
CAE 331/513 Building Science Fall 2016

Week 1: August 25, 2016 Review of pre-requisites Energy concepts and unit conversions

Built Environment Research @ III] 🐋 🚓 🆄 📢

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Today's topics

- Review of fundamentals from prerequisite courses
 Energy concepts and unit conversions
- Assign HW #1 (due Tuesday, August 30)

BRIEF REVIEW OF PREREQUISITES

Review of prerequisite topics

- CAE 208: Thermal-fluids engineering 1
 - Basic laws of thermodynamics
 - 1. Conservation of energy
 - 2. Entropy increases
 - Heat energy goes from hot to cold
 - Fluids go from high pressure to low pressure
 - Energy and mass flows and balances
 - Introduction to fluid mechanics
- CAE 209: Thermal-fluids engineering 2
 - Finish fluid mechanics
 - Heat and mass transfer
 - Energy and momentum equations
 - Convection, conduction, and radiation

Bernoulli's principle:

$$\frac{1}{2}\rho v^2 + \rho g z + p = \text{constant}$$

The sum of all forms of energy in a fluid along a streamline is the same at all points along the streamline (e.g., the sum of kinetic, potential and internal energy remains constant)

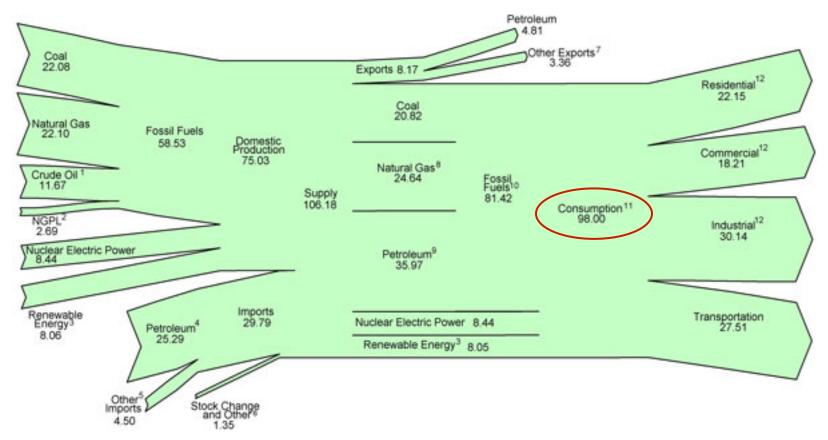
Some very important definitions: Energy

Energy

- Energy is the capacity of a system to do work
 - We use this term a lot
 - Primary units: Joules, kWh or BTU (or MMBTU = 10^{6} BTU)
- Different forms of energy:
 - Thermal, radiative, solar, nuclear, geothermal, hydrocarbon
 - Energy efficiency
 - Energy that is **utilized** versus energy that is **not utilized**
 - Embodied or embedded energy
 - The energy required to extract resources, manufacture, and transport a product
- Energy use depends on the rate of energy use and the time/ duration of operation
 - Rate of energy use = Power

Some very important definitions: Power

Power

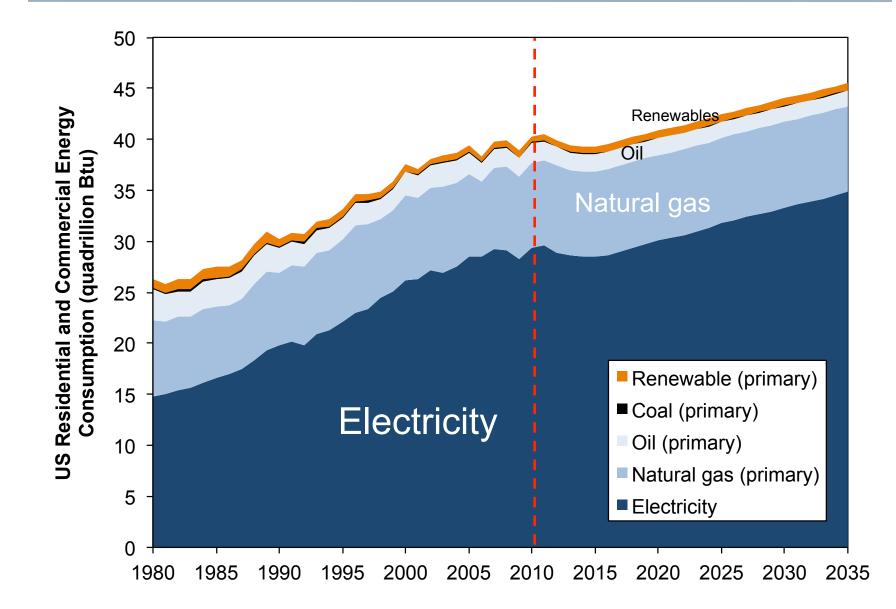

- Power is the rate at which energy is produced or consumed
 - Units are energy per time
 - IP: BTU per hour (BTU/hr) or kBTU per hour (1000 BTU/hr)
 - SI: Watt (W = J/s) or kilowatt (kW = kJ/s) or megawatt (MW = MJ/s)
- Be careful when using units associated with energy and power
 - People often confuse these
- Example: Batteries don't store power; they store energy
 - They release that energy (Watt-hours) at a rate determined by the equipment's power draw (Watts, or amperage)

How much energy does the US use?

