CAE 331/513 Building Science Fall 2016

Week 13: November 15, 2016 Heating load calculations

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

ASHRAE Scholarships

Regional/Chapter Scholarships Now Accepting Applications, Deadline: December 1st

https://www.ashrae.org/membership--conferences/studentzone/scholarships-and-grants/scholarship-program

Schedule update

- Last week:
 - Indoor air quality (IAQ)
 - Ventilation
 - Infiltration
- This week:
 - Heating and cooling load calculations
 - HW 5 due Thursday Nov 17th

HEATING AND COOLING LOADS

Heating and cooling load calculations

- We've dealt with individual modes of heat transfer all year
- We need to know how all of the heat gains and losses in a building add up to affect thermal comfort, equipment size, and energy requirements

Heating and cooling load calculations

- When we use HVAC systems to maintain comfortable indoor conditions, we need to know what the "peak loads" for both heating and cooling are in order to design and select equipment
- The peak load tells you the maximum amount of energy that would realistically be required to supply to (or extract from) the conditioned space
- Peak loads occur at "design conditions"
- We estimate this peak load using a **heat balance** on the space in question

Design conditions

- When sizing a system to provide a heating or cooling, we need to size it for worst case conditions
 - Or more accurately, *nearly* worst case conditions
 - If equipment is too small, it won't meet the load
 - If equipment is too large, it will have high upfront costs and may run at very low efficiency most of the time (part load ratio problems)
- So we choose extreme (or *nearly* extreme) design conditions on which to base heating and cooling load calculations
 - These are based on different levels of <u>probability</u> of occurrence

Indoor design conditions

- <u>Indoor design conditions</u> are typically in the middle of the ASHRAE comfort zone for the appropriate season
 - Such as:
 - 76°F (24.4°C) and 40% RH in summer
 - 72°F (22.2°C) and 40% RH in winter

Outdoor design conditions

 <u>Outdoor design conditions</u> are not usually the coldest or warmest conditions ever measured, but are usually related to statistical measures obtained from long term (10+ years) measurements

Outdoor design conditions

We use statistical distributions of outdoor weather conditions to give us design conditions 104°F 40 Dry-bulb temperature (degrees C) Top 1% 20-0-**Example cumulative** -20 distribution of hourly weather Bottom 1% data for Chicago (TMY3) -40-40°F 60% 100% 20% 40% 80% 0% Cumulative distribution

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/

Outdoor design conditions

- ASHRAE has compiled decades of weather data for many cities
 - Available in the ASHRAE Handbook of Fundamentals Chapter 13
- ASHRAE lists the 99% and 99.6% cold temperatures for winter design conditions
 - Also the mean wind speed and prevailing direction
- Summer design conditions: Top 2%, 1%, or 0.4% in dry bulb temperature (DBT)
 - You have discretion in picking which percentile
 - Typically: 99% or 99.6% in either direction
- The idea is that the air temperature is colder than the 99% value for about 88 hours per year and colder than the 99.6% for about 35 hours per year

ASHRAE outdoor design conditions

2013 ASHRAE Handbook - Fundamentals (IP)

						ATLANTA	A MUNIC	IPAL, O	GA, USA					WMO#:	722190
Lat:	33.64N	Long:	84.43W	Elev:	1027	StdP:	14.16		Time Zone:	-5 (NAE)		Period:	86-10	WBAN:	13874
Annual He	ating and I	lumidificat	ion Design C	onditions											1
			5	Hum	idification D	P/MCDB and	HR		0	Coldest mon	th WS/MCD	B	MCWS	PCWD	1
Coldest	Heatin	ng DB		99.6%			99%		0.4	4%	1	%	to 99.	6% DB	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1
(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	5
1	21.5	26.4	4.2	7.1	28.6	9.1	9.1	32.2	24.9	39.9	23.5	40.0	11.9	320	
Hottest	Hottest Month	0	.4%	Cooling I	DB/MCWB	29	6	0	0.4%	Evaporation 1	n WB/MCDE %	3	2%	MCWS to 0.4	/PCWD
	L B Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(1)	())	(k)	(1)	(m)	(n)	(0)	(p)
7	17.0	93.9	74.2	91.7	73.9	89.8	73.5	77.3	88.5	76.4	86.7	75.4	85.0	8.7	300
			Dehumidific	ation DP/M	CDB and HF	2					Enthalp	y/MCDB			Hours
· · · · · · · · · · · · · · · · · · ·	0.4%			170			2%		0.4	4%	1	%	2	2%	8 to 4 &
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	55/69
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)
74.3	133.1	81.3	73.3	128.7	80.2	72.6	125.5	79.6	41.4	88.5	40.4	86.7	39.5	85.6	800
Extrome	nnual Desi	an Conditie	ons	province of the		1044444							1997 A. P. A. P. B.		

