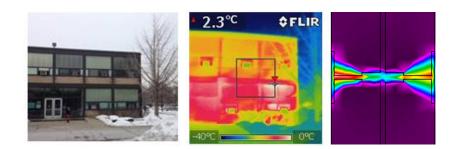
CAE 331/513 Building Science Fall 2015



Week 2: September 3, 2015 Heat transfer in buildings: Convection

Built Environment Research @ III] 🐋 🎰 M 🕂

Advancing energy, environmental, and sustainability research within the built environment

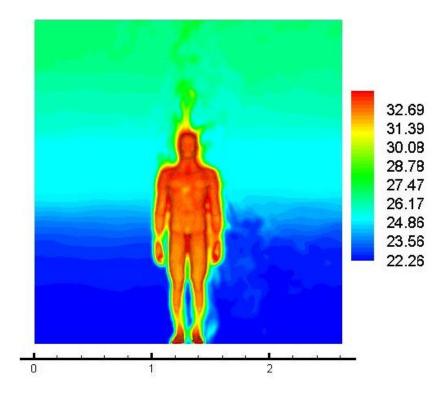
www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Last time

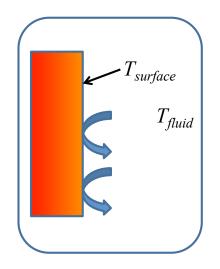
- Heat transfer in buildings: Conduction
 - Conductivity (k)
 - U-values
 - R-values
 - IP and SI units
 - − Conduction in series \rightarrow add R-values
 - Simple thermal bridging
 - Parallel conduction \rightarrow weighted average U-values
- HW 1 due today
 - Energy concepts and unit conversions



CONVECTION

Convection

- Convective heat transfer occurs between a <u>solid</u> and a <u>moving fluid</u>
- When a fluid comes in contact with a surface at a different temperature (e.g., heat transfer between the air in a duct and the duct wall)
- We use a <u>heat transfer coefficient</u>, h_{conv} , to relate the rate of heat transfer to the difference between the solid surface temperature, $T_{surface}$, and the temperature of the fluid far from the surface, T_{fluid}



$$q_{conv} = h_{conv} \left(T_{fluid} - T_{surface} \right) = \frac{1}{R_{conv}} \left(T_{fluid} - T_{surface} \right)$$
An application of Newton's law of cooling

where T_{fluid} = fluid temperature far enough not to be affected by $T_{surface}$ h_{conv} = convective heat transfer coefficient [W/(m² · K)] or [BTU/(hr · ft² · °F)] and $R_{conv} = \frac{1}{h_{conv}}$ = convective thermal resistance [(m² · K)/W] or [(hr · ft² · °F)/BTU]

Г.

• Same story as conduction...

$$q_{conv} = h_{conv} \left(T_{fluid} - T_{surface} \right) \qquad \left[\frac{W}{m^2} \right]$$

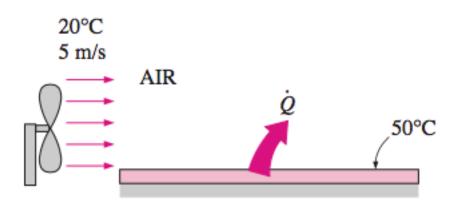
• To get Q, just multiply by surface area, A

$$Q_{conv} = h_{conv} A \left(T_{fluid} - T_{surface} \right) \qquad \left[\mathsf{W} \right]$$

Two types of convective heat transfer

- Two types of convection exist:
 - <u>Natural (or free) convection</u>: Results from density differences in the fluid caused by contact with the surface to or from which the heat transfer occurs
 - Buoyancy is the main driver
 - Temperature dependent density differences
 - <u>Example:</u> The gentle circulation of air in a room caused by the presence of a solar-warmed window or wall (without a mechanical system) is a manifestation of natural/free convection
 - Forced convection: Results from a force external to the problem (other than gravity or other body forces) moves a fluid past a warmer or cooler surface
 - Usually much higher velocities and more random and chaotic flow
 - Driven by mechanical forces (e.g. fans and wind)
 - Example: Heat transfer between cooling coils and an air stream

Two types of convective heat transfer



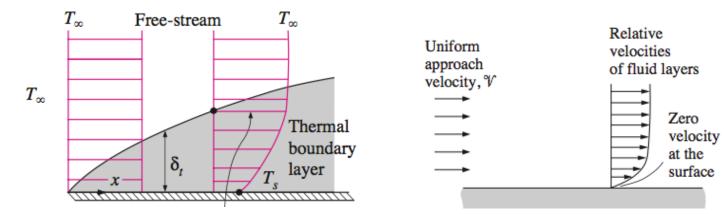
(a) Forced convection

(b) Free convection

Two forms of convection in buildings

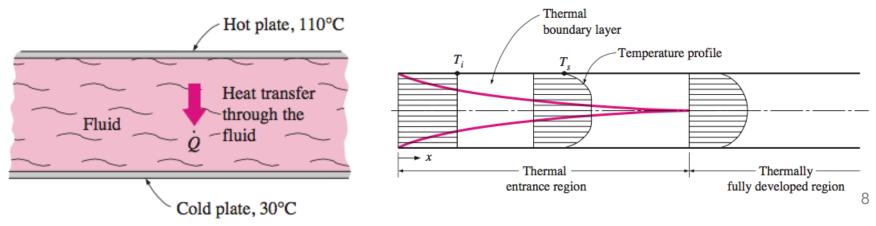
External flows

- Fluid flow over objects (building surfaces, pipes, etc.)

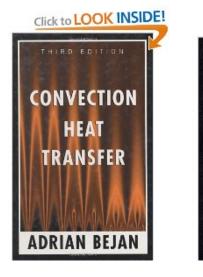


Internal flows

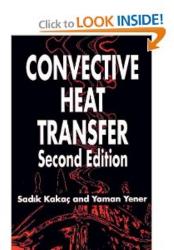
- Fluid flow inside channels (e.g., pipes, ducts, etc.)