Energy and units

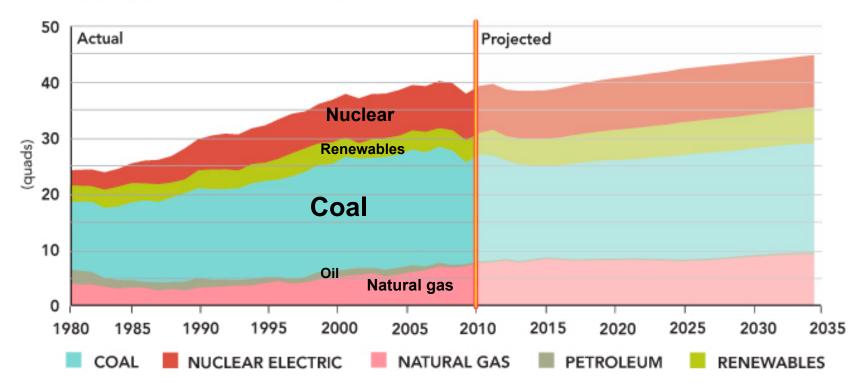
As we just heard, the U.S. uses about **100 Quads** of energy per year

Q1: What is the US annual energy consumption in SI units? (J and kWh) Q2: What is the average power draw per person in the US?

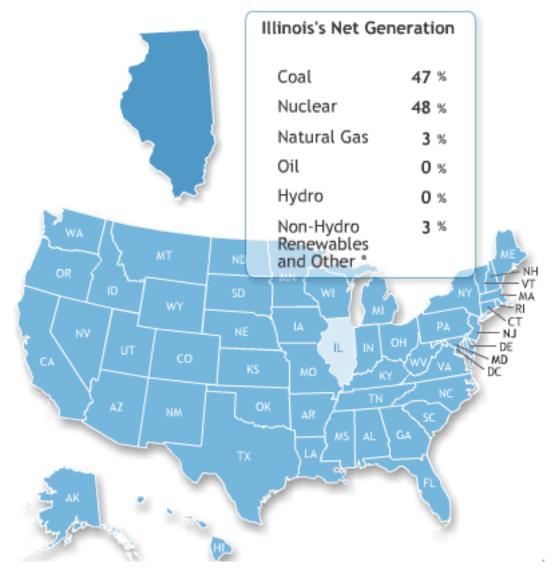

Building energy use

- How do we utilize energy in buildings?
- We burn some fuels directly
 - Natural gas (mostly), oil (much less)
- We burn other fuels to generate electricity
 - Natural gas, coal, nuclear
 - Electric conversion efficiency is not 100%
 - There are also distribution and transmission losses (a few %)
- Renewable sources directly generate electricity as well
- Great resource: The Building Energy Data Book
 - <u>http://buildingsdatabook.eren.doe.gov/</u>

How do we use energy at home?

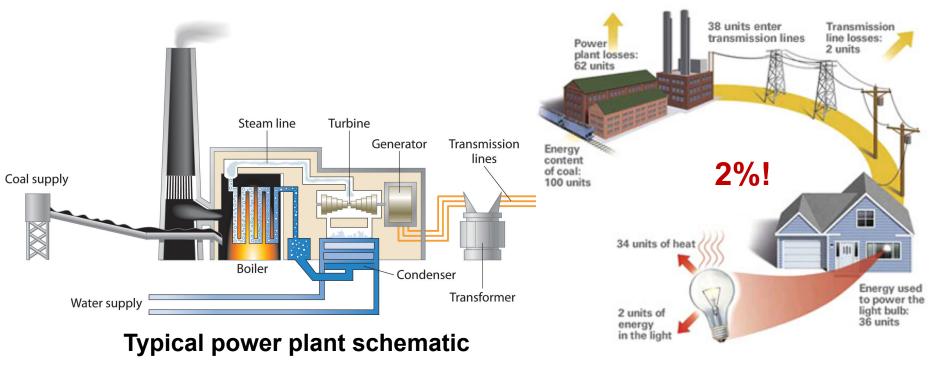

http://www.theatlantic.com/video/archive/2013/08/how-do-we-use-energy-at-home/278439/

US building energy consumption (by fuel)

