CAE 208 / MMAE 320: Thermodynamics Fall 2023

November 30, 2023
 Vapor compression cycles (2)

Built
Environment
Research
@ IIT

Advancing energy, environmental, and
sustainability research within the built environment www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 10 is posted (Due 12/01/23 for those who need to submit it).
- We will talk about the bonus activity and the exam at the end of the class

RECAP

Recap

- For steady flow:

$$
w_{r e v}=-\int_{1}^{2} v d P-\Delta k e-\Delta p e
$$

(a) Steady-flow system

- For a closed system:

$$
w_{r e v}=\int_{1}^{2} P d v
$$

(b) Closed system

Recap

- Steady-flow devices (when the process is reversible): D Deliver the most work
\square Consume the least work

Recap

- Property diagrams such as T-s and P-V diagrams can serve as valuable aids in understanding and analysis of thermodynamics process:

Recap

- We looked at the heat pump and vapor compression cycles:

Recap

- The Carnot cycle includes:

Recap

- The Carnot cycle includes:

Recap

- P-h diagram is very helpful in analyzing the performance:

Recap

- P-h diagram is very helpful in analyzing the performance:

$$
\begin{gathered}
\operatorname{COP}_{H P}=\frac{q_{H}}{w_{n e t, i n}}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}} \\
\operatorname{COP} P_{R}=\frac{q_{L}}{w_{n e t, i n}}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}
\end{gathered}
$$

Recap

- P-h diagram for R-134a (ASHRAE)

Fig. 8 Pressure-Enthalpy Diagram for Refrigerant 134a

Recap

- P-h diagram for R-134a (ASHRAE)

Recap

- P-h diagram for R-134a (Figure A-14)

Recap

- Different vapor compression cycles

Ideal (Carnot)
Practical / Ideal
Actual

CLASS ACTIVITY

Class Activity

- A refrigerator uses refrigerant 134-a as the working fluid and operates on a practical/ideal vapor-compression cycle between 0.14 and 0.8 MPa . If the mass flow rate of the refrigerant is $0.05 \mathrm{~kg} / \mathrm{s}$, determine
a) The rate of heat removal from the refrigerated space and the power input to the compressor
b) The rate of heat rejection to the environment
c) The COP of the refrigerator

Class Activity

- Solution (assumption):
\square Steady operating condition exist
Kinetic and potential energy are negligible
- Understanding the states:

Class Activity

- Solution: Reading properties from the tables:

$$
\left\{\begin{array}{l}
P_{1}=0.14 \mathrm{MPa} \rightarrow h_{1}=h_{g @ 0.14 \mathrm{MPa}}=239.19 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
s_{1}=s_{g @ 0.14 \mathrm{MPa}}=0.94467 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{array}\right.
$$

TABLE A-12												
Saturated refrigerant-134a-Pressure table												
			volume kg		ternal en kJ/kg			Enthalp $\mathrm{kJ} / \mathrm{kg}$			Entro $\mathrm{kJ} / \mathrm{kg}$	
Press., P kPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	$\begin{aligned} & \text { Evap., } \\ & h_{f g} \end{aligned}$	Sat. vapor, h_{g}	Sat. liquid, s_{f}	$\begin{aligned} & \text { Evap., } \\ & s_{f g} \end{aligned}$	Sat. vapor, s_{g}
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.96445
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.96047
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47	0.04707	0.91009	0.95716
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04	0.06003	0.89431	0.95434
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46	0.07182	0.88008	0.95191
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.94789
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.94467

Class Activity

- Solution: Reading properties from the tables:

$$
\left\{\begin{array}{l}
P_{3}=0.8 \mathrm{MPa} \\
s_{2}=s_{1}=0.94467 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{array} \rightarrow \quad h_{2}=275.40 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

Class Activity

- Solution: Reading properties from the tables:

$$
P_{3}=0.8 \mathrm{MPa} \rightarrow h_{3}=h_{f @ 0.8 \mathrm{MPa}}=95.48 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