Г	Exte		IMC	Extreme		Extreme	Annual DB				n-Year R	eturn Period	Values of E	Extreme DB		
	EXU	eme Annua	1443	Max	Me	ean	Standard deviation		n=5 years		n=10 years		n=20 years		n=50	years
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
	21.5	19.0	17.1	82.4	14.1	96.7	4.4	3.3	10.9	99.1	8.3	101.0	5.8	102.9	2.6	105.3

© 2013 ASHRAE, Inc.

ASHRAE outdoor design conditions

CDDn	Cooling degree-days base n°F, °F-day
CDHn	Cooling degree-hours base n°F, °F-hour
DB	Dry-bulb temperature, °F
DP	Dew-point temperature, °F
Ebn,noon	Clear sky beam normal irradiances at solar noon, Btu/h-ft ²
Edh,noon	Clear sky diffuse horizontal irradiance at solar noon, $Btu/h \cdot ft^2$
Elev	Elevation, ft
Enth	Enthalpy, Btu/lb
HDDn	Heating degree-days base n°F, °F-day
Hours 8/4 & 55/69	Number of hours between 8 a.m. and 4 p.m. with DB between 55 and 69°F
HR	Humidity ratio, gr _{moisture} /lb _{drv air}
Lat	Latitude, °
Long	Longitude, °
MCDB	Mean coincident dry bulb temperature, °F
MCDBR	Mean coincident dry bulb temp. range, °F
MCDP	Mean coincident dew point temperature, °F
MCWB	Mean coincident wet bulb temperature, °F
MCWBR	Mean coincident wet bulb temp. range, °F
MCWS	Mean coincident wind speed, mph
MDBR	Mean dry bulb temp. range, °F
PCWD	Prevailing coincident wind direction, ° (0 = North; 90 = East)
Period	Years used to calculate the design conditions
PrecAvg	Average precipitation, in.
PrecSD	Standard deviation of precipitation, in.
PrecMin	Minimum precipitation, in.
PrecMax	Maximum precipitation, in.
Sd	Standard deviation of daily average temperature, °F
StdP	Standard pressure at station elevation, psi
taub	Clear sky optical depth for beam irradiance
taud	Clear sky optical depth for diffuse irradiance
Tavg	Average temperature, °F
Time Zone	Hours ahead or behind UTC, and time zone code
WB	Wet bulb temperature, °F
WBAN	Weather Bureau Army Navy number
WMO#	Station identifier from the World Meteorological Organization
WS	Wind speed, mph

Outdoor design conditions for Chicago?