Convection is really a field of its own



Convective Heat Transfer



- The <u>convective heat transfer coefficient</u>, h_{conv}, will take many forms depending upon whether the convection is forced or natural
 - $-h_c$ is also known as the surface conductance
 - $R_c = 1/h_c$ is the surface or "film" resistance
- h_c is typically determined empirically (i.e., it is measured)
 - It can also be estimated based on a dimensionless group of fluid properties
 - We can express convection coefficients as a function of:

Nu =
$$f(\text{Re}, \text{Pr})$$

Nu = Nusselt #
Re = Reynolds #
Pr = Prandtl #

- Nusselt # (Nu)
 - Ratio of convection to conduction heat transfer
 - Ratio of heat transfer when fluid is in motion to when it is motionless

 $\mathrm{Nu} = \frac{hL_c}{k}$

Nu = Nusselt number (dimensionless) k = thermal conductivity of the fluid (W/mK) L_c = characteristic length (m) h = convective heat transfer coefficient (W/m²K)

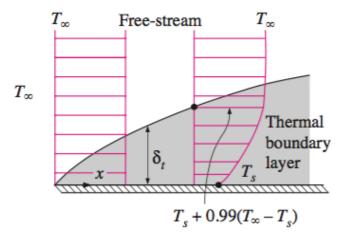
The larger the Nusselt number, the more effective the convective heat transfer

Fluid layer $\Delta T = T_2 - T_1$

$$\dot{q}_{\rm conv} = h\Delta T$$
 $\dot{q}_{\rm cond} = k \frac{\Delta T}{L}$

$$\frac{\dot{q}_{\rm conv}}{\dot{q}_{\rm cond}} = \frac{h\Delta T}{k\Delta T/L} = \frac{hL}{k} = Nu$$

- Thermal boundary layer
 - Defines a flow region over which the temperature variation between the free-stream fluid flow and the surface temperature is significant



- Prandtl # (Pr)
 - We can describe the relative thickness of the velocity and thermal boundary layers by another dimensionless parameter: Pr

 $Pr = \frac{Molecular \text{ diffusivity of momentum}}{Molecular \text{ diffusivity of heat}} = \frac{v}{\alpha} = \frac{\mu C_p}{k}$

 μ = fluid dynamic viscosity (kg/m-s) C_p = specific heat capacity of the fluid (J/kgK) k = thermal conductivity of fluid (W/mK) Typical ranges of Prandtl numbers for common fluids

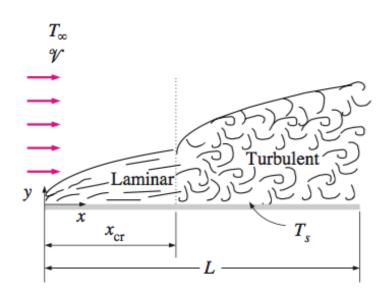
Fluid	Pr
Liquid metals	0.004-0.030
Gases	0.19-1.0
Water	1.19-13.7
Light organic fluids	5–50
Oils	50-100,000
Glycerin	2000-100,000

 $Pr \sim 1$ for gases \rightarrow both momentum and heat dissipate at about the same rate

- Reynolds # (Re)
 - Transition from laminar to turbulent flow depends on the surface geometry, surface roughness, upstream velocity, surface temperature, and the type of fluid
 - This is best described by Re:

 $\operatorname{Re}_{x} = \frac{\rho \mathscr{V} x}{\mu} = \frac{\mathscr{V} x}{\upsilon}$

- V = upstream fluid velocity (m/s)
- x = distance along a plate from the upstream velocity (m)
- μ = fluid dynamic viscosity (kg/m-s)
- ρ = fluid density (kg/m³)
- v = fluid kinematic viscosity = μ/ρ (m²/s)



- Re will vary over *x*
- Transition from laminar to turbulent is typically around Re = 5x10⁵ (may vary)

How do we use these values to estimate convective heat transfer coefficients?

Nu =
$$\frac{hL_c}{k}$$
 Nu = $f(\text{Re, Pr})$ Re_x = $\frac{\rho \mathcal{V}x}{\mu} = \frac{\mathcal{V}x}{\upsilon}$ Pr = $\frac{\mu C_p}{k}$

It depends on the scenario:

External flows:

Forced convective flow over a flat plate

Laminar:
$$\operatorname{Nu}_{x} = \frac{h_{x}x}{k} = 0.332 \operatorname{Re}_{x}^{0.5} \operatorname{Pr}^{1/3}$$
 Pr > 0.60

The corresponding relation for turbulent flow is

Turbulent:
$$\operatorname{Nu}_{x} = \frac{h_{x}x}{k} = 0.0296 \operatorname{Re}_{x}^{0.8} \operatorname{Pr}^{1/3}$$

 $5 \times 10^{5} \le \operatorname{Re}_{x} \le 10^{7}$

This gives us a "local" Nu #

How do we use these values to estimate convective heat transfer coefficients?

Nu =
$$\frac{hL_c}{k}$$
 Nu = $f(\text{Re, Pr})$ Re_x = $\frac{\rho Vx}{\mu} = \frac{Vx}{\upsilon}$ Pr = $\frac{\mu C_p}{k}$

It depends on the scenario:

External flows: Forced convective flow over a flat plate

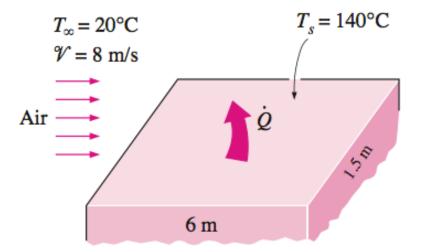
The average Nu # over the whole plate, which is more helpful, is:

Laminar:Nu = $\frac{hL}{k} = 0.664 \operatorname{Re}_{L}^{0.5} \operatorname{Pr}^{1/3}$ Re_L < 5 × 10⁵Turbulent:Nu = $\frac{hL}{k} = 0.037 \operatorname{Re}_{L}^{0.8} \operatorname{Pr}^{1/3}$ $0.6 \le \operatorname{Pr} \le 60$
 $5 × 10⁵ \le \operatorname{Re}_{L} \le 10^{7}$ Transition:Nu = $\frac{hL}{k} = (0.037 \operatorname{Re}_{L}^{0.8} - 871)\operatorname{Pr}^{1/3}$ $0.6 \le \operatorname{Pr} \le 60$
 $5 × 10⁵ \le \operatorname{Re}_{L} \le 10^{7}$

There are <u>many</u> different conditions that each have to be analyzed separately!

