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Schedule updates 

•  Last time: 
–  Combined mode heat transfer 
–  Building energy balances 

•  Today: 
–  Finishing building energy balances 
–  Human thermal comfort 

•  Next time: 
–  Review for exam 1 
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ENERGY BALANCES 

3 

convection + 
 LWR 

qsolar 



Building energy balances 

•  Multiple modes of heat transfer are typically acting at the 
same time at a particular point in/on a building 

•  We can write expressions to quantify heat flow/flux to/from 
these points by accounting for all relevant modes of heat 
transfer 
–  “Building energy balances” 
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Building energy balances 
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Building energy balances 
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How is this helpful to us? 

•  Imagine the classroom wall is being heated by the sun on 
the other side 

•  The exterior surface temperature is 122°F (50°C) 
•  The interior air temperature is 72°F (22°C) 
•  The R-value of the wall is R-13 (IP) (2.29 m2K/W) 
•  What is the interior surface temperature of the wall? 

•  This interior surface temperature impacts the heat flux to 
indoor air, as well as the surrounding surface temperatures 
(via radiation), which all impact the building’s energy balance 
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Building energy balance example 

•  Estimate the surface temperature of an interior wall whose 
exterior side is being warmed by the sun 
–  Assume that indoor LWR can be ignored and assume steady-state 
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Set conduction = convection  
and solve 

Tsurf,out = 50 °C 
Tair,in = 22 °C 

Rwall = 2.29 m2K/W 



Convective film resistances 
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Surface 
Conditions 

Horizontal 
Heat Flow 

Upwards  
Heat Flow 

Downwards 
Heat Flow 

Indoors: Rin 0.12 m2K/W (SI) 
0.68 h⋅ft2⋅°F/Btu 

(IP) 

0.11 m2K/W (SI) 
0.62 h⋅ft2⋅°F/Btu 

(IP) 

0.16 m2K/W (SI) 
0.91 h⋅ft2⋅°F/Btu 

(IP) 
Rout: 6.7 m/
s wind 
(Winter) 

0.030 m2K/W (SI) 
0.17 h⋅ft2⋅°F/Btu (IP) 

Rout: 3.4 m/
s wind 
(Summer) 

0.044 m2K/W (SI) 
0.25 h⋅ft2⋅°F/Btu (IP) 



Building energy balance example 

•  Estimate the surface temperature of an interior wall whose 
exterior side is being warmed by the sun 
–  Assume that LWR can be ignored and assume steady-state 
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Tsurf,out = 50 °C 
Tair,in = 22 °C 

Rwall = 2.29 m2K/W 

Set conduction = convection  
and solve: 
Tsurf,in = 23.4 °C 



“SOL-AIR” TEMPERATURES 
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Sol-air temperatures 
•  In the last example, we were given that the exterior surface 

temperature was 122°F (50°C) 
–  How did we know that? 
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Tsurf,out = 50 °C 
Tair,in = 22 °C 

Rwall = 2.29 m2K/W 

Tsurf,in = 23.4 °C 



Sol-air temperatures 

•  If we take an external surface with a combined convective and radiative 
heat transfer coefficient, hconv+rad 

•  If that surface now absorbs solar radiation (αIsolar), the total heat flow at 
the exterior surface becomes: 

•  To simplify our calculations, we can define a “sol-air” temperature that 
accounts for all of these impacts: 

•  Now we can describe heat transfer at that surface as: 
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qconv+rad = hconv+rad Tair −Tsurf( )

qconv+rad = hconv+rad Tair −Tsurf( )+α Isolar

Tsol−air =Tair +
α Isolar
hconv+rad

qtotal = hconv+rad Tsol−air −Tsurf( )
convection + 

 LWR 

qsolar 



Example sol-air temperatures 
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Solar radiation and external surface temperatures 

•  We can also use air temperatures and material properties (absorptivity 
and emissivity) to estimate exterior surface temperatures that are 
exposed to radiation 

–  These are not extremely accurate but provide a reasonable estimate 
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Source: Straube and Burnett 



HUMAN THERMAL COMFORT 
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PMV 
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Human thermal comfort 

•  One of our main goals in designing a building and its HVAC 
system(s) is to provide a suitably comfortable environment 
for the occupants 

•  In general, thermal comfort occurs when: 
–  Body temperatures are held within narrow ranges 
–  Skin moisture is low 
–  The physiological effort of regulation is minimized 

