CAE 208 / MMAE 320: Thermodynamics Fall 2023

November 21, 2023
 Entropy (3)

Built
Environment
Research
@ IIT

Advancing energy, environmental, and
sustainability research within the built environment www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Exam 2 solutions are posted
- Assignment 9 is posted (2-3 days more extension is fine to submit it on Friday or the weekend after the Thanksgiving)
- I will post assignment 10 due 12/01/23 (those who need to submit it)
- The bonus activities document is posted. Please pay attention to the deadlines and also the updates about this task (an idea submission by the 11/29/2023 is required)

RECAP

Recap

- The equality in the Clausius inequality holds for totally or jut internally reversible cycles and the inequality for the irreversible ones:

$$
\left(\oint \frac{\delta Q}{T}\right)_{\text {int }, \text { rev }}=0
$$

Recap

- A special case: Internally reversible isothermal heat transfer processes:

$$
\Delta S=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{i n t, r e v}=\int_{1}^{2}\left(\frac{\delta Q}{T_{0}}\right)_{i n t, r e v}=\frac{1}{T_{0}} \int_{1}^{2} \delta Q_{i n t, r e v}
$$

$$
\Delta S_{\text {isothermal }}=\frac{Q}{T_{0}} \quad\left(\frac{k J}{K}\right)
$$

Recap

- Entropy is a property:

Recap

- For entropy, we can say "the increase of entropy principle":

$$
\begin{aligned}
& \oint_{1}^{2} \frac{\delta Q}{T} \leq \Delta S \\
& \Delta S_{s y s}=S_{2}-S_{1}=\oint_{1}^{2} \frac{\delta Q}{T}+S_{g e n}
\end{aligned}
$$

$\Delta S_{\text {isolated }} \geq 0$

Recap

- For an isolated system:

$$
S_{\text {gen }}=\Delta S_{\text {total }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }} \geq 0
$$

$$
S_{g e n}=\left\{\begin{array}{cc}
>0 . & \text { irreversible proces } \\
=0 \quad \text { reversible process } \\
<0 . & \text { impossible process }
\end{array}\right.
$$

Recap

- The entropy of a fixed mass can be changed by: - Heat Transfer
\square Irreversibilities
- Entropy of a fixed mass does not change during a process that is internally reversible and adiabatic. During this process entropy remains constant and we call it isentropic process

$$
\Delta s=0 \text { or } s_{2}=s_{1} \quad\left(\frac{k J}{k g-K)}\right.
$$

Recap

- We can rearrange our entropy equation:

$$
\delta Q_{i n t, r e v}=T d S
$$

$$
Q_{i n t, r e v}=\int_{1}^{2} T d S \quad(k J)
$$

(The area under the process curve on a T-S diagram represents heat transfer during an internally reversible process)

WHAT IS ENTROPY

What Is Entropy

- Entropy can be viewed as a measure of molecular disorder or molecular randomness (lowest in solid phase and highest in the gas phase)

What Is Entropy

- Oscillations in solid phase fade as temperature is decreased, and the molecules supposedly become motionless at absolute zero. This represents a state of ultimate molecular order (and minimum energy).
- The entropy of a pure crystalline substance at absolute zero temperature is zero since there is no uncertainty about the state of the molecules at that instant (3rd law of thermodynamics)

What Is Entropy

- The third law of thermodynamics provide an absolute reference point for the determination of entropy
- The entropy determined relative to this point is called absolute entropy and it is extremely useful in the thermodynamics analysis of entropy
- The entropy of a substance that is not pure crystalline (such as a solid solution) is not zero at absolute zero temperature

What Is Entropy

- A few examples:

