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Review from last time and objectives for today

* Introduced COP, EER, and capacity
— And how they change with external conditions

* Introduced more complex heating and cooling systems
— Chillers
— Cooling towers

— Air and water distribution systems
— Economizers

Today’s objectives:

« Finish heating and cooling systems
« Air- and ground-source heat pumps
* Fluid flow in buildings

— Finish air and water distribution systems
— Pressure distributions
— Fan and pump curves



Typical large central commercial systems

Heating and cooling distribution done separately:
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Typical large central commercial system components

Air cooled chiller
Smaller capacity

- Water-cooled chiller
: ~ (w/ cooling tower — larger capacity & more efficient)




Air-cooled chillers

« Chillers use vapor compression or absorption systems to
produce chilled water for cooling spaces
Chiller

Air-cooled chiller
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Water-cooled chillers (i.e., “cooling tower”)
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Water- or air-cooled chiller?

Air Cooled Water Cooled

Heat Transfer Medium Air Water
Highly dependent on the ambient Codependency on wet-bulb
Temperature Effects dry-bulb temperature, lower temperatures offers high performance
performance at higher temperatures across temperatures ranges
Efficiency Least Best
Footprint Largest Smallest
Water Usage None High
Sound High Low
Total Cost of .
Ownership High Low

Highest energy efficiency, most flexible

Benefits No water usage temperature options

Lowest efficiency, largest footprint

Challenges per ton

Highest water usage




Part-load ratio (PLR)

Many systems
operate at their
highest efficiency
(highest COP) at
design load
conditions

— Maximum load

RES Clg (SDL-C17)

Part Load Efficiency (COP/COP_ss)
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Part-load ratio (PLR) and entering water temp. (EWT)

Many systems
operate at their
highest efficiency
(highest COP) at
design load
conditions

— Maximum load

But systems don'’t
always operate at
peak load conditions

— “Part-load” conditions
are common

The “part-load ratio”
quantifies COP at
part-load conditions
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HEAT PUMPS



Air- and ground-source heat pumps

Heat Pump &]
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by: Michael Ermann and Clark Coots

https://www.youtube.com/watch?v=NyNeh7wPQQk !




Heat pumps

Cooling

Outside 95°F
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Condenser

Expansion Compressor

Valve
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Heating

Outside 45°F

Evaporator

Expansion Compresss

Valve
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Air-conditioner run in reverse
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AIR DISTRIBUTION SYSTEMS



Typical central commercial air distribution system
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Typical central commercial air handling unit (AHU)

Heatlng cml
Coollng c0|l -

- Filters i




Typical large central commercial AHU components

Fan (or “blower”)

Variable frequency drives (VFDs)




Typical large central commercial AHU components

Mixing box
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Typical large central commercial AHU components

Heating and cooling coils

Heat transfer at the inside coil
Freon flow

ff.'.'_'ji}
Warm air

in the coil, heat is transferred
through aluminum fins
attached to copper tubing
that carries the refrigerant
(Freon)

the fins are close together for
maximum efficiency but this
also makes it easy to clog the

if we put cold Freon into coil with dust and dirt

the coil it will attract heat
the air

(C) 2008 €ars ﬁﬁgunlop.com




Typical large central commercial AHU components

Filter bank
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Typical large central commercial AHU components

Filter bank
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Common commercial air distribution systems

Constant air volume (CAV)
Variable air volume (VAV)
Dual duct (DD)

Multizone (MZ)



Typical constant air volume (CAV) system

Constant airflow rate and temperature to each room
« Cold air delivered to room
« Room has a reheat coil to raise supply temperature
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Typical constant air volume (CAV) system

Schematic
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Typical constant air volume (CAV) system

w, Ib/lb
7 I 0.020

o¢
S

/s
//“ 0.016

0.008

0.004




Typical variable air volume (VAV) system

Return
air

|
Outside i} ,:>
air |
X
&
N
QO
QQ

Same temperature air delivered to each room
 Different airflow rate delivered to each room

