) rigid foam insulation contains hundreds of millions of densely packed closed cells to provide exceptional thermal performance. It's also virtually impervious to moisture, unlike other plastic foam insulation products, preventing loss of R-value due to moisture penetration. FOAMULAR weighs considerably less than plywood, OSB or other non-insulation materials


#### Q: What is the thermal conductivity of an R-5 per inch (IP) XPS board?

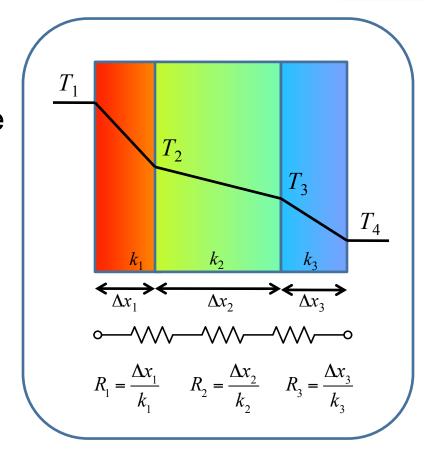
content, certified GreenGuard Indoor Air Quality for Children and Schools, Energy Star Seal and Insulate Program, and NAHB Green approved. Owens Corning Foam Insulation, LLC now warrants a Lifetime Limited Warranty on FOAMULAR Extruded Polystyrene (XPS) Foam Insulation products. This new, enhanced warranty indicates that for the lifetime of the product, FOAMULAR XPS Insulation products are free from defects in material and/or workmanship that materially affect the performance of the product in a building installation.

- Exceptional thermal performance at r-5 per in.
- Virtually impervious to moisture penetration
- For exterior wall sheathing, wall furring, perimeter/foundation, cavity wall, crawlspace, pre-cast concrete, under slab and other applications
- Fast, easy installation
- Available in a wide range of sizes, thicknesses and edge trims
- Compressive strength of 15 psi; astm c578 type x
- Will retain at least 90 percent of their advertised r-value
- MFG Model #: 45W
- MFG Part #: 270895

Owens Corning FOAMULAR 2 inch x 48 inch x 8 feet foamboard Extruded polystyrene (XPS) rigid foam insulation – closed cell

## Thickness, conductivity, and thermal resistance



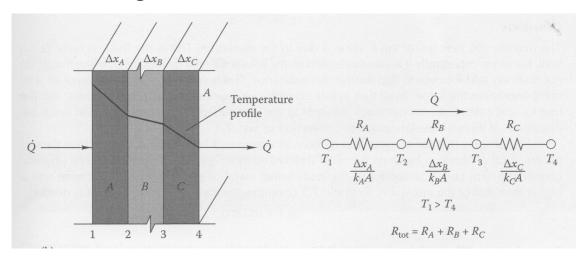

## Thermal resistances of series/layers of materials

 Just as in electrical circuits, the overall thermal resistance of a series of elements can be expressed as the sum of the resistances of each layer:

• 
$$R_{total} = R_1 + R_2 + R_3 + \dots$$

$$q = \frac{1}{R_{total}} \left( T_1 - T_4 \right)$$

$$q = U_{total} \left( T_1 - T_4 \right)$$




$$R_{total} = \frac{1}{U_{total}}$$

## Example of conduction through multiple layers

R-value calculation for a building wall:

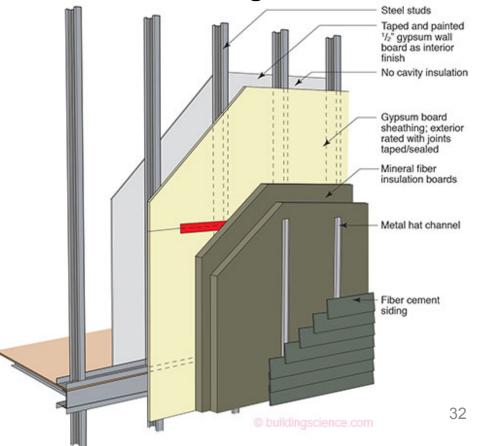
The outside wall of a home consists of a 4 inch (10 cm) layer of brick, a 6 inch (15 cm) layer of fiberglass insulation, and a 0.5 inch (1.2 cm) layer of gypsum board.



