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Last time 

•  Multi-zone HVAC systems: CAV, VAV, DD 
•  Heating systems 
•  Refrigeration cycles 

–  Vapor compression 
–  Absorption 
–  Expansion 
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Pressure-enthalpy (p-h) diagram 
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Ideal single-stage vapor compression cycle 
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Pressure-enthalpy (p-h)  
diagram 

Temperature-specific enthalpy (T-s)  
diagram 
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•  “suction pressure” 
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(rejected to heat sink) 
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p-h diagram for water 

Boiling point at standard atmospheric pressure: 100°C 
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p-h diagram for R-410A 

Boiling point at standard atmospheric pressure: -50°C 

Compression 
Increases P 

Condensation 
Gas à liquid gives off heat 

Expansion 
Decreases P 

Evaporation 
Liquid à gas absorbs heat 



Non-ideal single-stage vapor compression cycle 
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Actual refrigeration systems differ from ideal cycles 
•  Pressure drops occur everywhere but the compression process 
•  Heat transfers between the refrigerant and its environment 
•  Actual compression process may differ 
•  Refrigerant might also have some oil mixed in to lubricate 
•  They all cause irreversibilities in the system that require additional compressor power 



Non-ideal single-stage vapor compression cycle 
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Actual refrigeration systems differ from ideal cycles 
•  Pressure drops occur everywhere but the compression process 
•  Heat transfers between the refrigerant and its environment 
•  Actual compression process may differ 
•  Refrigerant might also have some oil mixed in to lubricate 
•  They all cause irreversibilities in the system that require additional compressor power 

The compressor will be 
damaged if liquid enters 
•  You “superheat” to 

ensure that you have 
only vapor 

The expansion valve 
needs 100% liquid in its 
inlet to work properly 
•  You “subcool” to 

ensure that you have 
only liquid 



Non-ideal single-stage vapor compression cycle 
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Question: What is the COP? 

A.  Congressional Observer Publications  
B.  California Offset Printers 
C.  Coefficient of Performance 
D.  Slang for a policeman 
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COP = Provided cooling energy [W or BTU/hr]
Used electric energy [W or BTU/hr]

Equivalent to the efficiency of an air-conditioning unit 

Joke courtesy of Jeff Siegel, University of Toronto 



Coefficient of performance (COP) 
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COP = Qcool

Welec

=
h1 − h4
h2 − h1

For an ideal refrigeration cycle: 



What is the efficiency of a typical residential AC unit? 

A.  10% 
B.  50% 
C.  80% 
D.  100% 
E.  300% 
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COP example calculation 
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COP = Qcool

Welec

=
h1 − h7
h3 − h2

COP = Qcool

Welec

=
402− 240
454− 406

= 3.38
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Real data: ASHRAE RP-1299  
Energy implications of filters 
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Before coil 

After coil 

AC on/off 



Real data: ASHRAE RP-1299  
Energy implications of filters 
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Real life COP example: Residential AC unit 

•  Capacity = 3 tons 
–  36 kBTU/hr 
–  10.5 kW 

•  Power draw while operating: 
–  3500 W = 3.5 kW 
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ΔTcoil = 12°C - 26°C  
Abs(ΔTcoil) = 14 K 
Vair = 400 CFM per ton (typical) 
Vair = 1200 CFM 
Vair = 0.566 m3/s 
Qsens = (1.15 kg/m3)(1 kJ/kgK)(0.566 m3/s)(14K) 
Qsens = 9.1 kW 
SHR = 0.75 (typical) 
Qtotal = 9.1/0.75 = 12.1 kW 
COP = 10.5 kW/3.5 kW = 3.5 

. 

. 

. 



What do we need to know about cooling systems? 
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Equipment selection example: 

A load calculation 
determines you need 1.2 
tons of water cooling  
 
1 ton = 12000 Btu/hr 
1.2 tons = 14,400 Btu/hr 

You would choose a 
1.35 ton capacity unit 

1.35 ton is accurate for: 
115°F air condenser temp 
and 
50°F of leaving water 
temperature 



AC capacity and efficiency changes with outdoor 
T, indoor T/RH, and airflow rates 
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AC capacity and efficiency changes with outdoor 
T, indoor T/RH, and airflow rates 

18 



EER and SEER 

•  EER = Energy Efficiency Ratio 
–  Same as COP but in mixed units: (Btu/hr)/W 
–  Example from previous page: 

•  SEER = Seasonal Energy Efficiency Ratio, units: [Btu/Wh] 
–  Cooling output during a typical cooling season divided by the total 

electric energy input during the same period 
–  Represents expected performance over a range of conditions 
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EER = 29.0 [kBtu/hr]
2.48 [kW]

=11.7COP = 8.5 [kW]
2.48 [kW]

= 3.43

EER =COP×3.41

EER ≈ −0.02× SEER2 +1.12× SEER



EER and SEER 

•  AC units must be 14 SEER (or 12.2 EER) beginning on January 1, 2015 
if installed in southeastern region of the US 
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Using COP to estimate power draw and energy 
consumption 

•  If you know the cooling load and you know the COP, you can 
estimate the instantaneous electric power draw required to 
meet the load: 

•  If you multiply by the number of hours and sum over a period 
of operating time, you can estimate energy consumption: 

•  You can also split data into bins if COP/EER changes with 
varying conditions 
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Pelec =
Qcooling,load

COP

E = Pelec Δt∑



Part-load ratio (PLR) 

•  Many systems 
operate at their 
highest efficiency 
(highest COP) at 
design load 
conditions 

–  Maximum load 

•  But systems don’t 
always operate at 
peak load conditions 

–  “Part-load” conditions 
are common 

•  The “part-load ratio” 
quantifies COP at 
part-load conditions 
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Air-cooled chillers 

•  Chillers use vapor compression or absorption systems to 
produce chilled water for cooling spaces  
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Outside  
air  95°F 

Inside 75°F Water 42°F 

Building Water 52°F 

Chiller 

Air-cooled chiller 



Air-cooled and evaporative condensers 
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Evaporative condenser 

Air-cooled condenser 



Water-cooled chillers (i.e., “cooling tower”) 
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Outside  
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Water-cooled chillers (i.e., “cooling tower”) 
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Counter-flow induced draft Cross-flow induced draft 



Air vs. water cooled chillers 
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HEAT PUMPS 
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Air- and ground-source heat pumps 
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https://www.youtube.com/watch?v=NyNeh7wPQQk  



Heat pumps 
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Cooling Heating 

Outside   95°F 
Outside 45°F 

 

Inside 75°F Inside 75°F 

Air-conditioner run in reverse 



Heat pumps 
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Heat pumps 
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Ground source heat pumps 
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Ground source heat pumps 
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Ground coupled heat pumps 
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FINISHING UP HVAC SYSTEMS 
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Heating and cooling of larger buildings 

37 https://www.youtube.com/watch?v=j1nYipLAv0U 



Heat recovery systems 
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Air to air heat recovery Rotary/enthalpy wheel 



Heat recovery systems 
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Rotary/enthalpy wheel 

Enthalpy process 

Air streams 



Investigation of HVAC system in this room 
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