Damper
Supply partly
fan open
r [ /
1\ ‘ @, Diffuser
H O A 55 E> —
I\ 05
f—\‘ To other
S Damper fully open-_ O z0nes
e — = S
gy 3 d}g_ " Moderate load
.'ri—%/: I “1 1_ ;:—f"?"\
( ! f ‘ | \
1C 0
= =

High load

25



Typical variable air volume (VAV) system

OUTSIDE AIR =

Same temperature air delivered to each room
Different airflow rate delivered to each room
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Typical dual duct (DD) system

1 hot deck and 1 cold deck
» Vary supply temperature to room by flow mixing box

Return « Can be either CAV or VAV (but uses more energy)
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Typical dual duct (DD) system

1 hot deck and 1 cold deck
» Vary supply temperature to room by flow mixing box
« Can be either CAV or VAV (but uses more energy)
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Typical multi-zone (MZ) system

Same airflow rate to each room

» Mixing box adjusts mixture of hot and cold to change supply temperature

Return
air Supply  Cooling

‘ fan coil

air .
& Hea'ting
@ :
coil
8BS Degf
00egf |
Swwoly Fan Mavad As

—
| #0)DegF
—

@47 5
Outside | gy w 1 95"

-
-

Mixing
box
|

29



Typical multi-zone (MZ) system

Same airflow rate to each room
« Mixing box adjusts mixture of hot and cold to change supply temperature
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* Mixed versus displacement ventilation

Air supply and diffusers

 Diffuser selection
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Air supply and diffusers

* Mixed versus displacement ventilation
 Diffuser selection
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Air + water systems

« Many commercial buildings use a combination of conditioned
air and zone water coils

« Ventilation requires air movement

« But zone heating and cooling loads can be met with coils

— We mostly use fan coils now
— We previously mostly used radiators (like in Alumni Hall)



Radiator systems (for heating)

What modes of heat

transfer are involved?
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Water-based baseboard systems (heating)
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FIGURE 8.8 Baseboard finned-tube heater.
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Water-based baseboard systems (heating)
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FIGURE 8.7 A two-pipe individual-loop low-temperature hot water heating system for a factory.
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Electric baseboard systems (for heating)
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Fan coils: Modern radiator replacement w/ fan

Combines air and water

Overhead/ceiling
installation

Wall installation
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Fan coils: Modern radiator replacement w/ fan

* One or two coils (H or C)
« Thermostat controls

water flow
* Ventilation is met with

conditioned or
unconditioned outdoor air

MPS T —_TO OTHER
e i T ) ZONES
._.E J || —
EXHAUST
FAN
AF
A
COOLING . EAN | TYPICAL
UNIT @ zoNE
COIL
ONIT
—— M
| O
CHW PUMPS| 3o | N ]
L@—* AR BASE BOARD
HEATING

Qutside
grill

£

B

Outside
air

P —)

Exterior
wall

Cooling
CoilIM™N

Heating
coil

Filter

Duct

f/////Z/////

. Fan

Conditioned
space

L~ Drain pan

Mixing
dampers

7
A
A
A
7
A

7
7
A

R‘e_circulated

air Floor

39



Other: Chilled beams and radiant panels

Radiant panels
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FLUID FLOWS AND FAN/PUMP POWER



Air and water distribution systems

We use fans to move air around buildings
We use pumps to move water/steam around buildings

There are a few principles we need to understand to
characterize fan/pump energy and performance
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Fig. 4 Velocity Profiles of Flow in Pipes
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Fluid flows in buildings: Overcoming pressure losses

« We use liquids and gases to deliver/extract heating or
cooling energy in building mechanical systems
— Water, refrigerants, and air

* We often need to understand fluid motion, pressure losses,
and pressure rises by pumps and fans in order to correctly
size systems and predict their performance

 We can use the Bernoulli equation to describe fluid flows in
HVAC systems

| 1

2
p, + 5 oV +pgh =p, + 5 P,V; + P,8h, + P friction
Static Velocity Pressure Friction
Pressuré  nressure  head losses

If friction and head are negligible, 3 2AP
we can relate velocity to pressure: V= 0