TABLE A-12									
Saturated refrigerant-134a-Pressure table									
		Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy,$\mathrm{kJ} / \mathrm{kg}$			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$		
Press., P kPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}
650	24.20	0.0008265	0.031680	84.72	158.51	243.23	85.26	178.56	263.82
700	26.69	0.0008331	0.029392	88.24	156.27	244.51	88.82	176.26	265.08
750	29.06	0.0008395	0.027398	91.59	154.11	245.70	92.22	174.03	266.25
800	31.31	0.0008457	0.025645	94.80	152.02	246.82	95.48	171.86	267.34
850	33.45	0.0008519	0.024091	97.88	150.00	247.88	98.61	169.75	268.36
900	35.51	0.0008580	0.022703	100.84	148.03	248.88	101.62	167.69	269.31

$$
h_{4} \cong h_{3}(\text { throttling }) \rightarrow h_{4}=95.48 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Class Activity

- Solution (a): The rate of heat removal from the refrigerated space and the power input to the compressor is

$$
\begin{aligned}
& \dot{Q}_{L}=\dot{m}\left(h_{1}-h_{4}\right)=\left(0.05 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left((239.19-95.48) \frac{\mathrm{kJ}}{\mathrm{~kg}}\right)=7.19 \mathrm{~kW} \\
& \dot{W}_{\text {in }}=\dot{m}\left(h_{2}-h_{1}\right)=\left(0.05 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left((275.40-239.19) \frac{\mathrm{kJ}}{\mathrm{~kg}}\right)=1.18 \mathrm{~kW}
\end{aligned}
$$

Class Activity

- Solution (b): The rate of heat rejection from the refrigerant to the environment is:

$$
\begin{aligned}
& \dot{Q}_{H}=\dot{m}\left(h_{2}-h_{3}\right)=\left(0.05 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left((275.40-95.48) \frac{\mathrm{kJ}}{\mathrm{~kg}}\right)=9.00 \mathrm{~kW} \\
& \dot{Q}_{H}=\dot{Q}_{L}+\dot{W}_{i n}=7.19+1.81=9.00 \mathrm{~kW}
\end{aligned}
$$

Class Activity

- Solution (c): The coefficient of performance of the refrigerator is:

$$
C O P_{R}=\frac{\dot{Q}_{L}}{\dot{W}_{i n}}=\frac{7.19 \mathrm{~kW}}{1.81 \mathrm{~kW}}=3.97
$$

ACTUAL VAPOR-COMPRESSION REFRIGERATION CYCLE (SECTION 9-17)

Actual Vapor-Compression Refrigeration Cycle

- An actual vapor-compression refrigeration cycle varies from the ideal one because of two common sources of irreversibilities:

CLASS ACTIVITY

Class Activity

- (The actual vapor-compression refrigeration cycle almost similar inputs to the previous class activity): Refrigerant 134-a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and $-10^{\circ} \mathrm{C}$ at a rate of 0.05 kg / s and leaves at 0.8 MPa and $50^{\circ} \mathrm{C}$. The refrigerant is cooled in the condenser to $26^{\circ} \mathrm{C}$ and 0.72 MPa and is throttled to 0.15 MPa . Disregarding any heat transfer and pressure drops in the connecting lines between the components determine
a) The rate of heat removal from the refrigerated space and the power pressure drops in the connecting lines between the components
b) The isentropic efficiency of the compressor
c) The coefficient of performance of the refrigerator

Class Activity

- Solution (assumption):
- Steady operating condition exist
\square Kinetic and potential energy are negligible

Class Activity

- Solution (T-s diagram)

Class Activity

- Solution (Tables and Calculations):

$$
\left\{\begin{array}{l}
P_{1}=0.14 \mathrm{MPa} \\
T_{1}=-10^{\circ} \mathrm{C}
\end{array} \rightarrow \quad h_{1}=246.37 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

TABLE A-12									
Saturated refrigerant-134a-Pressure table									
			olume, kg		ternal en $\mathrm{kJ} / \mathrm{kg}$			Enthalp $\mathrm{kJ} / \mathrm{kg}$	
Press. P kPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19