Cooling of a hot block by forced air

- Air at 20°C and 8 m/s flows over a 1.5-m x 6-m flat plate whose temperature is 140°C
- Determine the rate of heat transfer if the air flows parallel to the 6-m long side



Assume: 1) steady state operation; 2) critical Re = 5×10^5 ; 3) radiation effects are negligible; 4) you are at sea level

- There are many more scenarios applicable to buildings!
 - From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals:

	Tuble o Toreca-Convection Correlati	0115	
I. General Correlation	Nu = f(Re, Pr)		
II. Internal Flows for Pipes and Du	ucts: Characteristic length = D , pipe diameter, or D_h , hydraulic	diameter.	
$\operatorname{Re} = \frac{\rho V_{avg} D_h}{\mu} = \frac{\dot{m} D_h}{A_c \mu} = \frac{Q D_h}{A_c \nu} =$	$= \frac{4\dot{m}}{\mu P_{wet}} = \frac{4Q}{\nu P_{wet}} \text{where } \dot{m} = \text{mass flow rate, } Q = \text{volume fl}}_{A_c} = \text{cross-sectional area, and } \nu = \text{kinema}$	low rate, P_{wet} = wetted perimeter, atic viscosity (μ/ρ).	
	$\frac{\mathrm{Nu}}{\mathrm{Re}\mathrm{Pr}^{1/3}} = \frac{f}{2}$	Colburn's analogy (turbulent)	(T8.1)
Laminar: Re < 2300	$Nu = 1.86 \left(\frac{\text{Re Pr}}{L/D}\right)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	$\frac{L}{D} < \frac{\text{Re Pr}}{8} \left(\frac{\mu}{\mu_s}\right)^{0.42}$	(T8.2) ^a
Developing	Nu = $3.66 + \frac{0.065(D/L) \text{Re Pr}}{1 + 0.04[(D/L) \text{Re Pr}]^{2/3}}$		(T8.3)
Fully developed, round	Nu = 3.66	Uniform surface temperature	(T8.4a)
	Nu = 4.36	Uniform heat flux	(T8.4b)
Turbulent:	$Nu = 0.023 Re^{4/5} Pr^{0.4}$	Heating fluid $\text{Re} \ge 10\ 000$	(T8.5a) ^b
Fully developed	$Nu = 0.023 Re^{4/5} Pr^{0.3}$	Cooling fluid Re $\ge 10\ 000$	(T8.5b) ^b
Evaluate properties at bulk temperature t_b except μ_s and t_s at surface	Nu = $\frac{(f_s/2)(\text{Re} - 1000)\text{Pr}}{1 + 12.7(f_s/2)^{1/2}(\text{Pr}^{2/3} - 1)} \left[1 + \left(\frac{D}{L}\right)^{2/3}\right]$	$f_s = \frac{1}{\left(1.58 \ln \mathrm{Re} - 3.28\right)^2}$	(T8.6) ^c
temperature	For fully developed flows, set $D/L = 0$.	Multiply Nu by $(T/T_s)^{0.45}$ for gase and by $(Pr/Pr_s)^{0.11}$ for liquids	s
	Nu = 0.027 Re ^{4/5} Pr ^{1/3} $\left(\frac{\mu}{\mu_s}\right)^{0.14}$	For viscous fluids	(T8.7) ^a

	Table 8	Forced-	Convection	Correla	tions
--	---------	---------	------------	---------	-------

For noncircular tubes, use hydraulic mean diameter D_h in the equations for Nu for an approximate value of h.

- There are many more scenarios applicable to buildings!
 - From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals:

III. External Flows for Flat Plate: Characteristic length = L = length of plate. Re = VL/v. All properties at arithmetic mean of surface and fluid temperatures.

Laminar boundary layer:	$Nu = 0.332 Re^{1/2}Pr^{1/3}$	Local value of h	(T8.8)
$\text{Re} < 5 \times 10^5$	$Nu = 0.664 Re^{1/2}Pr^{1/3}$	Average value of h	(T8.9)
Turbulent boundary layer: Re > 5×10^5	$Nu = 0.0296 Re^{4/5} Pr^{1/3}$	Local value of h	(T8.10)
Turbulent boundary layer beginning at leading edge: All Re	$Nu = 0.037 Re^{4/5} Pr^{1/3}$	Average value of h	(T8.11)
Laminar-turbulent boundary layer: Re > 5×10^5	$Nu = (0.037 \text{ Re}^{4/5} - 871) Pr^{1/3}$	Average value $\text{Re}_c = 5 \times 10^5$	(T8.12)

IV. External Flows for Cross Flow over Cylinder: Characteristic length = D = diameter. Re = VD/v.

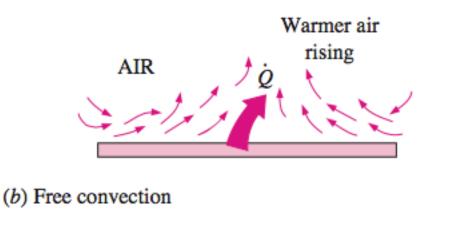
All properties at arithmetic mean of surface and fluid temperatures.

$0 < 2 = \frac{1}{2} = \frac{1}{3} = \frac{1}{3} = \frac{5}{8} = \frac{4}{5}$	Average value of n	
Nu = 0.3 + $\frac{0.62 \text{ Re}^{1/2} \text{Pr}^{1/3}}{\left[1 + (0.4/\text{Pr})^{2/3}\right]^{1/4}} \left[1 + \left(\frac{\text{Re}}{282\ 000}\right)^{5/8}\right]^{4/5}$		(T8.14) ^d

Amora analyza of h

V. Simplified Approximate E	quations: h is in W/(m ² ·K), V is in m/s, L	t is in m, and t is in °C.	
Flows in pipes Re > 10 000	Atmospheric air (0 to 200°C): Water (3 to 200°C): Water (4 4 to 104°C:	$h = (3.76 - 0.00497t)V^{0.8}/D^{0.2}$ $h = (1206 + 23.9t)V^{0.8}/D^{0.2}$ $h = (1431 + 20.9t)V^{0.8}/D^{0.2} $ (McAdams 1954)	(T8.15a)° (T8.15b)° (T8.15c) ^g
Flow over cylinders	Atmospheric air: $0^{\circ}C < t < 200$ and surface temperature.	^o C, where $t =$ arithmetic mean of air	
	$h = 2.755 V^{0.471} / D^{0.529}$	35 < Re < 500	0 (T8.16a)
	$h = (4.22 - 0.002 57t) V^{0.63}$	$3/D^{0.367}$ 5000 < Re < 5	0 000 (T8.16b)
	Water: $5^{\circ}C < t < 90^{\circ}C$, where t surface temperature.	= arithmetic mean of water and	
	$h = (461.8 + 2.01t) V^{0.471}/L$	35 < Re < 500	0 (T8.17a)
	$h = (1012 + 9.19t) V^{0.633}/D$	0.367 5000 < Re < 5	0 000 (T8.17b) ^f