THE T DS RELATIONS

The T ds Relations

- The first T ds (or Gibbs) equation (closed stationary system):

$$
\begin{align*}
& \delta Q_{\text {int,rev }}-\delta W_{\text {int,rev,out }}=d U \\
& \tag{kJ}\\
& \begin{array}{l}
T d S=d U+P d V \\
\\
\text { int,rev }
\end{array}=T d s \\
& \\
& \delta W_{\text {int }, \text { rev,out }}=P d V \\
& \\
& \\
& \\
& \left.\begin{array}{l}
T d s=d u+P d v \quad\left(\frac{k J}{k g}\right) \\
h=d u+P d v \\
h=u+P v \rightarrow d h=d u+P d v+v d P
\end{array}\right\} \rightarrow T d s=d h-v d P
\end{align*}
$$

The T ds Relations

- Use the first T ds (or Gibbs) equation to solve for entropy changes

$$
\begin{aligned}
& d s=\frac{d u}{T}+\frac{P d v}{T} \\
& d s=\frac{d h}{T}-\frac{v d P}{T}
\end{aligned}
$$

$$
\begin{aligned}
& T d s=d u+P d \cup \\
& T d s=d h-\cup d P
\end{aligned}
$$

ENTROPY CHANGE OF LIQUIDS AND SOLIDS

Entropy Change of Liquids and Solids

- Liquids and solids can be approximated as incompressible substances ($d v \cong 0 \& c_{p}=c_{v}=c_{p}=c$):

$$
\begin{aligned}
& d s=\frac{d h}{T}-\frac{v d P}{T} \\
& s_{2}-s_{1}=\int_{1}^{2} c(T) \frac{d T}{T} \cong c_{\text {avg }} \ln \left(\frac{T_{2}}{T_{1}}\right) \\
& s_{2}-s_{1}=\int_{1}^{2} c(T) \frac{d T}{T} \cong c_{\text {avg }} \ln \left(\frac{T_{2}}{T_{1}}\right)=0 \quad \rightarrow \quad T_{2}=T_{1}
\end{aligned}
$$

(For isentropic)

THE ENTROPY CHANGE OF IDEAL GASES

The Entropy Change of Ideal Gases

- For gases, we can write:

$$
\begin{aligned}
& d s=\frac{d u}{T}+\frac{P d v}{T}=c_{v} \frac{d T}{T}+R \frac{d v}{v} \\
& s_{2}-s_{1}=\int_{1}^{2} c_{v}(T) \frac{d T}{T}+R \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& s_{2}-s_{1}=\int_{1}^{2} c_{p}(T) \frac{d T}{T}+R \ln \left(\frac{P_{2}}{P_{1}}\right)
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis):

$$
\begin{gathered}
s_{2}-s_{1}=\int_{1}^{2} c_{v}(T) \frac{d T}{T}+R \ln \left(\frac{v_{2}}{v_{1}}\right) \\
s_{2}-s_{1}=c_{v, a v g} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \times \ln \left(\frac{v_{2}}{v_{1}}\right)
\end{gathered}
$$

$$
\left\{\begin{array}{rl}
d h & =c_{p} d T \\
v & =\frac{R T}{P}
\end{array} \rightarrow s_{2}-s_{1}=c_{p, a v g} \times \ln \left(\frac{T_{2}}{T_{1}}\right)-R \times \ln \left(\frac{P_{2}}{P_{1}}\right)\right.
$$

The Entropy Change of Ideal Gases

- Approach 2: Variable Specific Heats (Exact Analysis):

$$
\begin{aligned}
& s^{0}=\int_{0}^{T} c_{p}(T) \frac{d T}{T} \\
& \int_{0}^{T} c_{p}(T) \frac{d T}{T}=s_{2}^{0}-s_{1}^{0}
\end{aligned}
$$

$$
s_{2}-s_{1}=s_{2}^{0}-s_{1}^{0}-R \times \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

$$
\overline{s_{2}}-\overline{s_{1}}=\overline{s_{2}^{0}}-\overline{s_{1}^{0}}-R_{u} \times \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

The Entropy Change of Ideal Gases

- Approach 2: Variable Specific Heats (Exact Analysis):