				Heatin	DR		Co	oling D	B/MCV	VB		Evap	oration	WB/M	ICDB	D	ehumidi	ification	n DP/H	IR/MCI)B	H	xtrem		Heat	./Cool.
Station	Lat	Long	Elev	Heath	ig DB	0.4	4%	1	%	2	%	0.4	1%	1	%		0.4%			1%		Ar	inual W	s	Degr	ce-Days
				99.6%	99%	DB/N	ICWB	DB/N	ICWB	DB/N	ICWB	WB/I	MCDB	WB/1	MCDB	DP/	HR/M	CDB	DP /	HR/M	ICDB	1%	2.5%	5%	HDD /	CDD 65
VALDOSTA RGNL	30.78N	83.28W	197	27.6	30.6	95.6	77.3	93.5	76.5	92.1	76.1	80.4	89.9	79.4	88.8	78.5	149.0	83.6	77.1	142.2	82.6	16.9	14.7	12.8	1527	2559
ROBINS AFB	32.63N	83.60W	295	25.0	27.9	96.9	75.5	94.6	75.4	91.4	74.8	79.4	90.4	78.4	88.7	77.0	142.0	83.1	75.4	134.3	81.4	18.4	16.0	13.0	2130	2231
Hawaii																								4 si	tes, 4 more	on CD-R
KALAELOA ARPT	21.30N	158.07W	33	59.5	61.8	90.9	73.2	89.9	73.2	88.9	73.1	78.0	85.8	76.8	85.3	75.4	133.4	82.9	74.1	127.2	82.3	19.4	17.7	16.2	0	4450
HILO INTL	19.72N	155.05W	36	61.5	62.8	85.7	74.1	84.7	73.8	83.9	73.6	76.6	82.1	75.9	81.5	75.1	131.7	79.2	74.1	127.5	78.6	17.4	15.7	13.3	0	3264
HONOLULU INTL	21.33N	157.94W	16	62.0	63.9	89.8	74.0	88.9	73.6	88.1	73.3	77.2	84.8	76.3	84.1	75.0	131.2	81.2	73.8	126.0	80.6	22.2	20.2	18.8	0	4679
KANEOHE BAY (MCAF)	21.45N	157.77W	20	64.0	65.9	84.9	74.4	84.1	74.1	83.3	73.8	77.1	81.9	76.2	81.5	75.3	132.6	80.2	74.4	128.8	79.9	18.8	17.0	15.8	0	4243
Idaho																								7 site	s, 10 more	on CD-R
BOISE MUNICIPAL	43.57N	116.22W	2867	8.7	15.5	98.6	63.9	95.4	62.9	92.5	61.9	66.2	92.3	64.7	90.5	57.2	77.5	71.6	54.9	71.3	71.4	21.9	19.0	17.1	5453	957
CALDWELL (AWOS)	43.64N	116.63W	2431	11.5	16.3	97.0	66.4	93.1	64.7	90.5	63.8	68.2	92.3	66.5	89.9	59.3	82.6	77.8	56.9	75.4	77.4	22.1	19.1	16.9	5729	660
COEUR D ALENE AIR TE	47.77N	116.82W	2320	5.5	10.3	91.4	63.0	88.5	62.4	84.2	60.9	65.8	86.4	64.0	84.0	57.4	76.7	71.3	55.4	71.3	70.0	22.2	18.9	16.7	6908	300
IDAHO FALLS RGNL	43.52N	112.07W	4744	-6.7	-0.3	91.5	60.9	89.6	60.6	86.4	59.5	64.5	83.4	62.8	82.6	57.8	85.1	69.9	55.4	78.0	68.3	27.1	24.2	20.6	7701	272
JOSLIN FLD MAGIC VA	42.48N	114.49W	4190	9.0	12.2	94.7	63.2	91.2	62.3	89.7	61.9	66.4	88.8	64.9	86.4	58.8	86.5	75.5	56.5	79.6	74.6	27.9	24.6	20.9	6128	729
LEWISTON NEZ PERCE	46.38N	117.01W	1437	12.0	18.6	98.2	65.3	94.5	64.4	90.9	63.1	67.5	92.4	65.9	90.0	59.4	79.7	72.5	57.1	73.4	71.8	20.8	17.9	15.0	5020	839
POCATELLO MUNICIPAL	42.92N	112.57W	4478	-2.0	3.8	94.6	61.6	91.4	60.9	88.6	60.0	65.1	86.8	63.4	84.8	58.2	85.5	71.0	55.4	77.2	70.7	28.3	25.3	22.3	6938	426
Illinois																								14 site	s, 14 more	on CD-R
AURORA MUNICIPAL	41.77N	88.48W	715	-5.6	0.5	90.4	74.2	88.2	73.4	84.4	71.6	77.5	86.4	75.8	83.9	74.7	133.5	82.9	72.9	125.5	80.8	25.9	22.9	19.8	6508	701
CAHOKIA/ST. LOUIS	38.57N	90.16W	413	9.1	12.4	93.4	77.1	91.3	76.2	90.2	75.6	80.1	90.3	78.4	88.8	77.2	143.9	85.1	75.2	134.2	83.9	20.7	18.5	16.6	4545	1398
CHICAGO/MIDWAY	41.79N	87.75W	617	0.2	5.4	91.5	74.6	89.5	73.3	86.5	72.0	78.0	88.1	76.1	85.1	74.9	134.0	84.1	73.0	125.4	82.0	24.5	21.2	19.2	5872	1034
CHICAGO/O'HARE ARPT	41.99N	87.91W	673	-1.5	3.7	91.4	74.3	88.7	73.2	86.0	71.8	77.8	87.8	76.0	84.8	74.7	133.3	83.7	73.0	125.8	81.7	24.6	21.0	19.1	6209	864
DECATUR	39.98N	88.87W	679	0.9	6.6	92.9	76.6	90.6	75.5	88.3	74.3	79.3	89.7	77.8	87.7	76.2	140.3	85.9	74.8	133.5	84.2	24.8	21.6	19.7	5442	1100
GLENVIEW NAS	42.08N	87.82W	653	-0.7	4.8	93.7	75.0	90.2	73.3	87.1	72.1	77.9	90.2	76.2	87.0	74.2	130.7	85.1	72.4	123.1	83.6	20.2	18.0	16.2	6104	909
MOLINE/QUAD CITY	41.47N	90.52W	594	-3.9	1.3	92.9	76.1	90.2	74.8	87.5	73.3	79.1	89.2	77.3	86.9	76.2	139.6	85.2	74.5	131.9	83.1	24.1	20.3	18.3	6074	994
GREATER PEORIA MUNI	40.67N	89.68W	663	-1.5	3.3	92.2	76.2	89.8	75.1	87.2	73.6	79.2	88.5	77.5	86.6	76.4	141.4	85.0	74.8	133.6	83.0	23.4	19.9	18.0	5756	1040
QUINCY RGNL BALDWIN	39.94N	91.19W	768	-0.2	4.8	92.7	76.5	90.1	75.3	87.7	74.1	78.6	89.1	77.4	87.4	75.5	137.2	84.8	74.2	131.3	83.3	24.5	20.8	18.9	5501	1101
GREATER ROCKFORD	42.20N	89.09W	745	-5.8	0.0	91.1	74.6	88.2	73.2	85.5	71.7	78.0	87.4	76.0	84.4	75.1	135.6	83.5	73.2	126.9	81.7	24.4	20.9	19.0	6608	775
SCOTT AFB MIDAMERIC	38.53N	89.83W	459	9.0	12.4	94.8	76.5	91.4	75.5	90.1	75.2	80.3	88.5	78.7	87.2	78.6	151.0	84.6	76.6	141.3	83.1	23.1	19.8	17.7	4579	1401
SPRINGFIELD/CAPITAL	39.85N	89.68W	614	0.4	6.4	92.4	76.6	90.3	75.5	88.0	74.1	79.4	89.4	77.9	87.2	76.4	141.1	85.9	74.9	134.0	84.1	24.7	21.4	19.2	5360	1137
UNIV OF ILLINOIS WI	40.04N	88.28W	764	-0.5	4.2	92.0	76.0	90.0	75.1	87.7	74.1	79.6	88.8	77.7	86.5	76.9	144.3	86.1	75.0	135.0	83.3	27.5	24.6	21.8	5681	1008
DUPAGE	41.91N	88.25W	758	-2.5	1.6	90.3	74.9	87.9	74.0	84.4	72.2	78.2	87.0	76.4	84.3	75.3	136.3	84.1	73.4	127.6	81.4	24.6	21.2	19.1	6429	738

