
CAE 331/513 
Building Science 
Fall 2015 
 
Week 3: September 8, 2015 
Heat transfer in buildings: Radiation 

Dr. Brent Stephens, Ph.D. 
Civil, Architectural and Environmental Engineering 

Illinois Institute of Technology 
brent@iit.edu 

Advancing energy, environmental, and 
sustainability research within the built environment 
www.built-envi.com 
Twitter: @built_envi 



Last time 

•  Heat transfer in buildings: Convection 
–  “Types” of convection 

•  Forced and natural 
•  External and internal 

–  Convective heat transfer coefficients 
•  Theory 

–  Nu = convection vs. conduction heat transfer 
–  Pr = momentum vs. heat diffusivity (fluid property) 
–  Re = inertial vs. viscous forces 
–  Gr = buoyancy vs. viscosity 
–  Ra = Gr x Pr 

•  Empirical 
•  Simplified empirical relationships 

–  hc = f(temperature difference, velocity, orientation, roughness) 
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qconv = hconv Tfluid −Tsurf( )



Today’s objectives 

•  Finish convection 

•  Introduce radiation 
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Finishing convection 

•  We presented an example problem last week that involved 
estimating the surface temperature of an interior wall whose 
exterior side was being warmed by the sun 
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Tsurf,out = 122°F = 50°C 
Tair,in = 72°F = 22°C 

Rwall = 13 (hr-ft2-°F)/BTU = 2.29 m2K/W 

Set conduction = convection  
and solve: 
Tsurf,in = 76.6°F = 24.8°C 



Combined mode heat transfer 

•  Nearly all heat transfer situations in buildings include more 
than one mode of heat transfer 

•  When more than one heat transfer mode is present, we can 
compute heat loss using resistances (of all kinds) in series 
–  Sum resistances in series 
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Combined modes of heat transfer 

•  Example problem: Convection and wall R-values 
•  An R-21 stud wall should also include the effect of inner and 

outer surface convection coefficients 
–  Assume typical interior surface convection coefficients and assume 

the outer surface coefficient during winter conditions is appropriate 
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Surface 
Conditions 

Horizontal 
Heat Flow 

Upwards  
Heat Flow 

Downwards 
Heat Flow 

Indoors: Rin 0.12 m2K/W (SI) 
0.68 h⋅ft2⋅°F/Btu (IP) 

0.11 m2K/W (SI) 
0.62 h⋅ft2⋅°F/Btu (IP) 

0.16 m2K/W (SI) 
0.91 h⋅ft2⋅°F/Btu (IP) 

Rout: 6.7 m/s 
wind 
(Winter) 

0.030 m2K/W (SI) 
0.17 h⋅ft2⋅°F/Btu (IP) 

Rout: 3.4 m/s 
wind 
(Summer) 

0.044 m2K/W (SI) 
0.25 h⋅ft2⋅°F/Btu (IP) 



Internal flows within building HVAC systems 

•  Flows of fluids confined by boundaries (such as the sides of a 
duct) are called internal flows 

•  Mechanisms of convection are different 
–  And so are the equations for hc 
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Forced convection for fully developed turbulent flow 

•  Air flow through ducts: 

•  Water flow through pipes: 
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hconv ≈ 8.8
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Dh = the hydraulic diameter: 4 times the ratio of the flow conduit’s 
cross-sectional area divided by the perimeter of the conduit 

Dh =
4 πD2
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Combined convection + conduction: Heat exchangers 

•  Heat exchangers are used widely in buildings 
•  Heat exchangers are devices in which two fluid streams, 

usually separated from each other by a solid wall, exchange 
thermal energy by both convection and conduction 
–  One fluid is typically heated, one is typically cooled 

•  Fluids may be gases, liquids, or vapors 
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kaluminum = 205 W/mK 
kcopper = 385 W/mK 



Combined convection + conduction: Heat exchangers 

•  The effectiveness of a heat exchanger depends on: 
–  The flow rates of fluids in the heat exchanger 
–  The overall UA-value of the heat exchanger 

•  U is governed by convection and conduction resistance 
•  A is governed by heat exchanger design (high surface A) 
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UoAo =
1

Rconv ,i + Rpipe + Rconv ,o



Heat exchangers 

•  Parallel flow: fluids flowing in the same direction 
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Tcold,in 

Thot,in 

Tcold,out 

Thot,out 

What happens to the two 
temperature profiles? 