 There are similar (albeit different) relationships for <u>natural</u> <u>convection</u>



$$Nu = \frac{hL_c}{k} = f(Ra_{Lc}, Pr)$$

Ra_{Lc} = Rayleigh number = $g\beta \Delta t L_c^3 / \nu \alpha$ $\Delta t = |t_s - t_{\infty}|$ g = gravitational acceleration β = coefficient of thermal expansion ν = fluid kinematic viscosity = μ/ρ α = fluid thermal diffusivity = $k/\rho c_p$ Pr = Prandtl number = ν/α

Ra = Gr Pr

Gr = Grashof # (relationship between buoyancy and viscosity in a fluid)

$${
m Gr}_L = rac{geta(T_s-T_\infty)L^3}{
u^2}$$
 for vertical flat plates

$$\mathrm{Gr}_D = rac{geta(T_s-T_\infty)D^3}{
u^2}$$
 for pipes

- Relationships for <u>natural convection</u>
 - From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals:

I. General relationships	Nu = f(Ra, Pr) or f(Ra)		(T9.1)
Characteristic length depends on geometry	Ra = Gr Pr Gr = $\frac{g\beta\rho^2 \Delta t L^3}{\mu^2}$	$\Pr = \frac{c_p \mu}{k} \Delta t = \left t_s - t_{\infty} \right $	
II. Vertical plate			
$t_s = \text{constant}$	Nu = $0.68 + \frac{0.67 \text{Ra}^{1/4}}{[1 + (0.492/\text{Pr})^{9/16}]^{4/9}}$	$10^{-1} < Ra < 10^9$	(T9.2) ^a
Characteristic dimension: $L = \text{height}$ Properties at $(t_s + t_{\infty})/2$ except β at t_{∞}	Nu = $\left\{ 0.825 + \frac{0.387 \text{Ra}^{1/6}}{\left[1 + (0.492/\text{Pr})^{9/16}\right]^{8/27}} \right\}^2$	$10^9 < Ra < 10^{12}$	(T9.3) ^a
$q''_{s} = \text{constant}$ Characteristic dimension: $L = \text{height}$ Properties at $t_{s, L/2} - t_{\infty}$ except β at t_{∞}	Nu = $\left\{ 0.825 + \frac{0.387 \text{Ra}^{1/6}}{\left[1 + (0.437/\text{Pr})^{9/16}\right]^{8/27}} \right\}^2$	$10^{-1} < Ra < 10^{12}$	(T9.4) ^a
Equations (T9.2) and (T9.3) can be used for vertical cylinders if $D/L > 35/\text{Gr}^{1/4}$ where D is diameter and L is axial length of cylinder	er		
III. Horizontal plate			
Characteristic dimension = $L = A/P$, where A is plate area and P is Properties of fluid at $(t_s + t_{\infty})/2$	s perimeter		
Downward-facing cooled plate and upward-facing heated plate	$\begin{aligned} Nu &= 0.96 \ Ra^{1/6} \\ Nu &= 0.59 \ Ra^{1/4} \\ Nu &= 0.54 \ Ra^{1/4} \\ Nu &= 0.15 \ Ra^{1/3} \end{aligned}$	1 < Ra < 200 $200 < Ra < 10^{4}$ $2.2 \times 10^{4} < Ra < 8 \times 10^{6}$ $8 \times 10^{6} < Ra < 1.5 \times 10^{9}$	(T9.5) ^b (T9.6) ^b (T9.7) ^b (T9.8) ^b
Downward-facing heated plate and upward-facing cooled plate	$Nu = 0.27 Ra^{1/4}$	$10^5 < Ra < 10^{10}$	(T9.9) ^b

Relationships for <u>natural convection</u>

- From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals:

- · · · ·			
IV. Horizontal cylinder Characteristic length = d = diameter Properties of fluid at $(t_s + t_{\infty})/2$ except β at t_{∞}	Nu = $\left\{ 0.6 + \frac{0.387 \text{ Ra}^{1/6}}{\left[1 + (0.559/\text{Pr})^{9/16}\right]^{8/27}} \right\}^2$	10 ⁹ < Ra < 10 ¹³	(T9.10)°
V. Sphere Characteristic length = D = diameter Properties at $(t_s + t_{\infty})/2$ except β at t_{∞}	Nu = 2 + $\frac{0.589 \text{ Ra}^{1/4}}{[1 + (0.469/\text{Pr})^{9/16}]^{4/9}}$	Ra < 10 ¹¹	(T9.11) ^d
VI. Horizontal wire Characteristic dimension = D = diameter Properties at $(t_s + t_{\infty})/2$	$\frac{2}{\mathrm{Nu}} = \ln\left(1 + \frac{3.3}{c\mathrm{Ra}^n}\right)$	10 ^{−8} < Ra < 10 ⁶	(T9.12) ^e
VII. Vertical wire Characteristic dimension = D = diameter; L = length of wire Properties at $(t_s + t_{\infty})/2$	Nu = $c (\text{Ra } D/L)^{0.25} + 0.763 c^{(1/6)} (\text{Ra } D/L)^{(1/2)}$ In both Equations (T9.12) and (T9.13), $c = \frac{1}{10 + 5(\text{Ra})^{0.175}}$		(T9.13)° i
VIII. Simplified equations with air at mean temperature of 21	°C: h is in W/(m ² ·K), L and D are in m, and Δt	is in °C.	
Vertical surface	$h = 1.33 \left(\frac{\Delta t}{L}\right)^{1/4}$	$10^5 < Ra < 10^9$	(T9.14)
	$h = 1.26(\Delta t)^{1/3}$	$Ra > 10^9$	(T9.15)
Horizontal cylinder	$h = 1.04 \left(\frac{\Delta t}{D}\right)^{1/4}$	$10^5 < Ra < 10^9$	(T9.16)
	$h = 1.23 \left(\Delta t\right)^{1/3}$	Ra > 10 ⁹	(T9.17)