	TABLE A-13			
	Superheated refrigerant-134a			
	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h kJ/kg	$\begin{aligned} & s \\ & \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \end{aligned}$
	$P=0.14 \mathrm{MPa}\left(T_{\text {sat }}=-18.77^{\circ} \mathrm{C}\right)$			
Sat.	0.14020	219.56	239.19	0.9447
-20	0.14605	225.93	246.37	0.9724
-10	0.15263	233.25	254.61	1.0032

Class Activity

- Solution (Tables and Calculations):

$$
\left\{\begin{array}{l}
P_{1}=0.14 M P a \\
T_{1}=-10^{\circ} \mathrm{C}
\end{array} \rightarrow \quad h_{1}=246.37 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

$$
\left\{\begin{array}{l}
P_{2}=0.8 \mathrm{MPa} \\
T_{2}=-50^{\circ} \mathrm{C}
\end{array} \quad \rightarrow \quad h_{2}=286.71 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

$$
\left\{\begin{array}{c}
P_{3}=0.72 \mathrm{MPa} \\
T_{3}=26^{\circ} \mathrm{C}
\end{array} \quad \rightarrow \quad h_{3} \cong h_{f @ 26^{\circ} \mathrm{C}}=87.83 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

$$
\left\{h_{4} \cong h_{3}=87.83 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

Class Activity

- Solution (a): The rate of heat removal from the refrigerated space and the power input to the compressor are:

$$
\begin{aligned}
& \dot{Q}_{L}=\dot{m}\left(h_{1}-h_{4}\right)=\left(0.05 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left((246.37-87.83) \frac{\mathrm{kJ}}{\mathrm{~kg}}\right)=7.93 \mathrm{~kW} \\
& \dot{W}_{\text {in }}=\dot{m}\left(h_{2}-h_{1}\right)=\left(0.05 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left((286.71-246.37) \frac{\mathrm{kJ}}{\mathrm{~kg}}\right)=2.02 \mathrm{~kW}
\end{aligned}
$$

Class Activity

- Solution (b): The isentropic efficiency of the compressor is determined from:

$$
\eta_{C} \cong \frac{h_{2 s}-h_{1}}{h_{2}-h_{1}}
$$

- Where the enthalpy at state $2 s\left(P_{2 s}=0.8 \mathrm{MPa}\right.$ and $s_{2 s}=$ $\left.s_{1}=0.9724 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}\right)$ is $284.20 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$. Thus:

$$
\eta_{C} \cong \frac{284.20-246.37}{286.71-246.37}=0.938 \text { or } 93.8 \%
$$

Class Activity

- Solution (c): The coefficient of performance of the refrigerator is:

$$
\operatorname{COP}_{R}=\frac{\dot{Q}_{L}}{\dot{W}_{i n}}=\frac{7.93 \mathrm{~kW}}{2.02 \mathrm{~kW}}=3.93
$$

CLASS ACTIVITY

Class Activity

- What is the maximum theoretical COP of a refrigeration device operating between $0^{\circ} \mathrm{F}$ and $75^{\circ} \mathrm{F}$?

Class Activity

- Solution: The maximum theoretical Coefficient of Performance is the Carnot COP
- Make sure to use the absolute temperatures:
$\square^{\circ} \mathrm{C}+273=\mathrm{K}$ (Kelvin)
$\square^{\circ} \mathrm{F}+460=\mathrm{R}$ (Rankine)

$$
\text { COP }_{\text {carnot }, \text { cooling }}=\left(\frac{T_{\text {evap }}}{T_{\text {cond }}-T_{\text {evap }}}\right)=\frac{460 R}{75 R}=6.13
$$

CLASS ACTIVITY

Class Activity

- Refrigerant 134a enters an evaporator at $-20^{\circ} \mathrm{F}$ and 0.3 quality at a mass flow rate of $1 \mathrm{~kg} / \mathrm{s}$. Compute the cooling capacity of the evaporator in kilowatts, if the refrigerant leaves as saturated vapor at $-20^{\circ} \mathrm{F}$.