Heat exchangers 

•  Counterflow: one fluid flows in the opposite direction 
–  More efficient than parallel flow 
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Tcold,in 

Thot,in 

Tcold,out 

Thot,out 

What happens to the two 
temperature profiles? 



Heat exchangers:    -NTU method 
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This subject is 
covered in detail 
in CAE 464 
HVAC Design 



Bulk convective heat transfer: Advection 

•  Finally, there is one last type of convection 
•  Bulk convective heat transfer, or advection, is more direct 

than convection between surfaces and fluids 
–  Bulk convective heat transfer is the transport of heat by fluid flow 

(e.g., air or water) 

•  Fluids, such as air, have the capacity to store heat, so fluids 
flowing into or out of a control volume also carry heat with it 
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Qbulk =m
•

CpΔT [W]=[ kg
s
⋅
J

kg⋅K
⋅K]

m “dot” = mass flow rate of fluid (kg/s) 
Cp = specific heat capacity of fluid [J/(kgK)] 
 



Bulk convective heat transfer: Advection 
•  Every time you take a shower at home, you use your 

bathroom exhaust fan to exhaust the hot/humid air 
generated by the shower 
–  The fan operates at an airflow rate of 100 CFM 
–  If it is 68°F inside the house and 10°F outside, what is the rate of heat 

loss via bulk convection during these conditions, assuming that the 
100 CFM air comes in via infiltration through the building envelope 
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Back to our convection example… 

•  We presented an example problem last week that involved 
estimating the surface temperature of an interior wall whose 
exterior side was being warmed by the sun 
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Tsurf,out = 122°F = 50°C 
Tair,in = 72°F = 22°C 

Rwall = 13 (hr-ft2-°F)/BTU = 2.29 m2K/W 

Set conduction = convection  
and solve: 
Tsurf,in = 76.6°F = 24.8°C 

Another key mode of heat transfer: 
Radiation 



RADIATION 
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Radiation 

•  Radiation heat transfer is the transport of energy by 
electromagnetic waves  
–  Oscillations of electrons that comprise matter 
–  Exchange between matter at different temperatures 

•  Radiation must be absorbed by matter to produce internal 
energy; emission of radiation corresponds to reduction in 
stored thermal energy 
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Radiation 

•  Radiation needs to be dealt with in terms of wavelength (λ) 
–  Different wavelengths of solar radiation pass through the 

earth’s atmosphere more or less efficiently than other 
wavelengths 

–  Materials also absorb and re-emit solar radiation of 
different wavelengths with different efficiencies 

•  For our purposes, it’s generally appropriate to treat radiation 
in two groups: 
–  Short-wave (solar radiation) 
–  Long-wave (emitted and re-emitted radiation) 
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Radiation: the electromagnetic spectrum 

•  Thermal radiation is confined to the infrared, visible, and 
ultraviolet regions (0.1 < λ < 100 µm) 
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Black body radiation: Spectral (Planck) distribution 
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•  Radiation from a perfect radiator 
follows the “black body” curve 
(ideal, black body emitter) 

 

•  The peak of the black 
body curve depends on 
the object’s temperature 
–  Lower T, larger λ peak 

•  Peak radiation from the 
sun is in the visible region 
–  About 0.4 to 0.7 µm 

•  Radiation involved in 
building surfaces is in the 
infrared region  
–  Greater than 0.7 µm 

q =σT 4

σ = Stefan-Boltzmann constant = 5.67×10−8 W
m2·K4  

T = Absolute temperature [K]



Radiation: Short-wave and Long-wave 
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Terrestrial long-wave  
Radiation (diffuse/reflected) 
Avg. λ = 10 µm 

Solar short-wave  
Radiation (direct) 
Avg. λ = 0.5 µm 



Solar radiation striking a surface (high temperature) 

•  Most solar radiation is at short wavelengths 
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Solar radiation 
striking a surface: 

qsolar =αIsolarSolar radiation: 
(opaque surface) 

Transmitted solar radiation:  
(transparent surface) 

qsolar = τ Isolar



Absorptivity, transmissivity, and reflectivity 

•  The absorptivity, α, is the fraction of 
energy hitting an object that is 
actually absorbed 

•  Transmissivity, 𝜏, is a measure of 
how much radiation passes through 
an object 

•  Reflectivity, ρ, is a measure of how 
much radiation is reflected off an 
object 

•  We use these terms primarily for 
solar radiation 
–  For an opaque surface (τ = 0): 
–  For a transparent surface (τ > 0): 
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α +τ + ρ =1
qsolar =αIsolar
qsolar = τ Isolar