The winter 99% dry bulb temperature is 3.7°F at O'Hare and the 99.6% dry bulb temperature is -1.5°F The summer 1% dry bulb temperature is 88.7°F at O'Hare and the 0.4% dry bulb temperature is 91.4°F

A note on "degree-days"

- The basic idea is that the energy use of a building is directly related to the temperature difference between outdoor and indoor air
- Heating equipment is assumed to run when the outdoor temperature drops below the "balance temperature"
 - The balance temperature is the outdoor air temperature at which the internal heat gains balance the heat loss to the outside
 - This is less than the interior temperature set point
 - These are Heating Degree Days
- Cooling equipment is assumed to run when the outdoor temperature is above the balance temperature
 - The balance temperature might not be the same for heating and cooling because the interior temperature, interior heat gain, and building heat loss usually differ in summer and winter
 - These are Cooling Degree Days

Selecting a base temperature

 HDD_{65F} and CDD_{65F} are common HDD/CDD levels that are used regularly in industry (both with a base of 65°F)

$$HDD = \int [T_{bal} - T_{out}(t)]dt \text{ when } T_{out} < T_{bal}$$
$$CDD = \int [T_{out}(t) - T_{bal}]dt \text{ when } T_{out} > T_{bal}$$

HDD_{65F} maps

ANNUAL HEATING DEGREE DAYS

BASED ON NORMAL PERIOD 1961-1990

17

HDD_{65F} maps

CDD_{65F} maps

ANNUAL COOLING DEGREE DAYS

BASED ON NORMAL PERIOD 1961-1990

CDD_{65F} maps

City of Chicago requirements for design conditions

- The City of Chicago Building code has required design conditions that differ slightly from ASHRAE
- Winter Design Condition: $T_{db} = -10^{\circ}F$
- Summer Design: $T_{db} = 92^{\circ}F$, $T_{wb} = 74^{\circ}F$
- The maximum allowable interior design temperature is 72°F for heating and 75°F for cooling
- Local codes supersede ASHRAE

Heat balances

 For either heating or cooling loads at design conditions, we can calculate a "heat balance" on a building/space/zone in question

Sensible heat balance: Total sensible load

Q is positive (+) when there is a heating load (cold outside)

Need to add heat to stay comfortable

Q is negative (-) when there is a cooling load (hot outside)

Need to remove heat to stay comfortable

 $Q_{storage}$ accounts for thermal mass of a building (i.e., storage) <u>Units:</u> BTU/hr or W

