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Last time 

•  Heat transfer in buildings: Conduction 
–  Conductivity (k) 
–  U-values 
–  R-values 
–  IP and SI units 
–  Conduction in series à add R-values 
–  Simple thermal bridging  

•  Parallel conduction à weighted average U-values 

•  HW 1 due today  
–  Energy concepts and unit conversions 
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CONVECTION 
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Convection 
•  Convective heat transfer occurs between a solid 

and a moving fluid 
•  When a fluid comes in contact with a surface at a 

different temperature (e.g., heat transfer between 
the air in a duct and the duct wall) 

•  We use a heat transfer coefficient, hconv , to relate the 
rate of heat transfer to the difference between the 
solid surface temperature, Tsurface, and the 
temperature of the fluid far from the surface, Tfluid 

qconv = hconv Tfluid −Tsurface( ) = 1
Rconv

Tfluid −Tsurface( )
where Tfluid =  fluid temperature far enough not to be affected by Tsurface

hconv = convective heat transfer coefficient [W/(m2 ⋅K)] or [BTU/(hr ⋅ ft2 ⋅°F)]

and  Rconv =
1

hconv
= convective thermal resistance [(m2 ⋅K)/W] or [(hr ⋅ ft2 ⋅°F)/BTU]
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t1 

Tsurface 

Tfluid 

An application of 
Newton’s law of cooling 



Q versus q for convection 

•  Same story as conduction… 

•  To get Q, just multiply by surface area, A
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qconv = hconv Tfluid −Tsurface( )       W
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Two types of convective heat transfer 

•  Two types of convection exist: 
–  Natural (or free) convection: Results from density differences in the 

fluid caused by contact with the surface to or from which the heat 
transfer occurs 

•  Buoyancy is the main driver 
–  Temperature dependent density differences  

•  Example: The gentle circulation of air in a room caused by the presence 
of a solar-warmed window or wall (without a mechanical system) is a 
manifestation of natural/free convection 

–  Forced convection: Results from a force external to the problem 
(other than gravity or other body forces) moves a fluid past a warmer 
or cooler surface 

•  Usually much higher velocities and more random and chaotic flow 
•  Driven by mechanical forces (e.g. fans and wind) 
•  Example: Heat transfer between cooling coils and an air stream 
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Two types of convective heat transfer 
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ρ =
n
V
MW =

P
RT

MW T ↓ρ↑ T ↑ρ↓



Two forms of convection in buildings  

•  External flows 
–  Fluid flow over objects (building surfaces, pipes, etc.) 

•  Internal flows 
–  Fluid flow inside channels (e.g., pipes, ducts, etc.) 
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Convection is really a field of its own 
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Convective heat transfer coefficient, hconv 

•  The convective heat transfer coefficient, hconv, will take 
many forms depending upon whether the convection is 
forced or natural 
–  hc is also known as the surface conductance 
–  Rc = 1/hc is the surface or “film” resistance 

•  hc is typically determined empirically (i.e., it is measured) 
–  It can also be estimated based on a dimensionless group of fluid 

properties 
–  We can express convection coefficients as a function of: 
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Nu = Nusselt # 
Re = Reynolds # 
Pr = Prandtl # 



Convective heat transfer coefficient, hconv 

•  Nusselt # (Nu) 
–  Ratio of convection to conduction heat transfer 
–  Ratio of heat transfer when fluid is in motion to when it is motionless 
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Nu = Nusselt number (dimensionless) 
k = thermal conductivity of the fluid (W/mK) 
Lc = characteristic length (m) 
h = convective heat transfer coefficient (W/m2K) 

The larger the Nusselt number, the more effective the convective heat transfer 



Convective heat transfer coefficient, hconv 

•  Thermal boundary layer 
–  Defines a flow region over which 

the temperature variation between 
the free-stream fluid flow and the 
surface temperature is significant 
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•  Prandtl # (Pr) 
–  We can describe the relative thickness of the velocity and thermal boundary 

layers by another dimensionless parameter: Pr 

µ = fluid dynamic viscosity (kg/m-s) 
Cp = specific heat capacity of the fluid (J/kgK) 
k = thermal conductivity of fluid (W/mK) 

Pr ~ 1 for gases à both momentum and heat dissipate at about the same rate 



Convective heat transfer coefficient, hconv 

•  Reynolds # (Re) 
–  Transition from laminar to 

turbulent flow depends on the 
surface geometry, surface 
roughness, upstream velocity, 
surface temperature, and the 
type of fluid 

–  This is best described by Re: 
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V = upstream fluid velocity (m/s) 
x = distance along a plate from the upstream velocity (m) 
µ = fluid dynamic viscosity (kg/m-s) 
ρ = fluid density (kg/m3) 
ν = fluid kinematic viscosity = µ/ρ (m2/s) 

•  Re will vary over x 

•  Transition from 
laminar to turbulent is 
typically around Re = 
5x105 (may vary) 



Convective heat transfer coefficient, hconv 
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How do we use these values to estimate convective heat transfer coefficients? 