CLASS ACTIVITY

Class Activity

- Air is compressed from an initial state of 100 kPa and $17^{\circ} \mathrm{C}$ to a final state of 600 kPa and $57^{\circ} \mathrm{C}$. Determine the entropy change of air during this compression process by using:
a) Property values from the air table
b) Average specific heats

Class Activity

- Solution (assumptions):
\square Air is an ideal gas since it is at a high temperature and low pressure relative to its critical point values

Class Activity

- Solution (calculations):
- Part (a): Table A-21
$s_{2}-s_{1}=s_{2}^{0}-s_{1}^{0}-R \times \ln \left(\frac{P_{2}}{P_{1}}\right)=\left[(1.79783-1.66802) \frac{k J}{k g-K}\right] \times \ln \left(\frac{600 k P a}{100 k P a}\right)$
$s_{2}-s_{1}=-0.3844 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}$
- Part (b): Using a c_{p} value at the average temperature of $37^{\circ} \mathrm{C}$ (Table A-2b)

$$
\begin{aligned}
& s_{2}-s_{1}=c_{p, a v g} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& =\left(1.006 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}\right) \ln \left(\frac{330 \mathrm{~K}}{290 \mathrm{~K}}\right)-\left(0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}\right) \ln \left(\frac{600 \mathrm{kPa}}{100 \mathrm{kPa}}\right)=-0.3842 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{aligned}
$$

ISENTROPIC PROCESSES OF IDEAL GASES

Isentropic Processes of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& s_{2}-s_{1}=0=c_{v} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \times \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& \ln \left(\frac{T_{2}}{T_{1}}\right)=-\frac{R}{c_{v}} \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& \ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{v_{1}}{v_{2}}\right)^{\frac{R}{c_{v}}} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1}
\end{aligned}
$$

Isentropic Processes of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& \left(\frac{T_{2}}{T_{1}}\right)_{s=\text { constant }}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1} \\
& \left(\frac{T_{2}}{T_{1}}\right)_{s=\text { constant }}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} \\
& \left(\frac{P_{2}}{P_{1}}\right)_{s=\text { constant }}=\left(\frac{v_{1}}{v_{2}}\right)^{k}
\end{aligned}
$$

Isentropic Processes of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis) for Isentropic Processes of Ideal Gases
$T v^{k-1}=$ Constant

$$
T P^{\frac{1-k}{k}}=\text { Constant }
$$

$$
P v^{k}=\text { Constant }
$$

$$
\begin{aligned}
&\left(\frac{T_{2}}{T_{1}}\right)_{s=\text { const. }}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}=\left(\frac{U_{1}}{U_{2}}\right)^{k-1} \\
& \text { *ideal gas } \\
& \text { Valid for } \text { *isentropic process } \\
& \text { *constant specific heats }
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 2: Variable Specific Heats (Exact Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& 0=s_{2}^{0}-s_{1}^{0}-R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& s_{2}^{0}=s_{1}^{0}+R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& s_{2}^{0}=s_{1}^{0}+R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \rightarrow \frac{P_{2}}{P_{1}}=\exp \left(\frac{s_{2}^{0}-s_{1}^{0}}{R}\right)
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- Air enters an isentropic turbine at 150 psia and $900^{\circ} \mathrm{F}$ through a $0.5 \mathrm{ft}^{2}$ inlet section with a velocity of $500 \mathrm{ft} / \mathrm{s}$. It leaves at 15 psia with a velocity of $100 \mathrm{ft} / \mathrm{s}$. Calculate the air temperature at the turbine exit and the power produced, in hp , by this turbine.