Simplifications of convective heat transfer coefficients

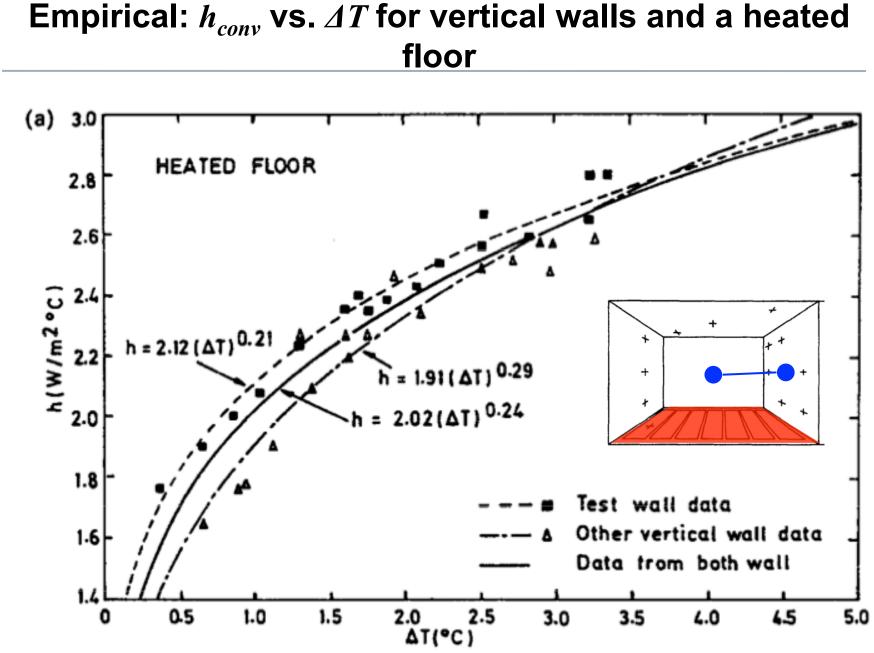
- For practical purposes in Building Science, we simplify convective heat transfer coefficients to common values for relatively common cases
 - Sometimes these are fundamentally estimated
 - Sometimes these are empirical (measured) in different scenarios

Arrangement	$W/(m^2 \cdot K)$	$Btu/(h \cdot ft^2 \cdot F)$
Air, free convection	6–30	1–5
Superheated steam or air, forced convection	30–300	5–50
Oil, forced convection	60-1800	10-300
Water, forced convection	300-6000	50-1000
Water, boiling	3000-60,000	500-10,000
Steam, condensing	6000-120,000	1000-20,000

TABLE 2.9

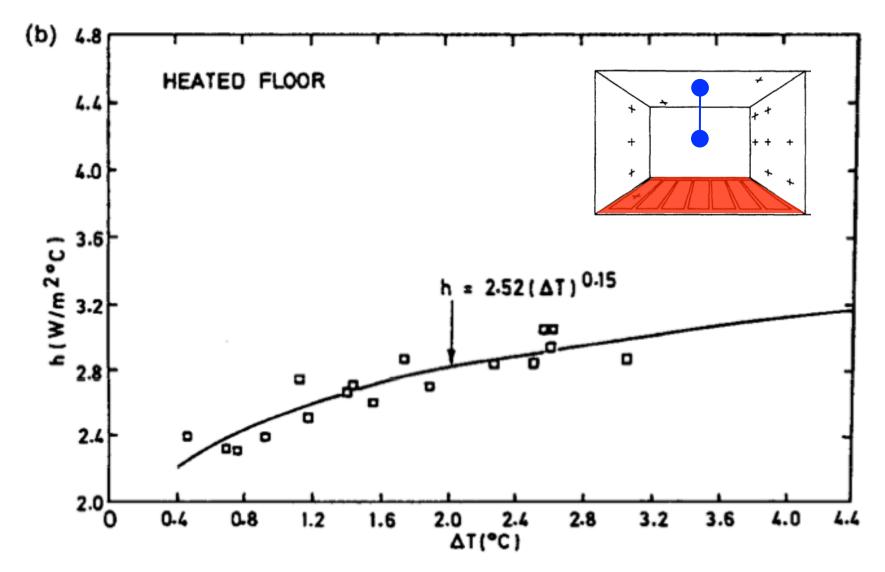
Simplifications of convective heat transfer coefficients

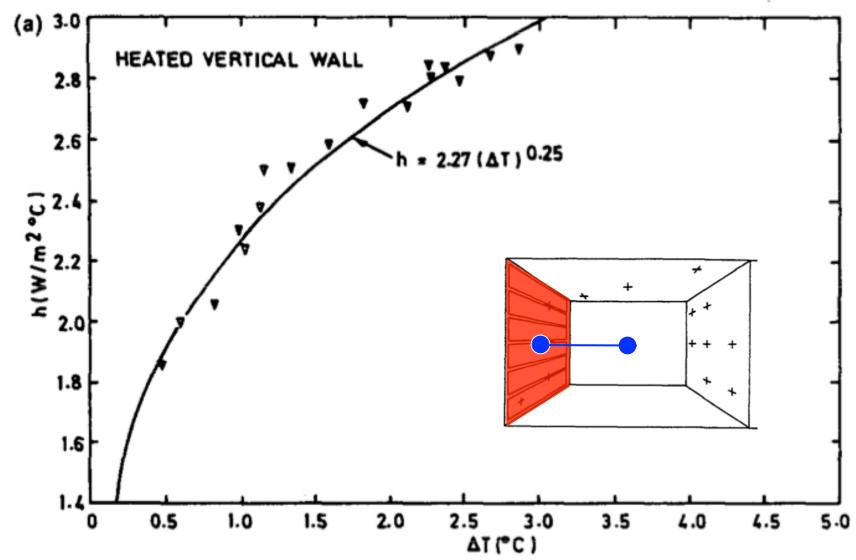
- Convective heat transfer coefficients can depend upon details of the surface-fluid interface
 - Rough surfaces have higher rates of convection
 - Orientation is important for natural convection
 - Convective heat transfer coefficients for natural convection can depend upon the actual fluid temperature and not just the temperature difference