Sensible heat losses and gains

Envelope transmission:

$$Q_{envelope transmission} = \sum UA(T_{in} - T_{out})$$

Air exchange:

$$Q_{airexchange} = \dot{V}_{OA} \rho_{OA} C_{p,air} (T_{in} - T_{out})$$

U = overall heat transfer coefficient for walls, roof, ceiling, floor, glazing, etc. $[BTU/hr \cdot ft^2 \cdot \circ F] \text{ or } [W/m^2K]$ $A = \text{area of walls, roof, ceiling, floor, glazing, etc. [ft^2] \text{ or } [m^2]$ $T_{in} = \text{ indoor air design temperature } [\circ F] \text{ or } [K]$ $T_{out} = \text{ outdoor air design temperature } [\circ F] \text{ or } [K]$ $V_{OA} = \text{ volumetric flow rate of outdoor air due to air exchange } [ft^3/hr] \text{ or } [m^3/s]$ $\rho_{OA} = \text{ density of outdoor air } [lb/ft^3] \text{ or } [kg/m^3]$ $C_{p,air} = \text{ specific heat capacity of air } [BTU/lb \cdot \circ F] \text{ or } [J/kg]$

Total heat transmission coefficient: Envelope + air exchange

• We can also lump envelope transmission and air exchange together to define a total building heat transfer coefficient,

Building Enclosure

$$K_{total} = \sum UA + \dot{V}_{OA} \rho_{OA} C_{p,air}$$

$$\sum UA = (UA)_{walls} + (UA)_{windows}$$
$$+ (UA)_{doors} + (UA)_{roof} + (UA)_{floor}$$

 $Q_{envelope transmission} + Q_{air exchange} = K_{total}(T_{in} - T_{out})$

Don't forget heat gains

$$Q_{gains} = Q_{solar} + Q_{light} + Q_{equip} + Q_{occ}$$

Typical heat gains include:

- Solar gains through windows (always positive, or 0 at night)
- Heat gains from occupants, lights, and equipment (internal gains)
 - Motors, copiers, computers, appliances, etc.
 - We need to know their scheduling (when they are off and on) as well as their magnitude
- Internal heat gains are heat sources on the inside of the building
 - These are all always positive (+), meaning they always add heat to the interior of the building
 - Internal heat gains can affect both heating and cooling loads

Heat gains from lighting

- Lights are often a major internal heat load component
 - This is changing as lighting efficiency increases
- Lights contribute to heat gain through convection and radiation
 - Function of total wattage and how much they are used

		s/Lamp	ps/Fixture	p Watts	ire Watts	ial vance Factor			s/Lamp	ps/Fixture	p Watts	tre Watts	ial vance Factor
Description	Ballast	Watt	Lam	Lam	Fixtu	Speci	Description	Ballast	Watt	Lam	Lam	Fixtu	Speci
Compact Fluorescent Fixtures													
Twin, (1) 5 W lamp	Mag-Std	5	1	5	9	1.80	Twin, (2) 40 W lamp	Mag-Std	40	2	80	85	1.06
Twin, (1) 7 W lamp	Mag-Std	7	1	7	10	1.43	Quad, (1) 13 W lamp	Electronic	13	1	13	15	1.15
Twin, (1) 9 W lamp	Mag-Std	9	1	9	11	1.22	Quad, (1) 26 W lamp	Electronic	26	1	26	27	1.04
Quad, (1) 13 W lamp	Mag-Std	13	1	13	17	1.31	Quad, (2) 18 W lamp	Electronic	18	2	36	38	1.06
Quad, (2) 18 W lamp	Mag-Std	18	2	36	45	1.25	Quad, (2) 26 W lamp	Electronic	26	2	52	50	0.96
Quad, (2) 22 W lamp	Mag-Std	22	2	44	48	1.09	Twin or multi, (2) 32 W lamp	Electronic	32	2	64	62	0.97
Quad, (2) 26 W lamp	Mag-Std	26	2	52	66	1.27							
Fluorescent Fixtures													
(1) 450 mm, T8 lamp	Mag-Std	15	1	15	19	1.27	(4) 1200 mm, T8 lamp	Electronic	32	4	128	120	0.94
(1) 450 mm, T12 lamp	Mag-Std	15	1	15	19	1.27	(1) 1500 mm, T12 lamp	Mag-Std	50	1	50	63	1.26
(2) 450 mm, T8 lamp	Mag-Std	15	2	30	36	1.20	(2) 1500 mm, T12 lamp	Mag-Std	50	2	100	128	1.28

