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Announcements
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• Exam 2 solutions are posted

• Assignment 9 is posted (2-3 days more extension is fine to 
submit it on Friday or the weekend after the Thanksgiving)

• I will post assignment 10 due 12/01/23 (those who need to 
submit it)

• The bonus activities document is posted. Please pay 
attention to the deadlines and also the updates about this 
task (an idea submission by the 11/29/2023 is required)
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• The equality in the Clausius inequality holds for totally or jut 
internally reversible cycles and the inequality for the 
irreversible ones:

!
𝛿𝑄
𝑇

!"#,%&'

= 0



Recap
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• A special case: Internally reversible isothermal heat transfer 
processes:

Δ𝑆 = $
!

" 𝛿𝑄
𝑇 #$%,'()

= $
!

" 𝛿𝑄
𝑇* #$%,'()

=
1
𝑇*
$
!

"
𝛿𝑄#$%,'()

Δ𝑆#+,%-('./0 =
𝑄
𝑇*
	

𝑘𝐽
𝐾



Recap
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• Entropy is a property:



Recap
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• For entropy, we can say “the increase of entropy principle”:

!
(

)𝛿𝑄
𝑇
≤ Δ𝑆

Δ𝑆*+* = 𝑆) − 𝑆( = !
(

)𝛿𝑄
𝑇
+ 𝑆,&"

Δ𝑆!*-./#&0 ≥ 0



Recap
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• For an isolated system:

𝑆,&" = Δ𝑆#-#/. = Δ𝑆*+* + Δ𝑆*1%% ≥ 0

𝑆1($ = -
> 0. 	 𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠
= 0	 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠	
< 0. 	 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠	



Recap
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• The entropy of a fixed mass can be changed by:
q Heat Transfer 
q Irreversibilities

• Entropy of a fixed mass does not change during a process 
that is internally reversible and adiabatic. During this process 
entropy remains constant and we call it isentropic process

Δ𝑠 = 0	 𝑜𝑟	 𝑠" = 𝑠!	 (
𝑘𝐽

𝑘𝑔 − 𝐾)



Recap
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• We can rearrange our entropy equation:

𝛿𝑄!"#,%&' = 𝑇	𝑑𝑆 𝑄!"#,%&' = /
(

)
𝑇	𝑑𝑆	 (𝑘𝐽)

(The area under the process curve on a T-S diagram represents heat transfer 
during an internally reversible process)
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What Is Entropy

13

• Entropy can be viewed as a measure of molecular disorder 
or molecular randomness (lowest in solid phase and highest 
in the gas phase)



What Is Entropy
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• Oscillations in solid phase fade as temperature is 
decreased, and the molecules supposedly become 
motionless at absolute zero. This represents a state of 
ultimate molecular order (and minimum energy).

• The entropy of a pure crystalline substance at absolute zero 
temperature is zero since there is no uncertainty about the 
state of the molecules at that instant (3rd law of 
thermodynamics)



What Is Entropy
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• The third law of thermodynamics provide an absolute 
reference point for the determination of entropy 

• The entropy determined relative to this point is called 
absolute entropy and it is extremely useful in the 
thermodynamics analysis of entropy 

• The entropy of a substance that is not pure crystalline (such 
as a solid solution) is not zero at absolute zero temperature 



What Is Entropy
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• A few examples: 
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The T ds Relations
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• The first T ds (or Gibbs) equation (closed stationary 
system):
𝛿𝑄#$%,'() − 𝛿𝑊#$%,'(),,2% = 𝑑𝑈

𝛿𝑄#$%,'() = 𝑇𝑑𝑠

𝛿𝑊#$%,'(),,2% = 𝑃𝑑𝑉

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑃𝑑𝑉	 (𝑘𝐽)

𝑇𝑑𝑠 = 𝑑𝑢 + 𝑃𝑑𝑣	 (
𝑘𝐽
𝑘𝑔)