Khalifa and Marshall (1990) Int J Heat Mass Transfer

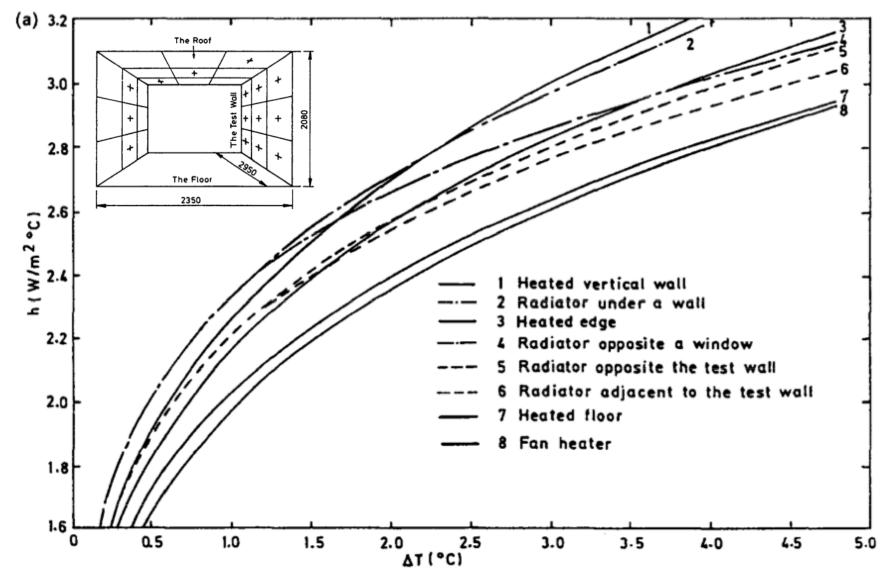
Empirical: h_{conv} vs. ΔT for a ceiling and a heated floor





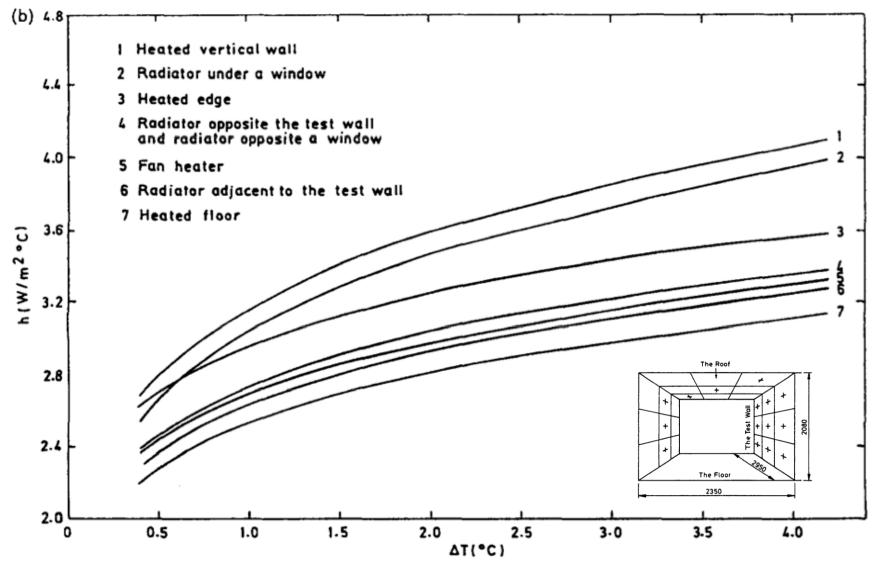
Khalifa and Marshall (1990) Int J Heat Mass Transfer

Empirical: h_{conv} vs. ΔT for interior walls



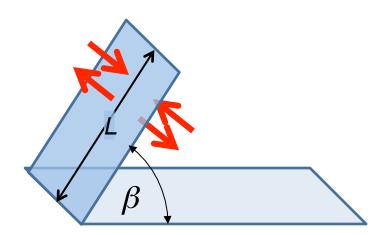
Khalifa and Marshall (1990) Int J Heat Mass Transfer

Empirical: h_{conv} vs. ΔT for interior ceilings



Khalifa and Marshall (1990) Int J Heat Mass Transfer

Free convection in air from a tilted surface: Simplified



$$h_{conv}$$
 in [W/(m² K)]

For natural convection to or from either side of a vertical surface or a sloped surface with $\beta > 30^{\circ}$

For laminar:
$$h_{conv} = 1.42 \left(\frac{\Delta T}{L} \sin \beta\right)^{\frac{1}{4}}$$
 [Kreider 2.18SI]
For turbulent: $h_{conv} = 1.31 \left(\Delta T \sin \beta\right)^{\frac{1}{3}}$ [Kreider 2.19SI]

1

Note that these equations are *dimensional*, so they are different for IP and SI

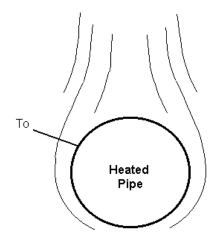
Free convection from horizontal pipes in air

• For cylindrical pipes of outer diameter, *D*, in [m]

For turbulent:
$$h_{conv} = 1.24 (\Delta T)^{\frac{1}{3}}$$

For laminar: $h_{conv} = 1.32 \left(\frac{\Delta T}{D}\right)^{\overline{4}}$ [Kreider 2.20SI]

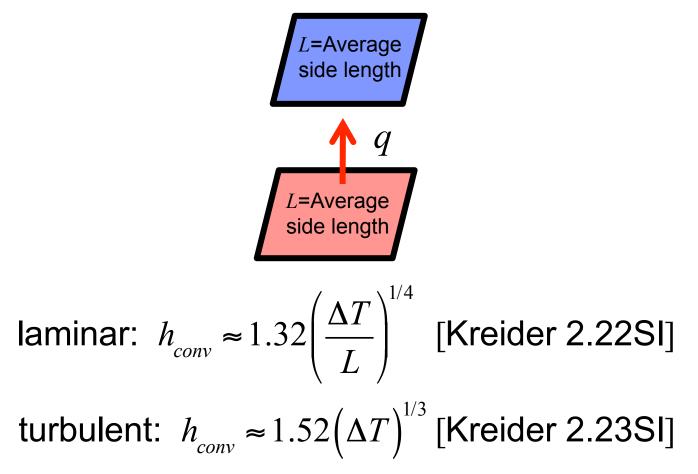
[Kreider 2.21SI]



Free Convection Heat Transfer

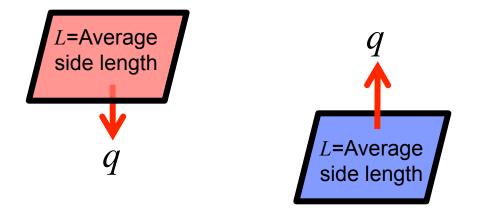
Free convection for surfaces: Simplified