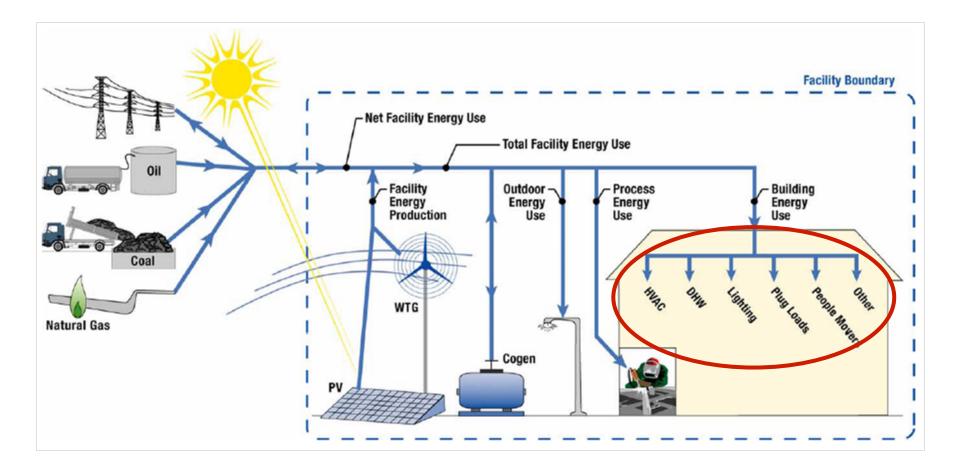


Where do we get our electricity in the U.S.?

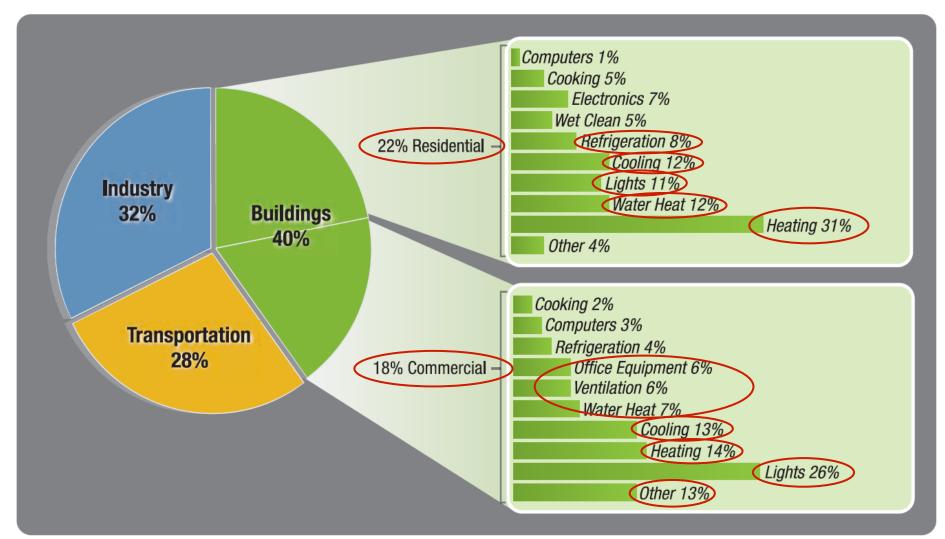
FUELS USED TO GENERATE ELECTRICITY


How does Illinois get its electricity?

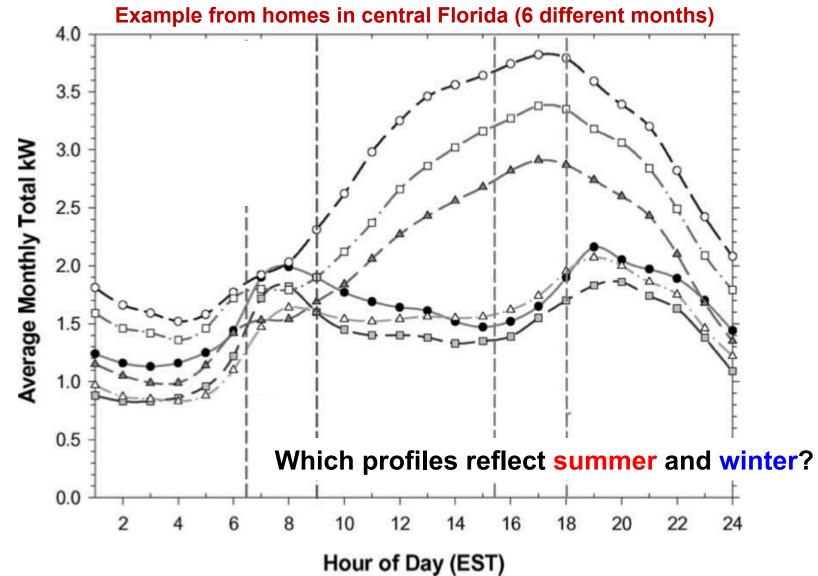
Conversion efficiency for electric generators


1st law of thermodynamics: Energy can be transformed from one form to another, but cannot be created or destroyed