H𝑇𝑑𝑠 = 𝑑𝑢 + 𝑃𝑑𝑣 
ℎ = 𝑢 + 𝑃𝑣	 → 𝑑ℎ = 𝑑𝑢 + 𝑃𝑑𝑣 + 𝑣𝑑𝑃 	 → 𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑃



The T ds Relations
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• Use the first T ds (or Gibbs) equation to solve for entropy 
changes

𝑑𝑠 =
𝑑𝑢
𝑇 +

𝑃𝑑𝑣
𝑇

𝑑𝑠 =
𝑑ℎ
𝑇 −

𝑣𝑑𝑃
𝑇



ENTROPY CHANGE OF LIQUIDS AND 
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Entropy Change of Liquids and Solids
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• Liquids and solids can be approximated as incompressible 
substances (𝑑𝑣 ≅ 0	&	𝑐K = 𝑐L = 𝑐K = 𝑐):

𝑑𝑠 =
𝑑ℎ
𝑇 −

𝑣𝑑𝑃
𝑇

𝑠" − 𝑠! = $
!

"
𝑐 𝑇

𝑑𝑇
𝑇
≅ 𝑐/)1 ln(

𝑇"
𝑇!
)

𝑠" − 𝑠! = $
!

"
𝑐 𝑇

𝑑𝑇
𝑇 ≅ 𝑐/)1 ln

𝑇"
𝑇!

= 0	 → 	 𝑇" = 𝑇! (For isentropic)



THE ENTROPY CHANGE OF IDEAL 
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The Entropy Change of Ideal Gases
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• For gases, we can write: 

𝑑𝑠 =
𝑑𝑢
𝑇
+
𝑃𝑑𝑣
𝑇

= 𝑐)
𝑑𝑇
𝑇
+ 𝑅

𝑑𝑣
𝑣

𝑠" − 𝑠! = $
!

"
𝑐) 𝑇

𝑑𝑇
𝑇 + 𝑅	ln(

𝑣"
𝑣!
)

𝑠" − 𝑠! = $
!

"
𝑐3 𝑇

𝑑𝑇
𝑇 + 𝑅	ln(

𝑃"
𝑃!
)



The Entropy Change of Ideal Gases

29

• Approach 1: Constant Specific Heats (Approximate Analysis):

𝑠" − 𝑠! = $
!

"
𝑐) 𝑇

𝑑𝑇
𝑇 + 𝑅	ln(

𝑣"
𝑣!
)

𝑠" − 𝑠! = 𝑐),/)1 ln
𝑇"
𝑇!

+ 𝑅×𝑙𝑛
𝑣"
𝑣!

S
𝑑ℎ = 𝑐3𝑑𝑇

𝑣 =
𝑅𝑇
𝑃

	 → 𝑠" − 𝑠! = 𝑐3,/)1× ln
𝑇"
𝑇!

− 𝑅×ln(
𝑃"
𝑃!
) 



The Entropy Change of Ideal Gases
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• Approach 2: Variable Specific Heats (Exact Analysis):

𝑠* = $
*

4
𝑐3 𝑇

𝑑𝑇
𝑇

$
*

4
𝑐3 𝑇

𝑑𝑇
𝑇 = 𝑠"* − 𝑠!*

𝑠" − 𝑠! = 𝑠"* − 𝑠!* − 𝑅×ln(
𝑃"
𝑃!
)

T𝑠" − T𝑠! = 𝑠"* − 𝑠!* − 𝑅2×ln(
𝑃"
𝑃!
)



The Entropy Change of Ideal Gases
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• Approach 2: Variable Specific Heats (Exact Analysis):
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Class Activity
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• Air is compressed from an initial state of 100 kPa and 17 °C 
to a final state of 600 kPa and 57 °C. Determine the entropy 
change of air during this compression process by using:

a) Property values from the air table
b) Average specific heats 



Class Activity
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• Solution (assumptions):
q Air is an ideal gas since it is at a high temperature and 

low pressure relative to its critical point values 



Class Activity

36

• Solution (calculations):
q Part (a): Table A-21

q Part (b): Using a cp value at the average temperature of 37 °C (Table 
A-2b)

𝑠" − 𝑠! = 𝑠"* − 𝑠!* − 𝑅× ln
𝑃"
𝑃!