- Warm horizontal surfaces facing up
 - e.g. up from a warm floor to a cold ceiling



Free convection for surfaces: Simplified

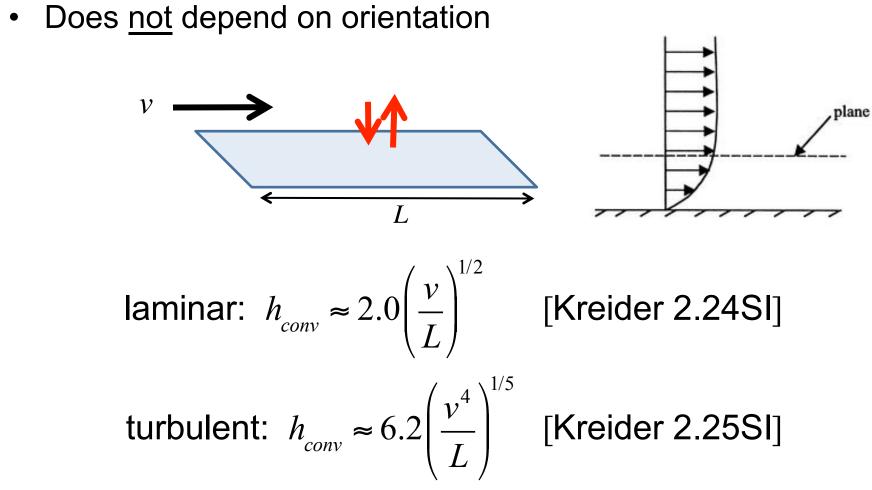
- Warm horizontal surface facing down
 - Convection is reduced because of stratification
 - e.g. a warm ceiling facing down (works against buoyancy)
 - Also applies for cooled flat surfaces facing up (like a cold floor)



$$h_{conv} \approx 0.59 \left(\frac{\Delta T}{L}\right)^{1/4}$$

both laminar and turbulent

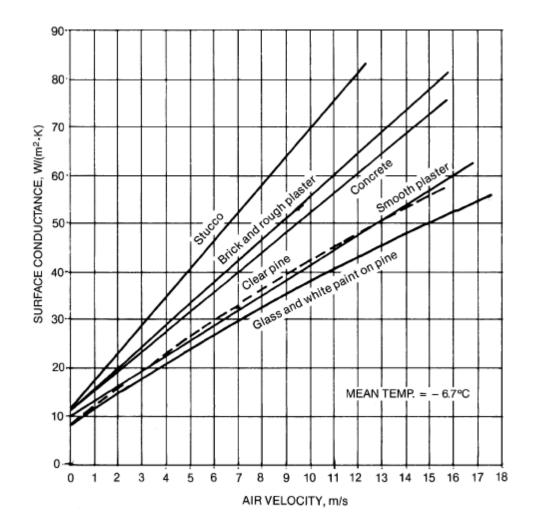
Forced convection over planes: Simplified



*Velocity is in m/s

h_{conv} for exterior forced convection

 For forced convection, *h*_{conv} depends upon surface roughness and air velocity but not orientation



Most used h_{conv} for exterior forced convection

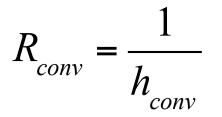
There are two relationships for h_{conv} (forced convection) which are commonly used, depending on wind speed:

- For $1 < v_{wind} < 5 \text{ m/s}$ $h_c = 5.6 + 3.9 v_{wind}$ [W/(m²·K)] [Straube 5.15]
- For 5 < v_{wind} < 30 m/s $h_c = 7.2 v_{wind}^{0.78}$ [W/(m²·K)] [Straube 5.16]

*Good for use with external surfaces like walls and windows

Convective "R-value"

- Convective heat transfer can also be translated to an 'effective conductive layer' in contact with air
 - Allows us to assign an R-value to it



Typical convective surface resistances

• We often use the values given below for most conditions

Surface	Horizontal	Upwards	Downwards
Conditions	Heat Flow	Heat Flow	Heat Flow
Indoors: R _{in}	0.12 m ² K/W (SI)	0.11 m ² K/W (SI)	0.16 m²K/W (SI)
	0.68 h·ft ² ·°F/Btu (IP)	0.62 h·ft ^{2.} °F/Btu (IP)	0.91 h·ft².°F/Btu (IP)
<i>R_{out}</i> : 6.7 m/s wind (Winter)		0.030 m ² K/W (SI) 0.17 h·ft ^{2.} °F/Btu (IP)	
<i>R_{out}</i> : 3.4 m/s wind (Summer)		0.044 m²K/W (SI) 0.25 h·ft².°F/Btu (IP)	

We can still sum resistances in series, even if it involves different modes of heat transfer

Convection example

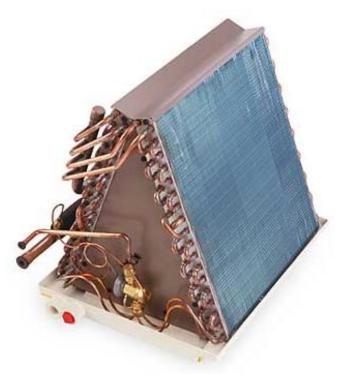
- Estimate the convective heat transfer coefficient along a wall in the classroom, assuming either forced or natural convection
- What is the convective resistance of the classroom wall?
- How does the convective thermal resistance compare to that of insulation in building walls and roofs?

How is this helpful to us?