Absorptivity (α) for solar (short-wave) radiation 
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Surface radiation (lower temperature: long-wave) 
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•  All objects above absolute zero 
radiate electromagnetic energy 
according to: 

 

•  Net radiation heat transfer occurs when an object 
radiates a different amount of energy than it absorbs 

•  If all the surrounding objects are at the same 
temperature, the net will be zero 

qrad = εσT
4

Where ε  = emissivity

σ = Stefan-Boltzmann constant = 5.67×10−8 W
m2·K4  

T = Absolute temperature [K]

“Gray bodies” 



Radiation heat transfer (surface-to-surface) 

27 

•  We can write the net thermal radiation 
heat transfer between surfaces 1 and 2 
as: 

 

A2, T2, ε2 

A1, T1,ε1 

Q1→2 =
A1σ T1

4 −T2
4( )

1−ε1
ε1

+
A1
A2

1−ε2
ε2

+
1
F12

where ε1 and ε2  are the surface emittances, 

A1 and A2  are the surface areas

and F1→2  is the view factor from surface 1 to 2

F1→2  is a function of geometry only 

q1→2 =
Q1→2
A1



Emissivity (“gray bodies”) 

•  Real surfaces emit less radiation than ideal “black” ones 
–  The ratio of energy radiated by a given body to a perfect 

black body at the same temperature is called the 
emissivity: ε 

•  ε is dependent on wavelength, but for most common building 
materials (e.g. brick, concrete, wood…), ε = 0.9 at most 
wavelengths 
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Emissivity (ε) of common materials 
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Emissivity (ε) of common building materials 
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View factors, F12 

•  Radiation travels in directional beams 
–  Thus, areas and angle of incidence between two exchanging 

surfaces influences radiative heat transfer 
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Some common view factors: 

A1F1→2 = 0.5((ac+bd )− (ad +bc))



Typical view factors 
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Other common view factors from the ASHRAE Handbook of Fundamentals: 



Long-wave radiation example 

•  What is the net radiative exchange between the interior wall 
surface in our last example and a wall at the opposite end of 
the room if the room is 5 m x 5 m x 3 m?  
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Tsurf,out = 122°F = 50°C Tair,in = 72°F = 22°C 

Rwall = 13 (hr-ft2-°F)/BTU = 2.29 m2K/W 

Tsurf,in = 76.6°F = 24.8°C 

Tsurf 2,in = 72°F = 22°C 



Simplifying surface radiation 

•  We can also often simplify radiation from: 

•  To: 
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Q1→2 =
A1σ T1

4 −T2
4( )

1−ε1
ε1

+
A1
A2

1−ε2
ε2

+
1
F12

 

Q1→2 = εsurf AsurfσF12 T1
4 −T2

4( )  
Particularly when dealing with large differences in areas, 
such as sky-surface or ground-surface exchanges 



Simplifying radiation 

•  We can also define a radiation heat transfer coefficient that is 
analogous to other heat transfer coefficients 

•  When A1 = A2, and T1 and T2 are within ~50°F of each other, 
we can approximate hrad with a simpler equation: 
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hrad =
4σTavg

3

1
ε1
+
1
ε2
−1 Tavg =

T1 +T2
2

where 

Qrad ,1→2 = hrad A1 T1 −T2( ) = 1
Rrad

A1 T1 −T2( )



COMBINED-MODE HEAT TRANSFER 
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More combined heat transfer 
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k1 k2 
Air 

space 

qcond ,2

qrad ,airspace

qconv ,airspace
qcond ,1

T2 
T1 

Rconv

RradRcond ,1 Rcond ,2

•  When more than one mode of heat transfer exists at a 
location (usually convection + radiation), resistances get 
placed in parallel 
–  Example: Heat transfer in a building cavity 



Combined modes of heat transfer 

•  Example problem: Radiant barrier in a residential wall 
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A building designer wishes to evaluate 
the R-value of a 1-inch wide ventilated 
air gap in a wall for its insulation effect 
 
The resistance to heat flow offered by 
convection is small, so she proposes 
lining the cavity’s inner and outer 
surfaces with a highly reflecting 
aluminum foil film whose emissivity is 
0.05  
 
Find the R-value of this cavity, 
including both radiation and convection 
effects, if the surface temperatures 
facing the gap are 7.2°C and 12.8°C 



Next class 

•  Solar radiation 
•  Heat transfer through windows 
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