Table 2 Typical Nonincandescent Light Fixtures

Heat gains from lighting

 You can also use typical lighting power densities for different kinds of spaces

Common Space Types*	LPD, W/m ²	Building-Specific Space Types*	LPD, W/m ²	Building-Specific Space Types*	LPD, W/m ²
Atrium		Automotive		Library	
First 13 m height	0.10 per m	Service/repair	7.2	Card file and cataloging	7.8
-	(height)	Bank/office		Reading area	10
Height above 13 m	0.07 per m	Banking activity area	14.9	Stacks	18.4
	(height)	Convention center		Manufacturing	
Audience/seating area-permanent	8.5	Audience seating	8.8	Corridor/transition	4.4
For auditorium	26.2	Exhibit space	15.6	Detailed manufacturing	13.9
For performing arts theater	12.3	Courthouse/police station/penitenti	ary	Equipment room	10.2
For motion picture theater	13.3	Courtroom	18.5	Extra high bay (>50 ft floor-to-	11.3
		Confinement cells	11.8	ceiling height)	
Classroom/lecture/training	13.3	Judges' chambers	12.6	High bay (25 to 50 ft floor-to-	13.2
Conference/meeting/multipurpose	13.2	Penitentiary audience seating	4.6	ceiling height)	
Corridor/transition	7.1	Penitentiary classroom	14.4	Low bay (<25 ft floor-to-ceiling	12.8
		Penitentiary dining	11.5	height)	
Dining area	7.0	Dormitory		Museum	
For bar lounge/leisure dining	14.1	Living quarters	4.1	General exhibition	11.3
For family dining	9.6	Fire stations		Restoration	11.0
Dressing/fitting room for	4.3	Engine room	6.0	Parking garage	
performing arts theater		Sleeping quarters	2.7	Garage area	2.0
		Gymnasium/fitness center		Post office	
Electrical/mechanical	10.2	Fitness area	7.8	Sorting area	10.1
Food preparation	10.7	Gymnasium audience seating	4.6	Religious buildings	
		Playing area	12.9	Audience seating	16.5
Laboratory	13.8	Hospital		Fellowship hall	6.9
For classrooms	13.8	Corridor/transition	9.6	Worship pulpit, choir	16.5
For medical/industrial/research	19.5	Emergency	24.3	Retail	
		Exam/treatment	17.9	Dressing/fitting room	9.4
Lobby	9.675	Laundry/washing	6.5	Mall concourse	11.8
For elevator	6.88	Lounge/recreation	11.5	Sales area	18.1

Heat gains from equipment

• Equipment and appliances also add heat to indoor air

Equipment	Description	Nameplate Power, W	Average Power, W	Radiant Fraction
Desktop computera	Manufacturer A (model A); 2.8 GHz processor, 1 GB RAM	480	73	0.10 ^a
	Manufacturer A (model B); 2.6 GHz processor, 2 GB RAM	480	49	0.10 ^a
	Manufacturer B (model A); 3.0 GHz processor, 2 GB RAM	690	77	0.10 ^a
	Manufacturer B (model B); 3.0 GHz processor, 2 GB RAM	690	48	0.10 ^a
	Manufacturer A (model C); 2.3 GHz processor, 3 GB RAM	1200	97	0.10 ^a
Laptop computerb	Manufacturer 1; 2.0 GHz processor, 2 GB RAM, 430 mm screen	130	36	0.25 ^b
	Manufacturer 1; 1.8 GHz processor, 1 GB RAM, 430 mm screen	90	23	0.25 ^b
	Manufacturer 1; 2.0 GHz processor, 2 GB RAM, 355 mm screen	90	31	0.25 ^b
	Manufacturer 2; 2.13 GHz processor, 1 GB RAM, 355 mm screen,	90	29	0.25 ^b
	Manufacturer 2: 366 MHz processor, 130 MB RAM (355 mm screen)	70	22	0.25 ^b
	Manufacturer 3; 900 MHz processor, 256 MB RAM (265 mm screen)	50	12	0.25 ^b
Flat-panel monitore	Manufacturer X (model A); 760 mm screen	383	90	0.40°
-	Manufacturer X (model B); 560 mm screen	360	36	0.40 ^c
	Manufacturer Y (model A); 480 mm screen	288	28	0.40°
	Manufacturer Y (model B); 430 mm screen	240	27	0.40°
	Manufacturer Z (model A); 430 mm screen	240	29	0.40°
	Manufacturer Z (model C); 380 mm screen	240	19	0.40°

Table 8 Recommended Heat Gain from Typical Computer Equipment

Table 9	Recommended Heat	Gain from	Typical Laser	Printers and	Copiers

Equipment	Description	Nameplate Power, W	Average Power, W	Radiant Fraction
Laser printer, typical desktop,	Printing speed up to 10 pages per minute	430	137	0.30ª
small-office type ^a	Printing speed up to 35 pages per minute	890	74	0.30 ^a
	Printing speed up to 19 pages per minute	508	88	0.30 ^a
	Printing speed up to 17 pages per minute	508	98	0.30 ^a
	Printing speed up to 19 pages per minute	635	110	0.30 ^a
	Printing speed up to 24 page per minute	1344	130	0.30 ^a

29

Heat gains from people

- Representative heat gains for people performing different activities are listed in the ASHRAE Handbook of Fundamentals
 - Need to keep the latent load separate from the sensible load