- Imagine the classroom wall is being heated by the sun on the other side
- The exterior surface temperature is 122°F (50°C)
- The interior air temperature is 72°F (22°C)
- The R-value of the wall is R-13 (IP) (2.29 m²K/W)
- What is the interior surface temperature of the wall?
- This interior surface temperature impacts the heat flux to indoor air, as well as the surrounding surface temperatures (via radiation), which all impact the building's <u>energy balance</u>

Internal flows within building HVAC systems

- Flows of fluids confined by boundaries (such as the sides of a duct) are called <u>internal flows</u>
- Mechanisms of convection are different
 - And so are the equations



Forced convection for fully developed turbulent flow

• Air through ducts and pipes:

$$h_{conv} \approx 8.8 \left(\frac{v^4}{D_h}\right)^{1/5}$$
 [Kreider 2.26SI]

 D_h = the hydraulic diameter: 4 times the ratio of the flow conduit's cross-sectional area divided by the perimeter of the conduit

$$D_{h} = \frac{4\left(\frac{\pi D^{2}}{4}\right)}{\pi D}$$
 [Kreider 2.27SI]

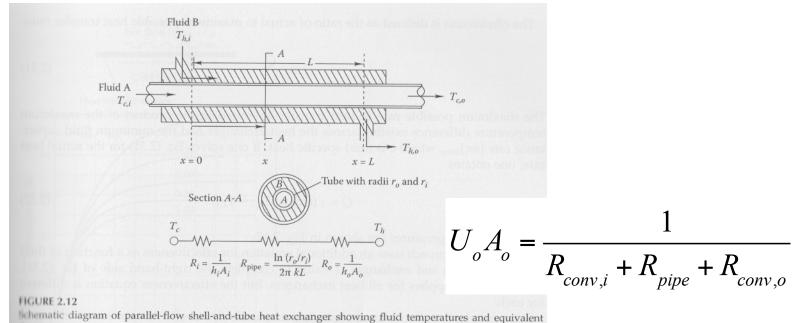
• Water flow through pipes:

$$h_{conv} \approx 3580(1+0.015T) \left(\frac{v^4}{D_h}\right)^{1/5}$$

Combined convection + conduction: Heat exchangers

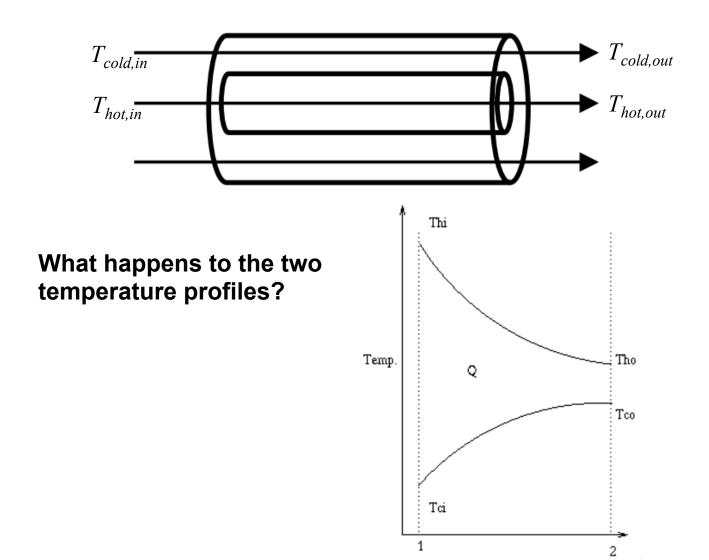
- Heat exchangers are used widely in buildings
- Heat exchangers are devices in which two fluid streams, usually separated from each other by a solid wall, exchange thermal energy by convection and conduction
 - One fluid is typically heated, one is typically cooled
 - · Fluids may be gases, liquids, or vapors

thermal circuit.



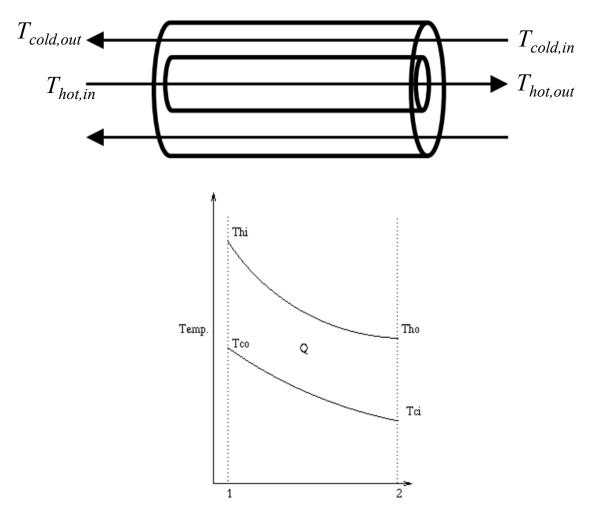
Heat exchangers

• Parallel flow: fluids flowing in the same direction



Heat exchangers

- **Counterflow**: one fluid flows in the opposite direction
 - More efficient than parallel flow



Heat exchangers: ∈-NTU method

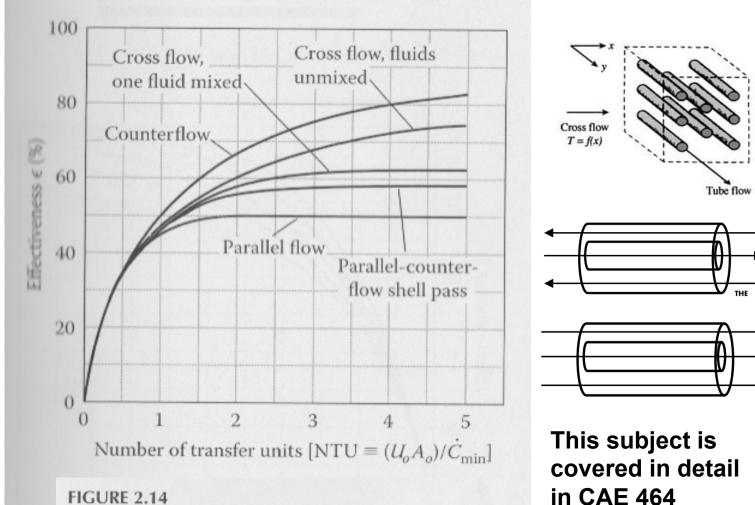


FIGURE 2.14

Comparison of effectiveness of several heat exchanger designs for equal hot- and cold-side capacitance rates, $\dot{C}_{\min} = \dot{C}_{\max}$.

HVAC Design

Bulk convective heat transfer: Advection

- Finally, there is one last type of convection:
- <u>Bulk convective heat transfer</u>, or <u>advection</u>, is more direct than convection between surfaces and fluids
- Bulk convective heat transfer is the transport of heat by fluid flow (e.g., air or water)
 - Fluids, such as air, have the capacity to store heat, so fluids flowing into or out of a control volume also carry heat with it

$$Q_{bulk} = mC_p\Delta T$$
 [W]= $\left[\frac{\text{kg}}{\text{s}} \cdot \frac{\text{J}}{\text{kg} \cdot \text{K}} \cdot \text{K}\right]$

m "dot" = mass flow rate of fluid (kg/s) C_p = specific heat capacity of fluid [J/(kgK)]