It depends on the scenario: 

External flows: Forced convective flow over a flat plate 

This gives us a “local” Nu # 



Convective heat transfer coefficient, hconv 
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How do we use these values to estimate convective heat transfer coefficients? 

It depends on the scenario: 

External flows: Forced convective flow over a flat plate 

The average Nu # over the whole plate, which is more helpful, is: 

There are many different conditions that each have to be analyzed separately! 

Transition: 



Example problem 

Cooling of a hot block by forced air 
•  Air at 20°C and 8 m/s flows over a 1.5-m x 6-m flat plate 

whose temperature is 140°C 
•  Determine the rate of heat transfer if the air flows parallel to 

the 6-m long side 
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Assume: 1) steady state operation; 2) critical Re = 5 x 105; 3) radiation 
effects are negligible; 4) you are at sea level 



Convective heat transfer coefficient, hconv 

•  There are many more scenarios applicable to buildings! 
–  From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals: 
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Convective heat transfer coefficient, hconv 

•  There are many more scenarios applicable to buildings! 
–  From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals: 
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Convective heat transfer coefficient, hconv 

•  There are similar (albeit different) relationships for natural 
convection 
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Ra = Gr Pr 
Gr = Grashof # (relationship between buoyancy and viscosity in a fluid) 



Convective heat transfer coefficient, hconv 

•  Relationships for natural convection 
–  From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals: 
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Convective heat transfer coefficient, hconv 

•  Relationships for natural convection 
–  From Chapter 4 of the 2013 ASHRAE Handbook of Fundamentals: 
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Simplifications of convective heat transfer coefficients 

•  For practical purposes in Building Science, we simplify 
convective heat transfer coefficients to common values for 
relatively common cases 
–  Sometimes these are fundamentally estimated 

–  Sometimes these are empirical (measured) in different scenarios 
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Simplifications of convective heat transfer coefficients 

•  Convective heat transfer coefficients can depend upon 
details of the surface-fluid interface 
–  Rough surfaces have higher rates of convection 
–  Orientation is important for natural convection 
–  Convective heat transfer coefficients for natural convection can 

depend upon the actual fluid temperature and not just the 
temperature difference 
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Empirical: hconv vs. ΔT for vertical walls and a heated 
floor 
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Khalifa and Marshall (1990) Int J Heat Mass Transfer 



Empirical: hconv vs. ΔT for a ceiling and a heated floor 
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Khalifa and Marshall (1990) Int J Heat Mass Transfer 



Empirical: hconv vs. ΔT for heated walls 
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Khalifa and Marshall (1990) Int J Heat Mass Transfer 



Empirical: hconv vs. ΔT for interior walls 
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Khalifa and Marshall (1990) Int J Heat Mass Transfer 



Empirical: hconv vs. ΔT for interior ceilings 
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Khalifa and Marshall (1990) Int J Heat Mass Transfer 



Free convection in air from a tilted surface: Simplified 
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hconv	  in [W/(m2 K)] 
	  

For natural convection to or from 
either side of a vertical surface 
or a sloped surface with β > 30°  

For laminar:   hconv =1.42
ΔT
L
sinβ
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[Kreider 2.18SI]

For turbulent:  hconv =1.31 ΔT sinβ( )
1
3 [Kreider 2.19SI]

β	  

L 

Note that these equations are dimensional, so they are different for IP and SI 



Free convection from horizontal pipes in air 

•  For cylindrical pipes of outer diameter, D, in [m] 
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For laminar:   hconv =1.32
ΔT
D
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For turbulent:  hconv =1.24 ΔT( )
1
3 [Kreider 2.21SI]



Free convection for surfaces: Simplified 

•  Warm horizontal surfaces facing up 
–  e.g. up from a warm floor to a cold ceiling 
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L=Average 
side length 

L=Average 
side length 

q 

laminar:  hconv ≈1.32
ΔT
L
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[Kreider 2.22SI]

turbulent:  hconv ≈1.52 ΔT( )
1/3
[Kreider 2.23SI]



Free convection for surfaces: Simplified 

•  Warm horizontal surface facing down 
–  Convection is reduced because of stratification 

•  e.g. a warm ceiling facing down (works against buoyancy) 
•  Also applies for cooled flat surfaces facing up (like a cold floor) 
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L=Average 
side length 

q L=Average 
side length 
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hconv ≈ 0.59
ΔT
L
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   both laminar and turbulent



Forced convection over planes: Simplified 

•  Does not depend on orientation 
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laminar:  hconv ≈ 2.0
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turbulent:  hconv ≈ 6.2
v4