= 1.79783 − 1.66802
𝑘𝐽

𝑘𝑔 − 𝐾 ×ln(
600	𝑘𝑃𝑎
100	𝑘𝑃𝑎)

𝑠" − 𝑠! = −0.3844
𝑘𝐽

𝑘𝑔 − 𝐾

𝑠" − 𝑠! = 𝑐3,/)1 ln
𝑇"
𝑇!

− 𝑅× ln
𝑃"
𝑃!

= 1.006
𝑘𝐽

𝑘𝑔 − 𝐾
ln

330	𝐾
290	𝐾

− 0.287
𝑘𝐽

𝑘𝑔 − 𝐾
ln

600	𝑘𝑃𝑎
100	𝑘𝑃𝑎

= −0.3842
𝑘𝐽

𝑘𝑔 − 𝐾



ISENTROPIC PROCESSES OF IDEAL 
GASES
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Isentropic Processes of Ideal Gases
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

ln
𝑇"
𝑇!

= −
𝑅
𝑐)
ln(
𝑣"
𝑣!
)

ln
𝑇"
𝑇!

= ln
𝑣!
𝑣"

5
6!

]
𝑐3 − 𝑐) = 𝑅

𝑘 =
𝑐3
𝑐)
	 →

𝑅
𝑐)
= 𝑘 − 1

𝑇"
𝑇!
=

𝑣!
𝑣"

78!

𝑠" − 𝑠! = 0 = 𝑐) ln
𝑇"
𝑇!

+ 𝑅×𝑙𝑛
𝑣"
𝑣!



Isentropic Processes of Ideal Gases
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑇"
𝑇! +96,$+%/$%

=
𝑣!
𝑣"

78!

𝑇"
𝑇! +96,$+%/$%

=
𝑃"
𝑃!

78!
7

𝑃"
𝑃! +96,$+%/$%

=
𝑣!
𝑣"

7



Isentropic Processes of Ideal Gases
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑇𝑣78! = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑇𝑃
!87
7 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑃𝑣7 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡



The Entropy Change of Ideal Gases
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• Approach 2: Variable Specific Heats (Exact Analysis) for 
Isentropic Processes of Ideal Gases

0 = 𝑠"* − 𝑠!* − 𝑅×ln(
𝑃"
𝑃!
)

𝑠"* = 𝑠!* + 𝑅×ln(
𝑃"
𝑃!
)

𝑠"* = 𝑠!* + 𝑅× ln
𝑃"
𝑃!

	 → 	
𝑃"
𝑃!
= exp(

𝑠"* − 𝑠!*

𝑅 )
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Class Activity

43

• Air enters an isentropic turbine at 150 psia and 900 °F 
through a 0.5 ft2 inlet section with a velocity of 500 ft/s. It 
leaves at 15 psia with a velocity of 100 ft/s. Calculate the air 
temperature at the turbine exit and the power produced, in 
hp, by this turbine.



Class Activity
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• Solution (assumptions):
q Steady flow 
q The process is isentropic (both reversible and adiabatic)
q Ideal gas with a constant specific heat



Class Activity
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• Solution (Tables):
q Table A-2Eb: @600	°𝐹	 → 𝑐2 = 0.250 3#1

.4567
	𝑎𝑛𝑑	𝑘 = 1.3777



Class Activity
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• Solution (Tables):
q Table A-1E: 𝑅 = 0.3704 	2*!/69#

!

.4567



Class Activity
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• Solution (Problem solving):

𝑚̇ = 𝑚̇! = 𝑚̇"

𝐸̇#$ − 𝐸̇,2% =
𝑑𝐸̇+:+%(.

𝑑𝑡
= 0

𝑚̇ ℎ! + 𝑉!" = 𝑚̇ ℎ" +
𝑉""

2 + 𝑊̇,2%

𝑊̇,2% = 𝑚̇ ℎ! − ℎ! +
𝑉!" − 𝑉"

2



Class Activity
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• Solution (Calculations):

𝑇"
𝑇!
=

𝑃"
𝑃!