•  Metrics for thermal comfort include quantifying the amount 
of discomfort that a space might present to people and 
what fraction of occupants are dissatisfied with a space 
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Energy balance of the human body 

•  The heat produced by the body’s 
metabolism dissipates to the environment 
–  Otherwise we would overheat 

•  If the rate of heat transfer away is higher 
than the rate of heat production, the body 
cools down and we feel cold 
–  If heat transfer to surroundings is lower than 

our heat production, we feel hot 

•  This is a complex problem in transient 
heat transfer, involving radiation, 
convection, conduction, and evaporation, 
and many variables including skin 
wetness and clothing composition 
–  We can simplify a lot of this 
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Energy balance of the human body 

19 https://ssb2012emilyashby.files.wordpress.com/2012/10/metabolism.jpg  
http://www.theseus-fe.com/images/thermal-manikin/manikinBoundaryConditions_big.JPG  

Your largest organ, your skin, covers ~2 m2 and makes up ~15% of your body weight 



Body energy balance in a space 

•  Our internal body temperatures are consistent around 36-37°C 
•  We can set our heat production rate equal to the instantaneous heat flow 

to the environment (assuming no storage): 
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Q =MAskin = Qconv + Qrad + Qevap + Qresp,sens + Qresp,latent

q =M = qconv + qrad + qevap + qresp,sens + qresp,latent



Body energy balance in a space 

•  Our internal body temperatures are consistent around 36-37°C 
•  We can set our heat production rate equal to the instantaneous heat flow 

to the environment (assuming no storage): 
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Some obviously important variables for comfort: 
•  Activity level (heat production) 
•  Air temperature (convection) 
•  Air velocity (convection) 
•  Clothing level (skin temperature) 
•  Temperature of surrounding surfaces (radiation) 
•  Air relative and absolute humidity 

Q =MAskin = Qconv + Qrad + Qevap + Qresp,sens + Qresp,latent

q =M = qconv + qrad + qevap + qresp,sens + qresp,latent

Modeling gets complicated quickly…. 



Assessing thermal comfort 

•  To develop guidelines for thermal comfort, we have to have 
some idea of what we perceive to be comfortable 

•  Comfort analysis is usually done through surveys of users in 
real spaces and through controlled human experiments and 
a questionnaire that rates comfort on a seven point scale 

•  The result of the questionnaire is the Mean Vote (MV): 
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-3 -2 -1  0 +1 +2 +3 
cold cool slightly 

cool 
neutral slightly 

warm 
warm hot 



Predicted Mean Vote (PMV) 

•  We can attempt to predict the results of a questionnaire 
through equations and generate a predicted mean vote 
(PMV) 

•  The PMV is an estimate of the mean value that would be 
obtained if a large number of people were asked to vote on 
thermal comfort using a 7 point scale: 
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-3 -2 -1  0 +1 +2 +3 
cold cool slightly 

cool 
neutral slightly 

warm 
warm hot 

Survey the class… 



Percent People Dissatisfied (PPD) 

•  Once we have the PMV (which are average results), we 
need to estimate how many people are satisfied with the 
thermal conditions for that PMV 
–  We quantify that as the percent of people dissatisfied (PPD) 

•  Our design goal usually is to achieve a PPD < 10% 

•  After a lot of surveys and experiments, researchers have 
found that PPD is a nonlinear function of PMV that can be 
predicted reasonably well in most environments 
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Percent People Dissatisfied (PPD) 
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The PPD Function: 

PMV 
- - - -

Since we want: 
 PPD < 10% 

we can see that: 

-0.5 < PMV < 0.5 
is our target 
 
*Notice that the absolute 
minimum PPD is 5% showing 
that you cannot satisfy 
everyone at the same time! 

How many of you are “dissatisfied” with thermal comfort right now? 



Predicting PMV and PPD 

•  How can we predict PMV and PPD? 