Class Activity

- Solution: From the problem statement:
- $T_{\text {evap }}=-20^{\circ} \mathrm{F}$
- $\dot{m}=1 \frac{\mathrm{~kg}}{\mathrm{~s}}=132.3 \frac{\mathrm{lbm}}{\min }$
$\square X_{\text {evap }_{\text {in }}}=0.3$

Class Activity

- Solution: From our knowledge of a vapor compression cycle:
$\square X_{\text {evap }_{\text {out }}}=1$
$\square h_{\text {evap }_{\text {out }}}=100.054 \frac{\mathrm{Btu}}{\mathrm{lbm}}$
$\square h_{\text {evap }_{i n}}=0.3(100.054)+0.7(5.991)=34.21 \frac{B t u}{l b m}$

Class Activity

- Solution: Overall heat transfer of the evaporator:

$$
\begin{aligned}
& \dot{Q}_{\text {evap }}=\dot{m}\left(h_{\text {evap, out }}-h_{\text {evap }, \text { in }}\right)= 132.3 \frac{\mathrm{lbm}}{\mathrm{~min}}\left(65.844 \frac{\mathrm{Btu}}{\mathrm{lbm}}\right)\left(60 \frac{\mathrm{~min}}{\mathrm{hr}}\right) \\
&= 522,669.7 \frac{\mathrm{Btu}}{\mathrm{hr}} \\
& \dot{Q}_{\text {evap }}=522,669.7 \frac{\mathrm{Btu}}{\mathrm{hr}} \times \frac{1 \mathrm{~kW}}{3,412 \frac{\mathrm{Btu}}{\mathrm{hr}}}=153.2 \mathrm{~kW}
\end{aligned}
$$

QUIZ

EXAM

Exam

- Date: December 6, 2023
- Time: 8 am to 10 am
- Location: WH 116 (Our class location)
- Review the previous final exam
- Similar to the previous midterm exams but longer since we have two hours
- Remember the best of two exams out of three will be used

Exam

- Closed Book:
\square Three papers (two papers from the first two midterms plus a new paper for the content after the midterm exam 2)
\square All the content covered in this semester
\square Calculator is also allowed
- Open Book:
\square Calculator is also allowed
\square Only the thermodynamics or thermal-science book (or the thermodynamics tables)
\square More focus on the content after exam 2 plus a detailed property table / property diagram question

BONUS ACTIVITY

Bonus Activity

- The bonus activities document is posted:
\square Please pay attention to the deadlines and also the updates about this task
\square An idea submission by the end of today - the link will disappear
If you need anything to purchase let me know
You can use the Idea Shop or the Machine Shop
\square If you are planning to write codes, no need to submit a report (Just add comments as much as possible and submit your codes or Jupiter Notebooks)
\square For the case of a hands-on activity, recording a short video would be great to demonstrate the process of you would use it and also document the process similar to these Instructable DIYs: https://www.instructables.com/

EXTRA SOLVED PROBLEM (1)

Extra Solved Problem (1)

- A heat pump operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The condenser operates at 1000 kPa and the evaporator at 200 kPa . Determine this system's COP and the rate of heat supplied to the evaporator when the compressor consumes 6 kW .

Extra Solved Problem (1)

- Solution (assumptions):
\square Steady operating conditions exist
-Kinetic and potential energy changes are negligible

Extra Solved Problem (1)

- Solution (using Tables A-11, A-12, and A-13):

$$
\left.\begin{array}{l}
\left\{\begin{array}{c}
\begin{array}{c}
P_{1}=200 \mathrm{kPa} \\
\text { sat.vapor }
\end{array} \rightarrow \begin{array}{c}
h_{1}=h_{g @ 200 \mathrm{kPa}}=244.50 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array} \\
s_{1}=s_{g} @ 200 \mathrm{kPa}=0.93788 \frac{\mathrm{kj}}{\mathrm{~kg}-\mathrm{K}}
\end{array}\right. \\
\left\{\begin{array}{c}
\mathrm{P}_{2}=1000 \mathrm{kPa} \\
s_{1}=s_{2}
\end{array} \rightarrow h_{2}=278.07 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right. \\
\left\{\begin{array}{c}
P_{3}=1000 \mathrm{kPa} \\
\text { sat. liquid }
\end{array} \rightarrow h_{3}=h_{f @ 1000 \mathrm{kPa}}=107.34 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
\end{array}\right\} \begin{aligned}
& h_{4}=h_{3}=107.34 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