- 1) What is the overall R-value?
- 2) What is the steady-state heat flux through the wall if the interior surface temperature is 22°C and the exterior surface is 5°C?



- Building walls rarely exist in complete, homogenous layers
- Structural elements studs are usually located within the envelope matrix at regular intervals
  - Structural elements form what we call <u>thermal bridges</u>

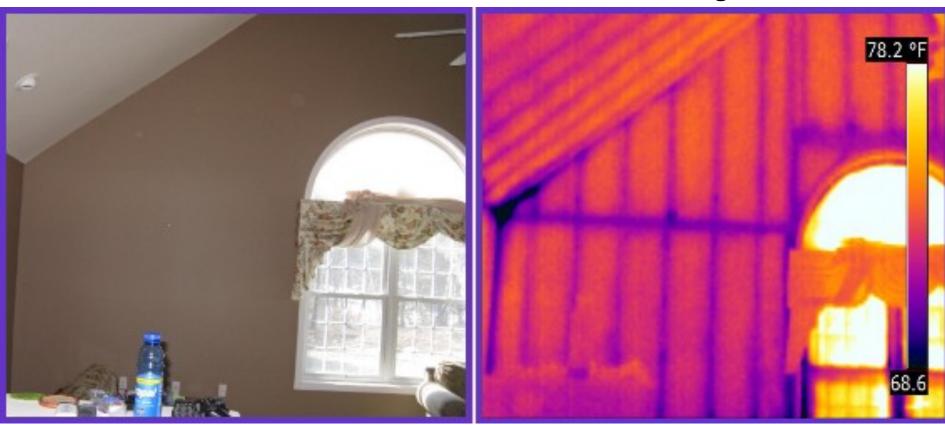



- Building walls rarely exist in complete, homogenous layers
- Structural elements studs are usually located within the envelope matrix at regular intervals
  - Structural elements form what we call <u>thermal bridges</u>



- Building walls rarely exist in complete, homogenous layers
- Structural elements studs are usually located within the envelope matrix at regular intervals
  - Structural elements form what we call <u>thermal bridges</u>

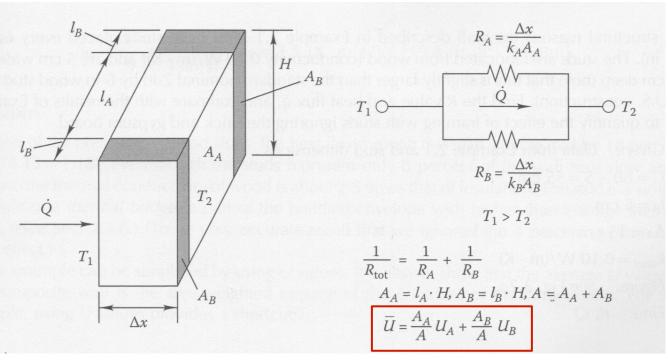





- Building walls rarely exist in complete, homogenous layers
- Structural elements studs are usually located within the envelope matrix at regular intervals
  - Structural elements form what we call <u>thermal bridges</u>



http://www.massinfrared.com/files/insulated\_wall.jpg


- Building walls rarely exist in complete, homogenous layers
- Structural elements studs are usually located within the envelope matrix at regular intervals
  - Structural elements form what we call <u>thermal bridges</u>



http://www.massinfrared.com/files/insulated\_wall.jpg

## Accounting for structural elements (studs)

Parallel-resistance heat flow



Treat resistances as resistors in parallel

Simply use weighted average U values:

$$U_{total} = \frac{A_1}{A_{total}} U_1 + \frac{A_2}{A_{total}} U_2 + \dots$$

## **Example: Accounting for structural elements (studs)**

- For structural reasons the wall described in the last example must have studs placed every 24 inches (60 cm)
  - "24 in o.c." = 24 inches on center
- The studs are wood with k = 0.075 BTU/hr-ft²-°F (0.13 W/mK) and are 2 inches (5 cm) wide and 6 inches (15 cm) deep
- Problem: Find the "effective" R-value of this assembly and compare to the previous example





## **Next time**

Continuing heat transfer (transient conduction)