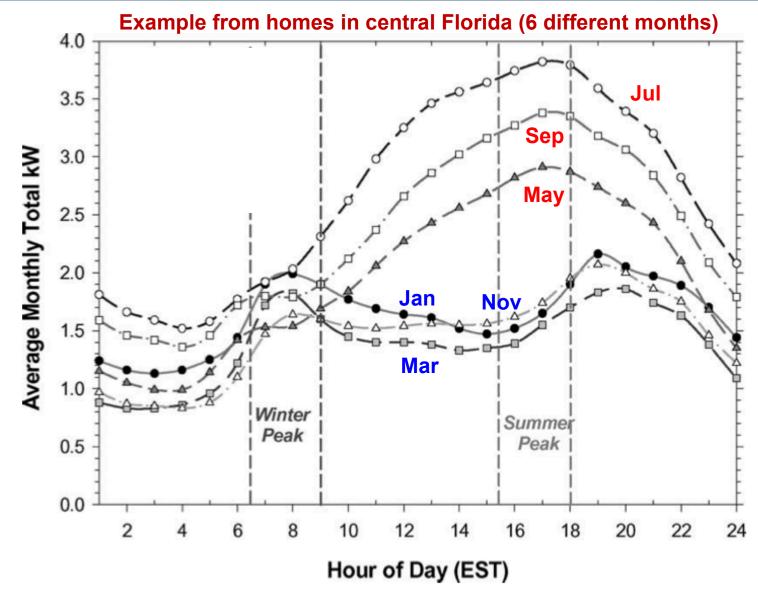
- Q: What is a typical electric power plant efficiency? **30-45%**
- **Q:** What is the "round trip" efficiency for an <u>incandescent light bulb</u>?

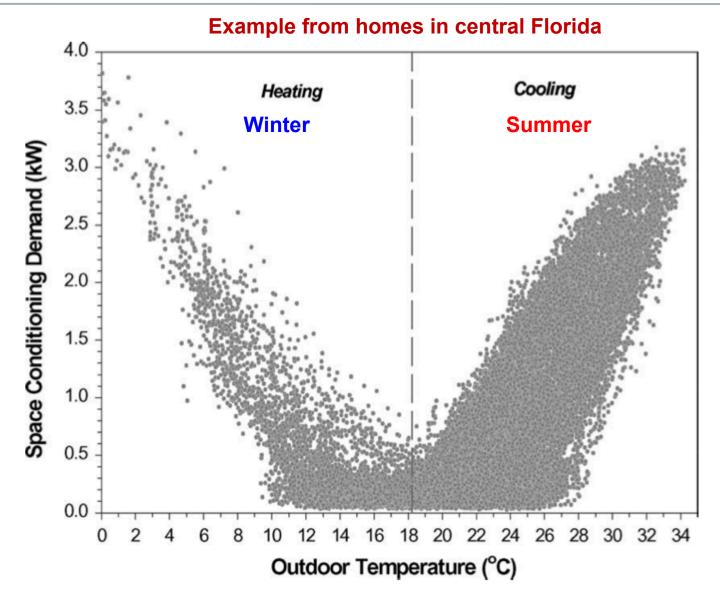

Natural gas used directly in buildings is typically **80-90%** efficient or more 14 http://www.eia.gov/tools/faqs/faq.cfm?id=107&t=3

Building boundaries and energy flows

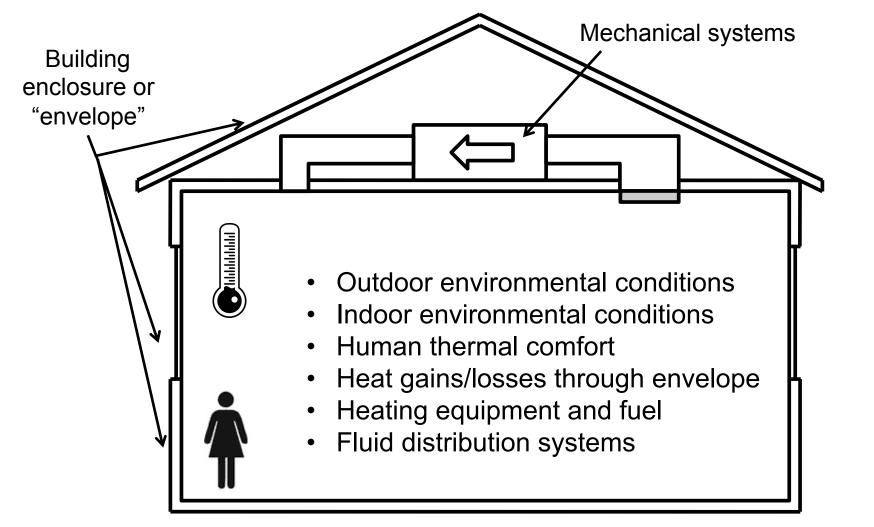


How do buildings use energy?