Class Activity

- Solution (assumptions):
- Steady flow
\square The process is isentropic (both reversible and adiabatic)
\square Ideal gas with a constant specific heat

Class Activity

- Solution (Tables):
- Table A-2Eb: @ $600^{\circ} \mathrm{F} \rightarrow c_{p}=0.250 \frac{\mathrm{Btu}}{\mathrm{lbm-R}}$ and $k=1.3777$

Ideal-gas specific heats of various common gases (b) At various temperatures						
Temp., ${ }^{\circ} \mathrm{F}$	$c_{p} \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$	$c_{u} \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$	k	$c_{p} \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$	$c_{v} \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$	k
	Air			Carbon dioxide, CO_{2}		
40	0.240	0.171	1.401	0.195	0.150	1.300
100	0.240	0.172	1.400	0.205	0.160	1.283
200	0.241	0.173	1.397	0.217	0.172	1.262
300	0.243	0.174	1.394	0.229	0.184	1.246
400	0.245	0.176	1.389	0.239	0.193	1.233
500	0.248	0.179	1.383	0.247	0.202	1.223
600	0.250	0.182	1.377	0.255	0.210	1.215
700	0.254	0.185	1.371	0.262	0.217	1.208
800	0.257	0.188	1.365	0.269	0.224	1.202
900	0.259	0.191	1.358	0.275	0.230	1.197
1000	0.263	0.195	1.353	0.280	0.235	1.192
1500	0.276	0.208	1.330	0.298	0.253	1.178
2000	0.286	0.217	1.312	0.312	0.267	1.169

Class Activity

- Solution (Tables):
- Table A-1E: $R=0.3704 \frac{p \text { psia- }-t^{3}}{l b m-R}$

TABLE A-1E							
Molar mass, gas constant, and critical-point properties							
Substance	Formula	Molar mass, M lbm/lbmol	Gas constant, R^{*}		Critical-point properties		
			Btu/lbm .	$\mathrm{psia} \cdot \mathrm{ft}^{3} / \mathrm{lbm} \cdot \mathrm{R}$	Temperature, R	Pressure, psia	Volume, $\mathrm{ft}^{3} / \mathrm{lbmol}$
Air	-	28.97	0.06855	0.3704	238.5	547	1.41

Class Activity

- Solution (Problem solving):

$$
\begin{aligned}
& \dot{m}=\dot{m}_{1}=\dot{m}_{2} \\
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d \dot{E}_{\text {system }}}{d t}=0
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}\left(h_{1}+V_{1}^{2}\right)=\dot{m}\left(h_{2}+\frac{V_{2}^{2}}{2}\right)+\dot{W}_{\text {out }} \\
& \dot{W}_{\text {out }}=\dot{m}\left(h_{1}-h_{1}+\frac{V_{1}^{2}-V_{2}}{2}\right)
\end{aligned}
$$

Class Activity

- Solution (Calculations):

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} \rightarrow T_{2}=T_{1} \times\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}}=(900+460 R)\left(\frac{15 p \text { sia }}{150 \text { psia }}\right)^{\frac{0.3777}{1.377}}=724 R \\
& v_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.3704 \frac{p \text { sia }-f t^{3}}{l b m-R}\right)(900+460 R)}{150 p s i a}=3.358 \frac{f t^{3}}{l b m} \\
& \dot{m}=\frac{A_{1} V_{1}}{v_{1}}=\frac{\left(0.5 f t^{2}\right)\left(500 \frac{f t}{s}\right)}{3.358 \frac{f t^{3}}{l b m}}=74.45 \frac{\mathrm{lbm}}{\mathrm{~s}}
\end{aligned}
$$

Class Activity

- Solution (Calculations):

$$
\begin{aligned}
& \dot{W}_{\text {out }}=\dot{m}\left(h_{1}-h_{1}+\frac{V_{1}^{2}-V_{2}}{2}\right) \\
& \dot{W}_{\text {out }}=\left(74.45 \frac{l b m}{s}\right)\left[\left(0.250 \frac{B t u}{l b m-R}\right)(1360-724 R)+\left(\frac{\left(500 \frac{f t}{s}\right)^{2}}{2}-\frac{\left(100 \frac{f t}{s}\right)^{2}}{2}\right)\left(\frac{1 \frac{B t u}{l b m}}{\frac{25.037}{s^{2}} f t^{2}}\right)\right. \\
& \dot{W}_{\text {out }}=12,194 \frac{B t u}{s}\left(\frac{1 \mathrm{hp}}{0.7068 \frac{B t u}{s}}\right)=17,250 \mathrm{hp}
\end{aligned}
$$