78!
7
	 → 𝑇" = 𝑇!×

𝑃"
𝑃!

78!
7
= 900 + 460	𝑅

15	𝑝𝑠𝑖𝑎
150	𝑝𝑠𝑖𝑎

*.<===
!.<==

= 724	𝑅

𝑣! =
𝑅𝑇!
𝑃!

=
0.3704 𝑝𝑠𝑖𝑎 − 𝑓𝑡

<

𝑙𝑏𝑚 − 𝑅 900 + 460	𝑅

150	𝑝𝑠𝑖𝑎
= 3.358

𝑓𝑡<

𝑙𝑏𝑚

𝑚̇ =
𝐴!𝑉!
𝑣!

=
0.5	𝑓𝑡" 500 𝑓𝑡𝑠

3.358 𝑓𝑡
<

𝑙𝑏𝑚

= 74.45
𝑙𝑏𝑚
𝑠



Class Activity
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• Solution (Calculations):

𝑊̇,2% = 𝑚̇ ℎ! − ℎ! +
𝑉!" − 𝑉"

2

𝑊̇"#$ = 74.45
𝑙𝑏𝑚
𝑠

[ 0.250
𝐵𝑡𝑢

𝑙𝑏𝑚 − 𝑅
1360 − 724𝑅 +

500𝑓𝑡𝑠
%

2
−

100𝑓𝑡𝑠
%

2

1 𝐵𝑡𝑢𝑙𝑏𝑚
25.037 𝑓𝑡

%

𝑠%

𝑊̇,2% = 12,194
𝐵𝑡𝑢
𝑠

1	ℎ𝑝

0.7068𝐵𝑡𝑢𝑠
= 17,250	ℎ𝑝	



REVERSIBLE STEADY-FLOW WORK

50



Reversible Steady-Flow Work
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• Recall we had

• For steady flow:

𝑊> = $
!

"
𝑃	𝑑𝑉

𝛿𝑞'() − 𝛿𝑤'() = 𝑑ℎ + 𝑑𝑘𝑒 + 𝑑𝑝𝑒

H𝛿𝑞'() = 𝑇𝑑 
𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑃

	 → 𝛿𝑞'() = 𝑑ℎ − 𝑣𝑑𝑃

−𝛿𝑤'() = 𝑣𝑑𝑃 + 𝑑𝑘𝑒 + 𝑑𝑝𝑒

𝑤'() = −$
!

"
𝑣𝑑𝑃 − Δ𝑘𝑒 − Δ𝑝𝑒



Reversible Steady-Flow Work
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• For steady flow:

𝑤'() = −$
!

"
𝑣𝑑𝑃 − Δ𝑘𝑒 − Δ𝑝𝑒



Reversible Steady-Flow Work
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• We write the Bernoulli equation:

𝑤'() = 0 = 𝑣 𝑃" − 𝑃! +
𝑉"" − 𝑉!"

2 + 𝑔(𝑧" − 𝑧!)



ISENTROPIC EFFICIENCIES OF 
STEADY-FLOW DEVICES
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Isentropic Efficiencies
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• Steady-flow devices deliver the most and consume the least 
work when the process is reversible:



Isentropic Efficiencies
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• Isentropic efficiency of a turbine can be written as:

𝜂4 =
𝐴𝑐𝑡𝑢𝑎𝑙	𝑡𝑢𝑟𝑏𝑖𝑛𝑒	𝑤𝑜𝑟𝑘

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐	𝑡𝑢𝑟𝑏𝑖𝑛𝑒	𝑤𝑜𝑟𝑘 =
𝑤/
𝑤+

𝜂4 ≅
ℎ! − ℎ"/
ℎ! − ℎ"+



Isentropic Efficiencies
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• Isentropic efficiency of compressors and pumps

𝜂? =
𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟	𝑤𝑜𝑟𝑘
𝐴𝑐𝑡𝑢𝑎𝑙	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟	𝑤𝑜𝑟𝑘 =

𝑤+
𝑤/

𝜂? ≅
ℎ"+ − ℎ!
ℎ"/ − ℎ!