Figure 1-1 U.S. Primary Energy Consumption, 2005²

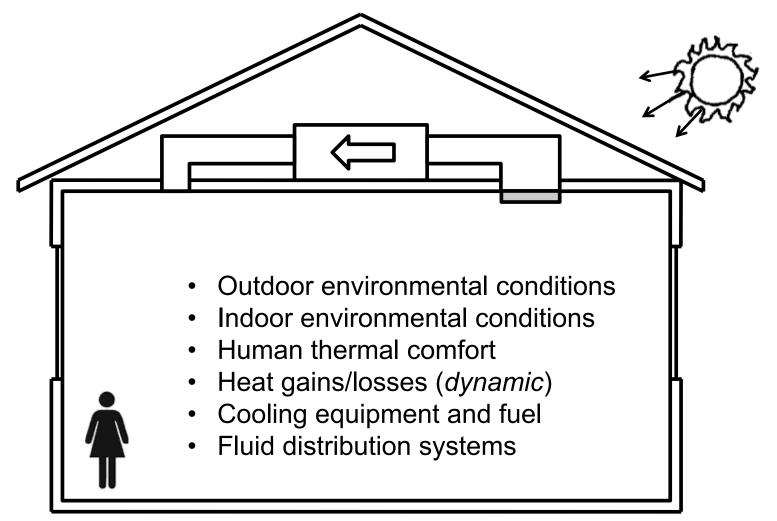

Understanding building energy use: Electricity profiles

Understanding building energy use: Electricity profiles

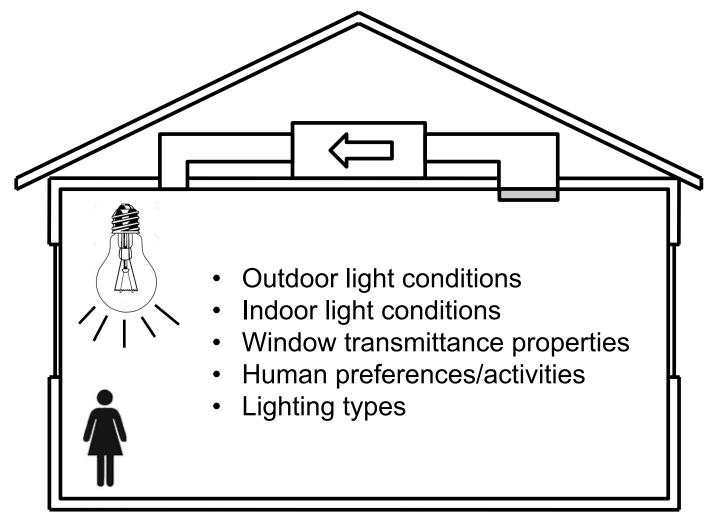


Understanding building energy use: Electricity profiles

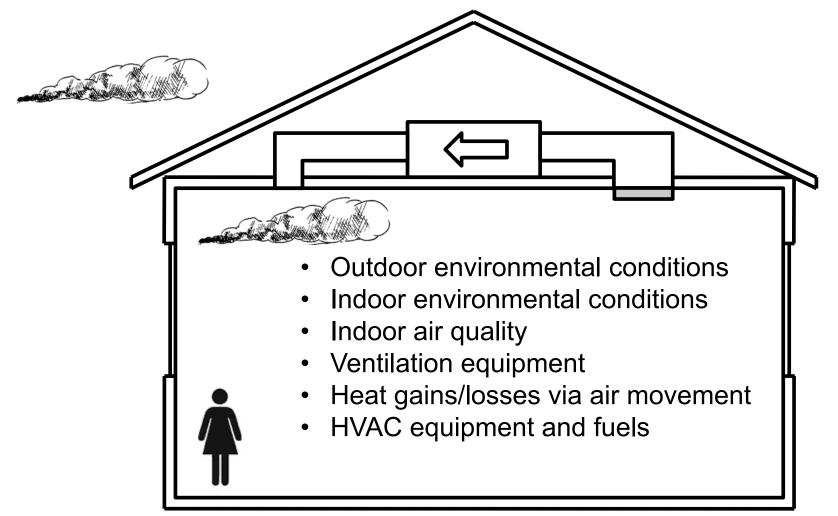
Building energy use: Heating


What do we need to know to understand how buildings <u>heat</u>?