L
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[Kreider 2.25SI]

*Velocity is in m/s 



hconv for exterior forced convection 

•  For forced convection, 
hconv depends upon 
surface roughness and 
air velocity but not 
orientation 
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Most used hconv for exterior forced convection 

There are two relationships for hconv (forced convection) which 
are commonly used, depending on wind speed: 

•  For 1 < vwind < 5 m/s 
 hc = 5.6 + 3.9vwind     [W/(m2·∙K)]   [Straube 5.15] 

•  For 5 < vwind < 30 m/s 
 hc = 7.2vwind

0.78       [W/(m2·∙K)]   [Straube 5.16] 
 
*Good for use with external surfaces like walls and windows 
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Convective “R-value” 

•  Convective heat transfer can also be translated to an 
‘effective conductive layer’ in contact with air 
–  Allows us to assign an R-value to it 

Rconv =
1
hconv
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Typical convective surface resistances 
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•  We often use the values given below for most conditions 

 
Surface 
Conditions 

Horizontal 
Heat Flow 

Upwards  
Heat Flow 

Downwards 
Heat Flow 

Indoors: Rin 0.12 m2K/W (SI) 
0.68 h⋅ft2⋅°F/Btu (IP) 

 

0.11 m2K/W (SI) 
0.62 h⋅ft2⋅°F/Btu (IP) 

0.16 m2K/W (SI) 
0.91 h⋅ft2⋅°F/Btu (IP) 

Rout: 6.7 m/s wind 
(Winter) 

0.030 m2K/W (SI) 
0.17 h⋅ft2⋅°F/Btu (IP) 

Rout: 3.4 m/s wind 
(Summer) 

0.044 m2K/W (SI) 
0.25 h⋅ft2⋅°F/Btu (IP) 

We can still sum resistances in series,  
even if it involves different modes of heat transfer 



Convection example 

•  Estimate the convective heat transfer coefficient along a wall 
in the classroom, assuming either forced or natural 
convection 

•  What is the convective resistance of the classroom wall? 

•  How does the convective thermal resistance compare to that 
of insulation in building walls and roofs? 
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How is this helpful to us? 

•  Imagine the classroom wall is being heated by the sun on 
the other side 

•  The exterior surface temperature is 122°F (50°C) 
•  The interior air temperature is 72°F (22°C) 
•  The R-value of the wall is R-13 (IP) (2.29 m2K/W) 
•  What is the interior surface temperature of the wall? 

•  This interior surface temperature impacts the heat flux to 
indoor air, as well as the surrounding surface temperatures 
(via radiation), which all impact the building’s energy balance 
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Internal flows within building HVAC systems 

•  Flows of fluids confined by boundaries (such as the sides of a 
duct) are called internal flows 

•  Mechanisms of convection are different 
–  And so are the equations 
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Forced convection for fully developed turbulent flow 

•  Air through ducts and pipes: 

•  Water flow through pipes: 
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hconv ≈ 8.8
v4

Dh
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Dh = the hydraulic diameter: 4 times the ratio of the flow conduit’s 
cross-sectional area divided by the perimeter of the conduit 

Dh =
4 πD2
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hconv ≈ 3580(1+0.015T )
v4
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Combined convection + conduction: Heat exchangers 

•  Heat exchangers are used widely in buildings 
•  Heat exchangers are devices in which two fluid streams, 

usually separated from each other by a solid wall, exchange 
thermal energy by convection and conduction 
–  One fluid is typically heated, one is typically cooled 

•  Fluids may be gases, liquids, or vapors 
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UoAo =
1

Rconv ,i + Rpipe + Rconv ,o



Heat exchangers 

•  Parallel flow: fluids flowing in the same direction 
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Tcold,in 

Thot,in 

Tcold,out 

Thot,out 

What happens to the two 
temperature profiles? 



Heat exchangers 

•  Counterflow: one fluid flows in the opposite direction 
–  More efficient than parallel flow 
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Tcold,in 

Thot,in 

Tcold,out 

Thot,out 



Heat exchangers:    -NTU method 
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This subject is 
covered in detail 
in CAE 464 
HVAC Design 



Bulk convective heat transfer: Advection 

•  Finally, there is one last type of convection: 
•  Bulk convective heat transfer, or advection, is more direct 

than convection between surfaces and fluids 
•  Bulk convective heat transfer is the transport of heat by fluid 

flow (e.g., air or water) 
–  Fluids, such as air, have the capacity to store heat, so fluids flowing 

into or out of a control volume also carry heat with it 
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Qbulk =m
•

CpΔT [W]=[ kg
s
⋅
J

kg⋅K
⋅K]

m “dot” = mass flow rate of fluid (kg/s) 
Cp = specific heat capacity of fluid [J/(kgK)] 
 