Isentropic Efficiencies

58

• Isentropic efficiency of nozzles

𝜂@ =
𝐴𝑐𝑡𝑢𝑎𝑙	𝐾𝐸	𝑛𝑜𝑧𝑧𝑙𝑒	𝑒𝑥𝑖𝑡

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐	𝐾𝐸	𝑎𝑡	𝑛𝑜𝑧𝑧𝑙𝑒	𝑒𝑥𝑖𝑡
=
𝑉"/"

𝑉"+"

𝜂@ ≅
ℎ! − ℎ"/
ℎ! − ℎ"+

ℎ! = ℎ"/ +
𝑉"/"

2
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Class Activity
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• Steam enters an adiabatic turbine steadily at 3 MPa and 400 
C and leaves at 50 kPa and 100 C. If the power output of the 
turbine is 2 MW, determine:
a) The isentropic efficiency of the turbine 
b) The mass flow rate of the steam flowing through the 

turbine



Class Activity
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• Solution (assumptions):
q Steady operating conditions exist
q The kinetic and potential energies are negligible



Class Activity
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• Solution (Tables):

𝑆𝑡𝑎𝑡𝑒	1: -𝑃! = 3	𝑀𝑃𝑎
𝑇! = 400	°𝐶 	 → 	 s ℎ! = 3231.7	𝑘𝐽/𝑘𝑔

𝑠! = 6.9235	𝑘𝐽/(𝑘𝑔 − 𝐾)

𝑆𝑡𝑎𝑡𝑒	2𝑎: u 𝑃! = 50	𝑘𝑃𝑎
𝑇"/ = 100	°𝐶 	 → 	 ℎ"/ = 2682.4	𝑘𝐽/𝑘𝑔

𝑆𝑡𝑎𝑡𝑒	2𝑠: S𝑃! = 50	𝑘𝑃𝑎
𝑠! = 𝑠"	

→ 	 -
𝑠A = 1.0912	𝑘𝐽/(𝑘𝑔 − 𝐾)
𝑠1 = 7.5931	𝑘𝐽/(𝑘𝑔 − 𝐾)

𝑥"+ =
𝑠"+ − 𝑠A
𝑠A1

=
6.9235 − 1.0912

6.5019 = 0.897

ℎ"+ = ℎA + 𝑥"+×ℎA1 = 340.54 + 0.897× 2304.7 = 2407.9	𝑘𝐽/𝑘𝑔



Class Activity
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• Solution (a): The isentropic efficiency is:

𝜂4 =
ℎ! − ℎ"/
ℎ! − ℎ"+

=
3231.7 − 2682.4
3231.7 − 2407.9

= 0.667	(𝑜𝑟	66.7%)



Class Activity
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• Solution (b): The mass flow rate is:

𝐸̇#$ = 𝐸̇,2%

𝑚̇ℎ! = 𝑊̇/,,2% + 𝑚̇ℎ"/

𝑊̇/,,2% = 𝑚̇(ℎ! − ℎ"/)

2	𝑀𝑊
1000	𝑘𝐽
1	𝑀𝑊 = 𝑚̇ 3231.7 − 2682.4

𝑘𝐽
𝑘𝑔

𝑚̇ = 3.64	𝑘𝑔/𝑠



CLASS ACTIVITY
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Class Activity

66

• Air at 200 kPa and 950 K enters an adiabatic nozzle at low 
velocity and is discharged at a pressure of 110 kPa. If the 
isentropic efficiency of the nozzle is 92 percent, determine 
(assume constant specific heats of air):
a) The maximum possible exit velocity 
b) The exit temperature
c) The actual exit velocity of the air



Class Activity
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• Solution (assumptions):
q Steady operating conditions exist
q Air is an ideal gas
q The kinetic and potential energies are negligible



Class Activity
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• Solution (a):
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• Solution (a):
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• Solution (b):
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• Solution (c):
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• We did not cover 8-12 (Entropy Balance)


