CAE 331/513 Building Science Fall 2015

Week 10: October 29, 2015 Continuing HVAC systems Air and water distribution systems

Built Environment Research @ III] 🐋 🚓 🎮 🥂

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Review from last time and objectives for today

- Introduced COP, EER, and capacity
 - And how they change with external conditions
- Introduced more complex heating and cooling systems
 - Chillers
 - Cooling towers
 - Air and water distribution systems
 - Economizers

Today's objectives:

- Finish heating and cooling systems
- Air- and ground-source heat pumps
- Fluid flow in buildings
 - Finish air and water distribution systems
 - Pressure distributions
 - Fan and pump curves

Typical large central commercial systems

Air cooled chiller Smaller capacity

Water-cooled chiller (w/ cooling tower – larger capacity & more efficient)

Air-cooled chillers

 Chillers use vapor compression or absorption systems to produce chilled water for cooling spaces

5

Water-cooled chillers (i.e., "cooling tower")

Water- or air-cooled chiller?

Criteria	Air Cooled	Water Cooled
Heat Transfer Medium	Air	Water
Temperature Effects	Highly dependent on the ambient dry-bulb temperature, lower performance at higher temperatures	Codependency on wet-bulb temperatures offers high performance across temperatures ranges
Efficiency	Least	Best
Footprint	Largest	Smallest
Water Usage	None	High
Sound	High	Low
Total Cost of Ownership	High	Low
Benefits	No water usage	Highest energy efficiency, most flexible temperature options
Challenges	Lowest efficiency, largest footprint per ton	Highest water usage

Part-load ratio (PLR)

- Many systems operate at their highest efficiency (highest COP) at design load conditions
 - Maximum load
- But systems don't always operate at peak load conditions
 - "Part-load" conditions are common
- The "part-load ratio" quantifies COP at part-load conditions

Part-load ratio (PLR) and entering water temp. (EWT)

- Many systems operate at their highest efficiency (highest COP) at design load conditions
 - Maximum load
- But systems don't always operate at peak load conditions
 - "Part-load" conditions are common
- The "part-load ratio" quantifies COP at part-load conditions

HEAT PUMPS

Air- and ground-source heat pumps

Heat pumps

Air-conditioner run in reverse

AIR DISTRIBUTION SYSTEMS

Typical central commercial air distribution system

Typical central commercial air handling unit (AHU)

Fan (or "blower")

Mixing box

Heating and cooling coils

Filter bank

Filter bank

Common commercial air distribution systems

- Constant air volume (<u>CAV</u>)
- Variable air volume (<u>VAV</u>)
- Dual duct (<u>DD</u>)
- Multizone (<u>MZ</u>)

Typical constant air volume (CAV) system

Typical constant air volume (CAV) system

ASHRAE Systems and Equipment Handbook

Typical constant air volume (CAV) system

Typical variable air volume (VAV) system

Same temperature air delivered to each room

Different <u>airflow rate</u> delivered to each room

Typical variable air volume (VAV) system

Same temperature air delivered to each room

Different airflow rate delivered to each room

Fig. 10 Variable-Air-Volume System with Reheat and Induction and Fan-Powered Devices

Typical dual duct (DD) system

Typical dual duct (DD) system

1 hot deck and 1 cold deck

- Vary supply temperature to room by flow mixing box
- Can be either CAV or VAV (but uses more energy)

Fig. 12 Dual-Fan, Dual-Duct System

Typical multi-zone (MZ) system

Same airflow rate to each room

• Mixing box adjusts mixture of hot and cold to change supply temperature

Typical multi-zone (MZ) system

Same airflow rate to each room

• Mixing box adjusts mixture of hot and cold to change supply temperature

Air supply and diffusers

- Mixed versus displacement ventilation
- Diffuser selection

Air supply and diffusers

- Mixed versus displacement ventilation
- Diffuser selection

- Many commercial buildings use a combination of conditioned air and zone water coils
- Ventilation requires air movement
- But zone heating and cooling loads can be met with coils
 - We mostly use fan coils now
 - We previously mostly used radiators (like in Alumni Hall)

Radiator systems (for heating)

Water-based baseboard systems (heating)

FIGURE 8.8 Baseboard finned-tube heater.

Water-based baseboard systems (heating)

FIGURE 8.7 A two-pipe individual-loop low-temperature hot water heating system for a factory.

Electric baseboard systems (for heating)

Fan coils: Modern radiator replacement w/ fan

Fan coils: Modern radiator replacement w/ fan

- One or two coils (H or C)
- Thermostat controls water flow
- Ventilation is met with conditioned or unconditioned outdoor air

Other: Chilled beams and radiant panels

Radiant panels

FLUID FLOWS AND FAN/PUMP POWER

For distribution systems

Air and water distribution systems

- We use **fans** to move air around buildings
- We use **pumps** to move water/steam around buildings
- There are a few principles we need to understand to characterize **fan/pump energy and performance**

Fig. 4 Velocity Profiles of Flow in Pipes

Fluid flows in buildings: Overcoming pressure losses

- We use liquids and gases to deliver/extract heating or cooling energy in building mechanical systems

 Water, refrigerants, and air
- We often need to understand fluid motion, pressure losses, and pressure rises by pumps and fans in order to correctly size systems and predict their performance
- We can use the Bernoulli equation to describe fluid flows in HVAC systems

$$p_{1} + \frac{1}{2}\rho_{1}v_{1}^{2} + \rho_{1}gh_{1} = p_{2} + \frac{1}{2}\rho_{2}v_{2}^{2} + \rho_{2}gh_{2} + p_{friction}$$
Static Velocity Pressure head Friction losses

If friction and head are negligible, we can relate velocity to pressure:

$$v = \sqrt{\frac{2\Delta P}{\rho}}$$

We often need to find the pressure drop in pipes and ducts
 Most flows in HVAC systems are turbulent

$$\Delta p_{friction} = f\left(\frac{L}{D_h}\right) \left(\frac{1}{2}\rho v^2\right) = K\left(\frac{1}{2}\rho v^2\right)$$
$$D_h = \frac{4A}{P} = \text{hydraulic diameter}$$
$$f = \text{friction factor (-)}$$
$$L = \text{length (m)}$$
$$D_h = \text{hydraulic diameter (m)}$$
$$P = \text{fluid density (kg/m^3)}$$
$$v = \text{fluid velocity (m/s)}$$
$$K = f\left(\frac{L}{D_h} + \sum_{fittings} K_f\right) \text{ In a straight pipe with fittings}$$

Friction factor, f

Duct friction charts

Duct friction charts (IP units)

Duct friction charts

Pressure losses and rises in HVAC systems

Pressure losses and rises in HVAC systems

FIGURE 22.1 System pressure diagram for a supply-return fan combination air system (connected in series) (rfi = return fan inlet; rfo = return fan outlet; sfi = supply fan inlet; sfo = supply fan outlet; Δp_{rf} = return fan total pressure; Δpsf = supply fan total pressure; AFD = adjustable-frequency, variable-speed drive).

- Fans (and pumps) are used to overcome pressure drops in air and water distribution systems
- Their size and power draw are functions of the magnitude of pressure rise required
- We characterize performance by <u>fan or pump performance curves</u>

We characterize distribution systems (e.g., pipes or ducts) with a system curve

We then characterize the performance of a fan (or pump) with the intersection of its fan (or pump) curve and system curve

Example:

What is the fan power draw at point A, assuming 250 Pa and 1000 CFM?

One last loss: Duct heat losses or gains

Ducts are not perfectly insulated or sealed

- We often lose heat through ducts when heating
- Or gain heat from ducts when cooling

Duct heat losses