Extra Solved Problem (1)

- Solution (using equations):

$$
\begin{aligned}
& \dot{W}_{\text {in }}=\dot{m}\left(h_{2}-h_{1}\right) \rightarrow \dot{m}=\frac{\dot{W}_{i n}}{\left(h_{2}-h_{1}\right)}=\frac{6 \frac{\mathrm{kj}}{\mathrm{~s}}}{(278.07-244.50) \frac{\mathrm{kJ}}{\mathrm{~kg}}}=0.1787 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \dot{Q}_{L}=\dot{m}\left(h_{1}-h_{4}\right)=\left(0.1787 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)(244.50-107.34) \frac{\mathrm{kj}}{\mathrm{~kg}}=24.5 \mathrm{~kW} \\
& \operatorname{COP}_{H P}=\frac{q_{H}}{w_{i n}}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}}=\frac{278.07-107.34}{278.07-244.50}=5.09
\end{aligned}
$$

EXTRA SOLVED PROBLEM (2)

Extra Solved Problem (2)

- A refrigerator operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The condenser operates at 300 psia and the evaporator at $20^{\circ} \mathrm{F}$. If an adiabatic, reversible expansion device were available and used to expand the liquid leaving the condenser, how much would the COP improve by using this device instead of the throttle device?

Extra Solved Problem (2)

- Solution (assumptions):
\square Steady operating conditions exist
\square Kinetic and potential energy changes are negligible

Extra Solved Problem (2)

- Solution (using Tables A-11E, A-12E, and A-13E):

$$
\begin{aligned}
& \left\{\begin{array}{l}
T_{1}=20^{\circ} \mathrm{F} \\
\text { sat.vapor }
\end{array} \rightarrow \quad h_{1}=h_{g @ 20^{\circ} \mathrm{F}}=106.00 \frac{\mathrm{Btu}}{\mathrm{lbm}}, ~ s_{1}=s_{g @ 20^{\circ} \mathrm{F}}=0.22345 \frac{\mathrm{kj}}{\mathrm{~kg}-\mathrm{K}}\right. \\
& \left\{\begin{array}{c}
P_{2}=300 \mathrm{psi} \\
s_{1}=s_{2}
\end{array} \rightarrow \quad h_{2}=125.70 \frac{\mathrm{Btu}}{\mathrm{lbm}}\right. \\
& \left\{\begin{array}{c}
\\
P_{3}=300 \text { psia } \\
\text { sat.liquid }
\end{array} \rightarrow \begin{array}{c}
h_{3}=h_{f @ 300} \text { psia }=66.347 \frac{\mathrm{Btu}}{\mathrm{lbm}} \\
\\
s_{3}=s_{f} @ 300 \text { psia }=0.12717 \frac{\mathrm{Btu}}{\mathrm{lbm}-R}
\end{array}\right. \\
& \left\{\begin{array}{c}
h_{4}=h_{3}=66.347 \frac{\mathrm{Btu}}{\mathrm{lbm}} \\
T_{4}=20^{\circ} \mathrm{F} \rightarrow h_{4 s}=59.81 \frac{\mathrm{Btu}}{\mathrm{lbm}}
\end{array}\right. \\
& s_{4}=s_{3} \quad \rightarrow \quad x_{4 s}=0.4724
\end{aligned}
$$

Extra Solved Problem (2)

- Solution (equations):

$$
\begin{aligned}
& C O P_{R}=\frac{q_{L}}{w_{\text {in }}}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{106.00-66.347}{125.70-106.00}=2.103 \\
& C O P_{R \text { isentropic }}=\frac{q_{L_{-} \text {isentropic }}}{w_{\text {in }}}=\frac{h_{1}-h_{4 s}}{h_{2}-h_{1}}=\frac{106.00-59.81}{125.70-106.00}=2.344
\end{aligned}
$$

Percent Increase in $C O P=\frac{2.344-3.013}{2.013}=16.5 \%$