		Total	Heat, W	Sensible	Latent	% Sensible	Heat that is
		Adult	Adjusted,	Heat,	Heat,	Rad	iant ^o
Degree of Activity		Male	M/F ^a	W	W	Low V	High V
Seated at theater	Theater, matinee	115	95	65	30		
Seated at theater, night	Theater, night	115	105	70	35	60	27
Seated, very light work	Offices, hotels, apartments	130	115	70	45		
Moderately active office work	Offices, hotels, apartments	140	130	75	55		
Standing, light work; walking	Department store; retail store	160	130	75	55	58	38
Walking, standing	Drug store, bank	160	145	75	70		
Sedentary work	Restaurant ^c	145	160	80	80		
Light bench work	Factory	235	220	80	140		
Moderate dancing	Dance hall	265	250	90	160	49	35
Walking 4.8 km/h; light machine work	Factory	295	295	110	185		
Bowling ^d	Bowling alley	440	425	170	255		
Heavy work	Factory	440	425	170	255	54	19
Heavy machine work; lifting	Factory	470	470	185	285		
Athletics	Gymnasium	585	525	210	315		

Table 1 Representative Rates at Which Heat and Moisture Are Given Off by Human Beings in Different States of Activity

Latent heat gains (moisture)

- Mainly due to:
 - Air exchange
 - Equipment (kitchen/bathroom)
 - Occupants
 - Humidification requirements

$$Q_{latent} = Q_{latent,air} + Q_{latent,occ} + Q_{latent,equip}$$

$$H_{latent,air\,exchange} = \dot{m}_{w,OA} h_{fg} = \dot{V}_{OA} \rho_{OA} (W_{in} - W_{out}) h_{fg}$$

 W_{in} = indoor design humidity ratio $[lb_w/lb_{da}]$ or $[kg_w/kg_{da}]$ W_{out} = outdoor design humidity ratio $[lb_w/lb_{da}]$ or $[kg_w/kg_{da}]$ h_{fg} = latent heat of vaporization of water [BTU/lbw] or [J/kg_w]

Heating load calculation procedures

The peak heating load is simple and relies only on: Overall envelope transmission and air exchange

- Transmission load (enclosure losses) is the heat lost to the outside through the building enclosure
 - Roof, walls, floor, windows
- Air exchange load (or ventilation +infiltration load) is the heat required to warm up the cold outside air that leaks into the building through cracks or is brought in via ventilation

Heating load calculation procedures

- Heating load calculations are based on instantaneous heat losses
 - The maximum heating load should occur before sunrise on the coldest days of the year
- Therefore, we assume that:
 - All heating losses are instantaneous heating loads
 - We ignore any effects of thermal storage
 - Solar heat gains and internal loads are usually not taken into account except for those internal loads that continuously release heat inside the conditioned space during the whole heating season
 - The only latent load is that which is required to evaporate liquid water for maintaining adequate humidity

Heating load calculation procedures

- 1. Define your design conditions (T_{in} and T_{out})
- 2. Define the building envelope that separates conditioned (i.e., heated) space from unconditioned space
- 3. Determine the envelope and air exchange heat transmission coefficient (K_{total})
- 4. Determine any indoor heat sources present at the time of the peak load, e.g., people, equipment, lights, etc. (Q_{gains})
- 5. Calculate the instantaneous heat load using:

$$Q_{heating load} = K_{total} (T_{in} - T_{out}) - \sum Q_{gains}$$

$$ating load = (\sum UA + \dot{V}_{OA} \rho_{OA} C_{p,air}) (T_{in} - T_{out}) - \sum Q_{gains}$$

Heating load calculations

Example (SI units):

- Find the design heat load for a 12 m x 12 m x 2.5 m building with an insulated R-4.2 m²K/W flat roof and R-2.5 m²K/W walls
 - Double glazed windows (U = $3 \text{ W/m}^2\text{K}$) cover 20% of the walls
 - The air exchange rate is 0.5 per hour
 - Ignore floor heat transfer
 - Design conditions of -10°C outside and 22°C inside
 - Internal gains = 1 kW
 - Assume all R values and U values already include film resistances

Heating load calculations (single zone – IP units)

Calculate the peak heating load for the office room shown here (at 99.6%):

Location: Atlanta, GA, 2nd floor of a two-story building, **Enclosure:** 2 vertical exterior exposures and a flat roof above

Area: 130 ft²

Ceiling height: 9 ft

Floor: Carpeted 5 inch concrete slab on metal deck above conditioned space

Roof: Flat metal deck with rigid closed cell polyisocyanurate foam insulation (R=30 hr-ft²-°F/BTU) **Spandrel wall:** Bronze tinted glass, opaque, backed with air space and rigid fiberglass insulation. Total Uvalue of 0.077 BTU/hr-ft²-°F

Insulated brick wall: Brick with continuous exterior insulation and interior fiberglass batt insulation. Total U = $0.08 \text{ BTU/hr-ft}^2-^\circ\text{F}$).