•  Fanger comfort analysis: 
–  Physically: a relationship between the imbalance between heat flow 

from the body and the heat flow required for optimum thermal comfort 
–  Empirically: Correlations derived between sensations of thermal 

comfort (PMV/PPD) and environmental variables: 

26 Source: ASHRAE HoF 2013 & ASHRAE Standard 55 

M = metabolic activity L = thermal load (difference 
between actual skin temperature 
and the skin temperature required 
for comfort) at a given activity level 



Thermal comfort standards in building design 

•  ASHRAE Standard 55 is the primary resource for engineers 
and architects to design for thermal comfort 
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Variables affecting thermal comfort 

•  ASHRAE Standard 55 considers 6 main parameters to 
govern thermal comfort 
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Some are familiar: 
 Ambient air temperature (T) 
 Humidity (W or RH) 
 Local air speed (v) 

Some are probably not: 
 Metabolic rate (M) 
 Clothing insulation (Icl) 

 Mean radiant temperature (Tr) 



Metabolic energy production 

•  The total energy production rate of the human body is the 
sum of the production rates of heat (Q) and work (W): 
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Q+ W =MAskin
where 
M = rate of metabolic energy production per surface area of skin (W/m2) 
Askin = total surface area of skin (m2) 
 
(work, W, is typically neglected), so: 

1 met =18.4 Btu
h ⋅ ft2 = 58 W

m2

!Q =MAskin



What about Askin? 

•  For an adult, the area of our skin is typically on the order of 
16-22 ft2 (1.5 to 2 m2) 
–  Typically we use 1.8 m2 

•  So for a typical adult doing typical indoor activities, their heat 
production rate will be: 
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!Q+ !W =MAskin ≈ (1 met)(1.8 m2 )

≈ (58.2 W
m2 )(1.8 m2 ) ≈100 W (± 20 W)
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Metabolic rates (continued) 
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Thermal insulation, Icl 
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•  The thermal insulating effects of clothes are measured in 
clos (1 clo = 0.88 h·ft2·°F/Btu)  

•  Insulating values for various garments are found in 
ASHRAE Fundamentals and Appendix B of Standard 55 



Thermal insulation, Icl 
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Mean radiant temperature, Tr 

35 

•  Radiation to/from occupants is an important form of energy exchange 
–  We can estimate its effects using the mean radiant temperature 

https://soa.utexas.edu/sites/default/disk/preliminary/preliminary/1-Boduch_Fincher-Standards_of_Human_Comfort.pdf  



Mean radiant temperature, Tr 
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•  Radiation to/from occupants is an important form of energy exchange 
–  We can estimate its effects using the mean radiant temperature 

http://energy-models.com/sites/all/files/resize/advanced-pages-30991/comfort-2-735x326.png  



Mean radiant temperature, Tr 
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•  The mean radiant temperature is the temperature of an imaginary 
uniform black box that results in the same radiation heat loss to the 
occupant as the current room 

•  This is particularly important for environments with drastically different 
surface temperatures 
–  e.g. a poorly insulated window on a winter day has a surface temperature 

much lower than most other surfaces around it 
–  e.g. a concrete slab warmed by the sun may have a higher temperature than 

its surroundings 



Mean radiant temperature, Tr 
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•  View factors between people and horizontal or vertical rectangular 
surfaces 

Predicting view factors and MRT gets complicated quickly as well… 



Finding Tr from “globe temperature” 
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•  We can measure the 
temperature of the interior of 
a black globe as well as the 
ambient air temperature to 
estimate MRT (Tr) 
–  The black globe acts as a 

perfectly round black body 
radiator 

Tr = (Tglobe + 273)
4 +
1.1×108vair

0.6

εD0.4
(Tglobe −Tair )

!

"
#
#

$

%
&
&

1/4

− 273

Tglobe = temperature inside globe (°C) 
Tair = air temperature (°C) 
vair = air velocity (m/s) 

D = globe diameter (m) 
ε = emissivity of globe (-) 



Operative temperature, To 

•  The operative temperature is essentially the average value 
between the air temperature and the mean radiant 
temperature, adjusted for air velocity effects: 
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Most accurate: Less accurate: Least accurate: 

*These are all reasonable to use depending on your application 



Operative temperatures, air velocity, clo, and met levels 
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How do these all interact to affect comfort? 



Operative temperatures, air velocity, clo, and met levels 
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How do these all interact to affect comfort? 



Operative temperatures, air velocity, clo, and met levels 
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How do these all interact to affect comfort? 



Defining the ASHRAE comfort zone 
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Defining the ASHRAE comfort zone 
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ASHRAE comfort zone: CBE Thermal Comfort Tool 

46 http://smap.cbe.berkeley.edu/comforttool  