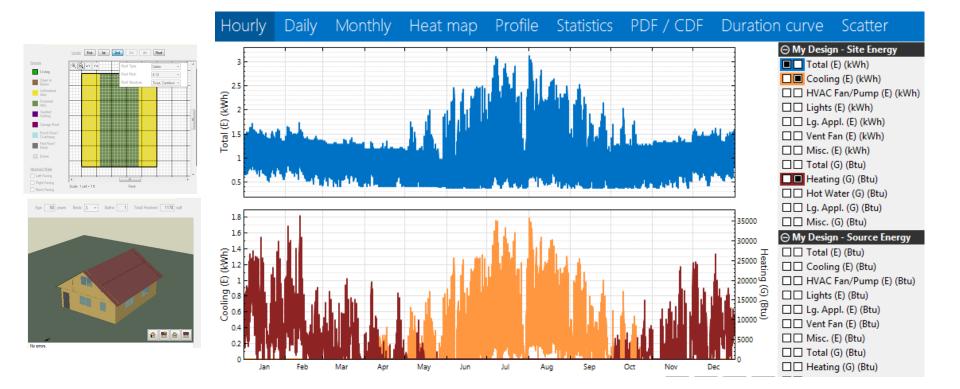
20


Building energy use: Cooling

What do we need to know to understand how buildings cool?

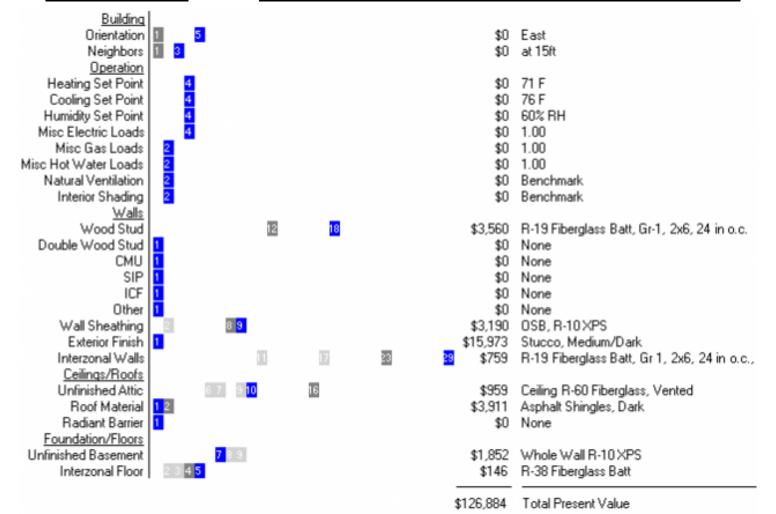

Building energy use: Lighting

What do we need to know to understand lighting?


Building energy use: Ventilation

What do we need to know to understand ventilation?

Understanding building energy use


It all starts with understanding <u>building and material</u> <u>properties</u> and <u>heat and mass transfer processes</u>

If we want to model this building....

Understanding building energy use

It all starts with understanding <u>building and material</u> properties and <u>heat and mass transfer processes</u>

Understanding building energy-related properties

It all starts with understanding <u>building and material</u> <u>properties</u> and <u>heat and mass transfer processes</u>