Infiltration: 1 air change per hour during peak heating Window U values: Double glazed ¼" bronze tinted with 1/2" air space. Total U = 0.56 BTU/hr-ft²-°F. Occupancy: None during peak heating Lighting: None during peak heating Indoor design conditions: 72°F for heating

Heating load calculations (single zone – IP units)

ANTA MUMORAL

.....

2013 ASHRAE Handbook - Fundamentals (IP)

						AILANIA	MUNIC	JIPAL, C	SA, USA					WMO#:	722190
Lat	33.64N	Long:	84.43W	Elev:	1027	StdP:	14.16		Time Zone:	-5 (NAE)		Period:	86-10	WBAN:	13874
Annual H	eating and H	umidificati	on Design C	onditions											
Orthorn	11.000			Hum	dification DI	P/MCDB and	HR		0	Coldest mon	th WS/MCE)B	MCWS	PCWD	
Coldest	Heatin	g DB		99.6%			99%		0.4	4%	1	1%	to 99.	6% DB	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	
1	21.5	26.4	4.2	7.1	28.6	9.1	9.1	32.2	24.9	39.9	23.5	40.0	11.9	320	
Annual C	ooling, Dehu	midificatio	on, and Entha	alpy Design	Conditions	5									
	Hottest			Cooling D	B/MCWB			-		Evaporation	WB/MCDE	3		MCWS	PCWD
Hottest	Month	0.	4%	1	%	2%	0	0	.4%	1	%	2	%	to 0.4	% DB
Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)
7	17.0	93.9	74.2	91.7	73.9	89.8	73.5	77.3	88.5	76.4	86.7	75.4	85.0	8.7	300
			Dehumidific	ation DP/M	CDB and HF	2					Enthalg	w/MCDB			Hours
	0.4%			1%			2%		0.4	4%	1	1%	2	%	8 to 4 &
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	55/69
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)
74.3	133.1	81.3	73.3	128.7	80.2	72.6	125.5	79.6	41.4	88.5	40.4	86.7	39.5	85.6	800
-															

reme Annual Design

Evi	ama Annual	IMC	Extreme		Extreme	Annual DB		n-Year Return Period Values of Extreme DB									
EXU	Extreme Annual WS		Max	Mean		Standard deviation		n=5 years		n=10 years		n=20 years		n=50) years		
1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(P)		
21.5	19.0	17.1	82.4	14.1	96.7	4.4	3.3	10.9	99.1	8.3	101.0	5.8	102.9	2.6	105.3		

© 2013 ASHRAE, Inc.

37

Selecting heating equipment

 Once you know your design heating load, you can select heating equipment

 $Q_{h,\text{max}} = 4406 \text{ BTU/hr} = 4.4 \text{ kBTU/hr}$

MODEL	HEIGHT (IN.)	WIDTH (IN.)	DEPTH (IN.)	NOMINAL CAPACITY OUTPUT (BTUH)
TUE1A040A9241A	40	14.5	28	31,000
TUE1A060A9241A	40	14.5	28	47,000
TUE1A060A9361A	40	14.5	28	47,000
TUE1B060A9361A	40	17.5	28	47,000
TUE1B080A9361A	40	17.5	28	63,000

Estimating heating energy use with HDD

- Now that we know how to get HDD, we can calculate the heating energy, *E*, required to keep the building heated
- Using hourly values:

$$E_{heating} = \frac{(UA)_{total}}{\eta} \int [T_{bal} - T_{out}(t)] dt \text{ when } T_{out} < T_{bal}$$

Where η = heating system efficiency (-)

• Using HDD:

$$E_{heating} = \frac{(UA)_{total}}{\eta} HDD$$

*Convert HDD to proper units (degree-seconds or degree-hours)

Estimating heating energy use with HDD

- Find the annual heating bill for a house in Chicago under the following conditions:
 - UA_{total} = 400 BTU/(hr °F)
 - $T_{bal} = 65^{\circ}F$
 - Natural gas heating system is 75% efficient
 - Natural gas fuel price is \$8/MMBTU
 - HDD_{65F} = 6280 °F-days

$$E_{heating} = \frac{400 \frac{\text{BTU}}{\text{hr}^{\circ}\text{F}}}{0.75} (6280 \text{ }^{\circ}\text{F-days})(\frac{24 \text{ hours}}{1 \text{ day}}) = 6.03 \times 10^{7} \text{ BTU} = 60.3 \text{ MMBTU}$$
$$Costs_{heating} = 60.3 \text{ MMBTU} \times \frac{\$8}{\text{MMBTU}} = \$482$$