REVERSIBLE STEADY-FLOW WORK

Reversible Steady-Flow Work

- Recall we had

$$
W_{b}=\int_{1}^{2} P d V
$$

- For steady flow:

$$
\begin{aligned}
& \delta q_{r e v}-\delta w_{r e v}=d h+d k e+d p e \\
& \left.\begin{array}{l}
\delta q_{r e v}=T d \\
T d s=d h-v d P
\end{array}\right\} \rightarrow \delta q_{r e v}=d h-v d P \\
& \qquad w_{r e v}=-\int_{1}^{2} v d P-\Delta k e-\Delta p e
\end{aligned}
$$

Reversible Steady-Flow Work

- For steady flow:

$$
w_{r e v}=-\int_{1}^{2} v d P-\Delta k e-\Delta p e
$$

(a) Steady-flow system

(b) Closed system

Reversible Steady-Flow Work

- We write the Bernoulli equation:

$$
w_{r e v}=0=v\left(P_{2}-P_{1}\right)+\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)+g\left(z_{2}-z_{1}\right)
$$

ISENTROPIC EFFICIENCIES OF STEADY-FLOW DEVICES

Isentropic Efficiencies

- Steady-flow devices deliver the most and consume the least work when the process is reversible:

Isentropic Efficiencies

- Isentropic efficiency of a turbine can be written as:

$$
\eta_{T}=\frac{\text { Actual turbine work }}{\text { Isentropic turbine work }}=\frac{w_{a}}{w_{s}}
$$

$$
\eta_{T} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}
$$

Isentropic Efficiencies

- Isentropic efficiency of compressors and pumps
$\eta_{C}=\frac{\text { Isentropic compressor work }}{\text { Actual compressor work }}=\frac{w_{s}}{w_{a}}$

$$
\eta_{C} \cong \frac{h_{2 s}-h_{1}}{h_{2 a}-h_{1}}
$$

Isentropic Efficiencies

- Isentropic efficiency of nozzles

$$
\eta_{N}=\frac{\text { Actual } K E \text { nozzle exit }}{\text { Isentropic } K E \text { at nozzle exit }}=\frac{V_{2 a}^{2}}{V_{2 s}^{2}}
$$

$$
h_{1}=h_{2 a}+\frac{V_{2 a}^{2}}{2}
$$

$$
\eta_{N} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}
$$

CLASS ACTIVITY

Class Activity

- Steam enters an adiabatic turbine steadily at 3 MPa and 400 C and leaves at 50 kPa and 100 C . If the power output of the turbine is 2 MW , determine:
a) The isentropic efficiency of the turbine
b) The mass flow rate of the steam flowing through the turbine

Class Activity

- Solution (assumptions):
\square Steady operating conditions exist
The kinetic and potential energies are negligible

Class Activity

- Solution (Tables):

State 1: $\quad\left\{\begin{array}{l}P_{1}=3 \mathrm{MPa} \\ T_{1}=400^{\circ} \mathrm{C}\end{array} \rightarrow\left\{\begin{array}{c}h_{1}=3231.7 \mathrm{~kJ} / \mathrm{kg} \\ s_{1}=6.9235 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K})\end{array}\right.\right.$

State 2a: $\quad\left\{\begin{array}{l}P_{1}=50 \mathrm{kPa} \\ T_{2 a}=100^{\circ} \mathrm{C}\end{array} \rightarrow \quad h_{2 a}=2682.4 \mathrm{~kJ} / \mathrm{kg}\right.$