My Design						
••		Option	R-Assembly [h-ft^2-R/Btu]	Framing Factor	Cost [\$/ft^2 Exterior Wall]	^
Orientation	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1) None	.		L,,	
	1 2 3 4	2) Uninsulated, 2x4, 16 in o.c.	3.6	0.25	\$1.84	
Operation Heating Set Point		3) Uninsulated, 2x6, 24 in o.c.	3.7	0.22	\$1.76	
Cooling Set Point	1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10	4) R-7 Fiberglass Batt, Gr-3, 2x4, 16 in o.c.	8.3	0.25	\$2.41	
Misc Electric Loads	1 2 3 4 5 6 7 8	5) R-7 Fiberglass Batt, Gr-2, 2x4, 16 in o.c.	8.7	0.25	\$2.43	
Misc Gas Loads	1 2 3 4	6) R-7 Fiberglass Batt, Gr-1, 2x4, 16 in o.c.	8.9	0.25	\$2.46	
Misc Hot Water Loads	1 2 3 4	7) R-11 Fiberglass Batt, Gr-3, 2x4, 16 in o.c.	9.6	0.25	\$2,49	
Natural Ventilation	1 2 3 4	8) R-11 Fiberglass Batt, Gr-2, 2x4, 16 in o.c.	10.1	0.25	\$2.51	
Interior Shading	1 2 3 4 5 6	9) R-11 Fiberglass Batt, Gr-1, 2x4, 16 in o.c.	10.5	0.25	\$2.54	
🖨 Walls		10) R-13 Fiberglass Batt, Gr-3, 2x4, 16 in o.c.	10.3	0.25	\$2.53	
Wood Stud	<u>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23</u>	11) R-13 Fiberglass Batt, Gr-2, 2x4, 16 in o.c.	10.9	0.25	\$2.55	
Double Wood Stud	1 2 3 4 5 6 7	12) R-13 Fiberglass Batt, Gr-1, 2x4, 16 in o.c.	11.4	0.25	\$2.58	
CMU SIP	123456	13) R-15 Fiberglass Batt, Gr-3, 2x4, 16 in o.c.	10.9	0.25	\$2.57	
	1 2 3 4 5 6 7 8 9 1 2 3 4	14) R-15 Fiberglass Batt, Gr-2, 2x4, 16 in o.c.	10.9	0.25	\$2.57 \$2.59	
Other	1 2 3 4	15) R-15 Fiberglass Batt, Gr-1, 2x4, 16 in o.c.	11.7	0.25	\$2.62	
Wall Sheathing	1 2 3 4 5 6 7 8 9 10 11 12		12.2			
Exterior Finish		16) R-19 Fiberglass Batt, Gr-3, 2x6, 24 in o.c.		0.22	\$2.58	
Interzonal Walls		17) R-19 Fiberglass Batt, Gr-2, 2x6, 24 in o.c.	14.6	0.22	\$2.60	
E Ceilings/Roofs		18) R-19 Fiberglass Batt, Gr-1, 2x6, 24 in o.c.	15.5	0.22	\$2.62	
Unfinished Attic	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23;	19) R-21 Fiberglass Batt, Gr-3, 2x6, 24 in o.c.	14.6	0.22	\$2.61	
- Roof Material	1 2 3 4 5 6 7 8 9 10 11 12 13	20) R-21 Fiberglass Batt, Gr-2, 2x6, 24 in o.c.	16.1	0.22	\$2.64	
Radiant Barrier	1 2	21) R-21 Fiberglass Batt, Gr-1, 2x6, 24 in o.c.	17.2	0.22	\$2.66	
Foundation/Floors		22) R-13 Cellulose, Gr-3, 2x4, 16 in o.c.	10.3	0.25	\$2.55	
Slab	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	23) R-13 Cellulose, Gr-2, 2x4, 16 in o.c.	10.9	0.25	\$2.57	
Carpet	1 2 3 4 5 6	24) R-13 Cellulose, Gr-1, 2x4, 16 in o.c.	11.4	0.25	\$2.60	
Exterior Wall Mass		25) R-19 Cellulose, Gr-3, 2x6, 24 in o.c.	14.0	0.22	\$2.64	~
		Standard wood stud framed walls with cavity insulat 2x6 cavity), R-values reflect this effect.	ion. When batt insulation m	ust be compressed to fit w	ithin the cavity (e.g. R19 in a 5.	.5'

Understanding building energy-related properties

Window Area Specification	Method: Perc	ent of Net Wa	all Area (floor	to ceiling)	•			
Describe Up To 3 Window	Tumor							
Glass Category	Types	Glass Type	•		Frar	пе Туре		Frame Wd (in)
1: Single Clr/Tint 💌	Single Clear 1/8in	n (1000)		•	Wood/Viny	l, Operable	•	1.50
Window Dimensions, Positi	ons and Quantities	<u></u>					14 4144	
	Typ Window Width (ft)*	Window Ht (ft)	Sill Ht (ft)	North	w (floor to c South	East	West	e):
Window Dimensions, Positi 1:	Typ Window				South			e):
	Typ Window Width (ft)* 2.50 ▼	Ht (ft) 4.25	Ht (ft) 3.00	North	South	East 15.0	West	e):

Understanding building energy-related properties

Area Type		Design Max Occup (sf/person)	Design Ventilation (CFM/per)	Assign First To	Zone(s): Cor Per
L: Corridor	2.4	64	72.73		
2: Lobby (Main Entry and Assembly)	40.2	276	276.73		
3: Office (General)	14.2	388	492.22		
4: Kitchen and Food Preparation	3.7	102	155.03		
5: Storage (Conditioned)	39.5	1,082	1,687.73		
Percent Area Sur	m: 100.0	41	1.276	☑ Show Zone Gro	ıp Screen
			2	Summer/Fall	
Occupancy Profiles by Season Typical Use	Winte	er	5	burniner/ran	

UNITS IN BUILDING SCIENCE AND ARCHITECTURAL ENGINEERING

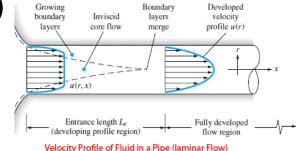
Importance of units

- Units are EVERYTHING in architectural engineering and building science
- Your first HW (assigned today) will cover unit conversions and energy concepts
- If you can understand and convert units, and if you can get a sense of scale and magnitude associated with units, you will be well on your way to becoming a building scientist

Building science units and dimensions

- Within architectural engineering, both SI and IP (inch-pound) units are used
 - I am deeply sorry for that
- IP is dominant in US engineering
 (But changing slowly)
- We will use both in this class
 - So it will be useful to memorize the most commonly used constants and conversion factors between both units