Pressure losses

* We often need to find the pressure drop in pipes and ducts
— Most flows in HVAC systems are turbulent

Spnul seam L 1 2 1 2
= vi|=K|—pv
0 D, = — =hydraulic diameter

f = friction factor (-)
= length (m)

( L ) D, = hydraulic diameter (m)
— | In a straight pipe  p = fluid density (kg/m?)
\ D h v = fluid velocity (m/s)
(

L E K,
\D

h fittings

In a straight pipe with fittings
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Friction factor, f
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0.10 1 I 1 LILILIL 1 I 1 LI ] I ] AL ] I ] I ] III IIIIIII
0.09
0.08 \\
007 LT —
- -~ =
\h
0.06 — \
o A
‘1.\ _
R \
005 |- AN~ - =
'\ E\\\S\\::‘\ T \ .
™ N\, ~
| NS .
0.04 ‘\\‘“ o ‘Q \\——» FULLY ROUGH
N\ N, —
- ‘ \ e —
\\\\N\ T N\ Q
NoN . \ < 0008 =
- ANNY ~—— \ 4 @
- \ \‘\\ i e AN 0008 ¥
0.03 \ \\ \\‘ N
s \ N QO"G,., \\ 0.004 g
A » ] :
\ \ g
i \ N J o002 9§
s \‘ 064‘06 \ - b4
0.02 \ \\ — 0.0010
- \ e — 0.0008
N \ 1  0.0008
EQUATION (31)\ \\ N -1 0.
- \ 0.0004
SMOOTH PIPE \\, b
oo NNl — N
n § 0.0002
™ LAMINAR ) TRANSITION ( TURBULENT \\\ \ -
| «———( REGION )} ——— \ < 0.00010
\ .
- \ '\\ \ .
0.010 \\\\\ \\ 0.00005
0.009 o~
L \,\ .
0.008 1 1 1 1111 1 1 1 [N 1 L 1 111 1 L 1 . 1 | 1 0.00001
10° 2 3 5 10¢ 2 3 5 10° 2 3 5 10° 2 3 5 107 2 3 5 100
REYNOLDS NUMBER Re pVL
€=—- (L =Dy

45



46

Duct friction charts
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Duct friction charts

PRESSURE LOSS, Pa/m

250 mm DIAMETER
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Pressure losses and rises in HVAC systems
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Pressure losses and rises in

HVAC systems

Recirculating *CMXL’SS& . Minimum outdoor air damper
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FIGURE 22.1 System pressure diagram for a supply-return fan combination air system (connected in series) (rfi =
return fan inlet; rfo = return fan outlet; sfi = supply fan inlet; sfo = supply fan outlet; Ap,; = return fan total pressure;
Apsf = supply fan total pressure; AFD = adjustable-frequency, variable-speed drive).
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Intersection of fan curves and system curves

Fans (and pumps) are used to overcome pressure drops in air and water

distribution systems

Their size and power draw are functions of the magnitude of pressure

rise required

We characterize performance by fan or pump performance curves

“Fan curve”
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Intersection of fan curves and system curves

We characterize distribution systems (e.g., pipes or ducts) with a system curve
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Intersection of fan curves and system curves

We then characterize the performance of a fan (or pump) with the
intersection of its fan (or pump) curve and system curve

And we calculate
fan (or pump)
power draw by:
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Intersection of fan curves and system curves

Example:
What is the fan power draw at point A, assuming 250 Pa and 1000 CFM?

a) 100 - = 2.0
X B
_ 90 - A Fan curve 18 §
§ — 804 . C - 1.6 &
g X === Static Pressure 0
a & 704 - = Efficiency Wfan =14 ;
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H = e _ o #
8§85 s0- e T 10 §
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o 8§ 30+ / - 06 2z
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One last loss: Duct heat losses or gains

~—

Ducts are not perfectly insulated or sealed
« We often lose heat through ducts when heating
* Or gain heat from ducts when cooling

Supply
duct
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register

Return
plenum
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Temperature, °F

Duct heat losses

Typical central residential heating system:
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