State $2 s: \quad\left\{\begin{array}{c}P_{1}=50 \mathrm{kPa} \\ s_{1}=s_{2}\end{array} \rightarrow\left\{\begin{array}{l}s_{f}=1.0912 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}) \\ s_{g}=7.5931 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K})\end{array}\right.\right.$

$$
\begin{aligned}
x_{2 s} & =\frac{s_{2 s}-s_{f}}{s_{f g}}=\frac{6.9235-1.0912}{6.5019}=0.897 \\
h_{2 s} & =h_{f}+x_{2 s} \times h_{f g}=340.54+0.897 \times(2304.7)=2407.9 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Class Activity

- Solution (a): The isentropic efficiency is:

$$
\eta_{T}=\frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}=\frac{3231.7-2682.4}{3231.7-2407.9}=0.667(\text { or } 66.7 \%)
$$

Class Activity

- Solution (b): The mass flow rate is:

$$
\begin{aligned}
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }} \\
& \dot{m} h_{1}=\dot{W}_{a, \text { out }}+\dot{m} h_{2 a} \\
& \dot{W}_{a, \text { out }}=\dot{m}\left(h_{1}-h_{2 a}\right) \\
& 2 M W\left(\frac{1000 \mathrm{~kJ}}{1 \mathrm{MW}}\right)=\dot{m}(3231.7-2682.4) \frac{\mathrm{kJ}}{\mathrm{~kg}} \\
& \dot{m}=3.64 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- Air at 200 kPa and 950 K enters an adiabatic nozzle at low velocity and is discharged at a pressure of 110 kPa . If the isentropic efficiency of the nozzle is 92 percent, determine (assume constant specific heats of air):
a) The maximum possible exit velocity
b) The exit temperature
c) The actual exit velocity of the air

Class Activity

- Solution (assumptions):
- Steady operating conditions exist

Air is an ideal gas
\square The kinetic and potential energies are negligible

Class Activity

- Solution (a):

$$
\begin{aligned}
& \frac{T_{2 s}}{T_{1}}=\left(\frac{P_{2 s}}{P_{1}}\right)^{\frac{k-1}{k}} \\
& T_{2 s}=T_{1}\left(\frac{P_{2 s}}{P_{1}}\right)^{\frac{k-1}{k}}=(950 \mathrm{~K})\left(\frac{110 \mathrm{kPa}}{200 \mathrm{kPa}}\right)^{\frac{(0.349)}{1.349}}=814 \mathrm{~K}
\end{aligned}
$$

Class Activity

- Solution (a):

$$
e_{\text {in }}=e_{\text {out }}
$$

$h_{1}+\frac{V_{1}^{2}}{2}=h_{2 s}+\frac{V_{2 s}^{2}}{2}$
$V_{2 s}=\sqrt{2\left(h_{1}-h_{2 s}\right)}=\sqrt{2 c_{p, a v g}\left(T_{1}-T_{2}\right)}=\sqrt{2\left(1.11 \frac{\mathrm{~kJ}}{\mathrm{~kg}-K}\right)(950-814) K\left(\frac{1000 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}{1 \mathrm{~kJ} / \mathrm{kg}}\right.}$
$V_{2 s}=549 \frac{\mathrm{~m}}{\mathrm{~s}}$

Class Activity

- Solution (b):

$$
\begin{aligned}
& \eta_{N}=\frac{\text { Actual KE nozzle exit }}{\text { Isentropic KE at nozzle exit }}=\frac{V_{2 a}^{2}}{V_{2 s}^{2}} \\
& 0.92=\frac{950-T_{2 a}}{950-814} \quad \rightarrow \quad T_{2 a}=825 \mathrm{~K}
\end{aligned}
$$

Class Activity

- Solution (c):

$$
\begin{aligned}
& \eta_{N}=\frac{\text { Actual KE nozzle exit }}{\text { Isentropic KE at nozzle exit }}=\frac{V_{2 a}^{2}}{V_{2 s}^{2}} \\
& V_{2 a}=\sqrt{\eta_{N} \times V_{2 s}^{2}}=\sqrt{(0.92)\left(549 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=527 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Chapter 8 Summary

- We did not cover 8-12 (Entropy Balance)