Building science units and dimensions


- Lengths are usually in feet [ft] or meters [m]
- Volumes are usually in cubic feet [ft³] or cubic meters [m³]
- Volumetric flow rates are usually in [ft³/min] (CFM)
 - Sometimes [m³/hr], [m³/s], [L/s]
 - Water flows are often [L/min] (lpm) or [gal/min] (gpm)
- Temperatures are either Fahrenheit [°F] or Celsius [°C]
 - Sometimes Kelvin [K], rarely Rankine [R]
- Velocities are either [ft/s], [m/s], or sometimes [cm/s]
- Concentrations are parts per million [ppm], parts per billion [ppb], or micrograms per cubic meter [µg/m³]
- Mass is typically [lb_m] or [kg]

More building science units

- Energy is usually in [J] or [BTU]
 - Or [kWh] (for electric) or [therms] (for natural gas)
 - 1 kWh = 3412 BTU
 - 1 therm = 10⁵ BTU
 - Or [MMBTU] = "million BTU" = 10^6 BTU
- Power is usually [W = J/s] or [BTU/hr]
 - Tons of refrigeration [1 ton = 12000 BTU/hr = 3412 W]
- Pressure is usually [Pa] or [in-wg or in w.c.] (inches of water)
 - Larger pressures are also [in-Hg] (inches of mercury)
 - Or [psi] (pounds per square inch) for very high pressures

Unit conversion example problem:

Water of density ρ = 62.44 lbm/ft³ (1000 kg/m³) flows at a rate of V = 10 gal/min (0.6308×10⁻³ m³/s) through a pipe of interior diameter D = 1.0 inches (2.54 cm)

Find the velocity pressure, given by the formula:

$$P = \frac{\rho v^2}{2}$$

Provide answer in units of [Pa] and [in-WG]

BB\Handouts\ASHRAE IP-SI Unit Conversions

A	В	C	D	E
1 Enter I-P Number	I-P Unit	SI Conversion	SI Unit	Conversion Factor
2	acre (43,560 ft ²)	0	ha	0.4047
3	acre (43,560 ft2)	r 0	m ²	4046.873
4	atmosphere (standard)	r 0	kPa	101.325
5	bar	r 0	kPa	100
6	barrel (42 U.S. gal, petroleum)	r 0	L	159
7	barrel (42 U.S. gal, petroleum)	r 0	m ³	0.1580987
8	Btu (International Table)	r 0	J	1055.056
9	Btu (thermochemical)	r 0	J	1054.35
10	Btu/ft ² (International Table)	r 0	J/m ²	11,356.53
11	Btu/ft ² (International Table)	r 0	J/m ³	37,258.95
12	Btu/gal	r 0	J/m ³	278,717.18
13	Btu-ft/h-ft ¹ -°F	r 0	W/(m·K)	1.730735
4	Btu·in/h·ft ² ·°F (thermal conductivity k).	r 0	W/(m·K)	0.1442279
15	Btu/h		W	0.2930711
16	Btu/h-ft	r 0	W/m ²	3.154591
17	Btu/h-ft ² - ^o F (overall heat transfer coefficient v)	r 0	$W/(m^2 \cdot K)$	5.678263
8	Btu/lb	r 0	kJ/kg	2.326
19	Btu/lb °F (specific heat c_p)		kJ/(kg·K)	4.1868
20	bushel (dry, U.S.)	r 0	m ³	0.0352394
21	calorie (thermochemical)		J	4.184
22	centipoise (dynamic viscosity µ)		mPa·s	1
23	centistokes (kinematic viscosity v)		mm ² /s	1
24	clo		(m ² ·K)/W	0.155
25	dyne		N	1.00E-05
26	dyne/cm ²		Pa	0,1
27	EDR hot water (150 Btu/h)		W	43.9606
.8	EDR steam (240 Btu/h)		W	70.33706
29	EER		COP	0.293
10	ft		m	0.3048
31	ft		mm	304.8
2	ft/min, fpm		m/s	0.00508
3	ft/s, fps		m/s	0.3048
4	ft of water		Pa	2989
15	ft of water per 100 ft pipe		Pa/m	98.1
6	ft ²		m ²	0.092903
37	ft ² ·h·°F/Btu (thermal resistance <i>R</i>)		(m ² ·K)/W	0.092903

Order of magnitude example problem:

- How long would you have to operate a 60 W light bulb immersed in a bathtub to warm up the water by 1 degree C (1.8 degree F), assuming there are no losses?
 - Do not try this at home

Internal energy: $E = mC_pT$ E = internal energy (J) $C_p = heat capacity (J/kg/K)$ T = temperature (K)

Order of magnitude example problem:

 From what height would you have to jump into the same bathtub to warm up the water the same amount, assuming that all of the kinetic energy from the jump goes into heating the water (again, there are no losses)?

Work = change in energy

Work = force x distance

Change in energy = gravitational force x height

 $\Delta E = mgh$

MOVING FORWARD

HW #1 due next week

- HW 1 is now available on blackboard
- Due Tuesday, August 30

Next time

• Beginning heat transfer in buildings