CAE 208 / MMAE 320: Thermodynamics Fall 2023

October 12, 2023 Energy analysis of closed systems (3)

Built Environment Research @ III] 🗫 🚓 M 💜

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcement

LUNCH WITH ARCHITECTURAL Engineering professors

Are you interested in building systems? Join us to discuss HVAC, lighting fixtures, and building design. Open to any major!

Q	Location: AM 120
	Date: October 12
\bigcirc	Time: 12:45 - 1:40
Ψ	Food is Provided!!

For more information, feel free to email ashrae_iit@iit.edu or send a Instagram dm to @ashrae_iit.

Announcement

9TH ANNUAL CAEE CAREER FAIR

Hosted by CAEE orgs and Career Services

> OCTOBER 17, 2023 2:00PM - 5:00PM HERMAN HALL

A digital resume book will be made available to registered companies a week before the fair begins. For more information scan the QR code below!

Announcement

+ Follow

We're excited to open the 2024 SmithGroup Justice, Equity, Diversity & Inclusion Scholarship program for applications. The scholarship supports students from underrepresented backgrounds who are studying architecture, engineering, interior design, landscape architecture or urban planning.

Each scholarship includes both tuition support and a paid summer internship at one of SmithGroup's locations. Applications are due November 30.

Learn more about eligibility, requirements and the application process: https://lnkd.in/dJuNTEKt

https://www.smithgroup.com/jedi-scholarship

Announcements

• Assignment 5 is posted (due next Thursday)

Announcements

- Midterm exam 1:
 - □ Solutions will be uploaded
 - □ The exams will be graded by the next lecture

Announcements

• Please review the lecture recordings on Blackboard:

CAE_208_MMAE_320.2024 10 (Thermodynamics)	Panopto Content
Home 💿	
Syllabus 💿	Q Search in folder "CAE_208_MMAE_320.202410: Thermodynamics"
Content 📀	
Assignments 🛛 😔	
Discussions 📀	CAE_208_INIMAE_320.202410. Thermodynamics
Collaborate Ultra 🛛 😔	Sort by: Name Duration Date Rating
Class Recording Panopto	
0	+ Add folder
My Grades 🛛 😔	
Email 💿	10/05/2023 Lecture14_Energy analysis of closed systems (2)
Galvin Library 🛛 😔	
Tools 🛛 💮	

• I usually review the number of views:

RECAP

• For a quasi-equilibrium expansion process, we can write:

$$Area = A = \int_{1}^{2} dA = \int_{1}^{2} P dV$$

$$W_{b} = \int_{1}^{2} P_{i} dV$$

$$Process path$$

$$W_{b} = \int_{1}^{2} P_{i} dV$$

Constant Volume

Constant Pressure

Constant Temperature

• Moving boundary work under different processes

Process	Moving boundary work
Constant volume	0
Constant pressure	$P_0(V_2 - V_1)$
Isothermal	$P_{1}V_{1} \times Ln(\frac{V_{2}}{V_{1}})$ $P_{1}V_{1} \times Ln(\frac{P_{1}}{P_{2}})$ $mRT_{o} \times Ln(\frac{V_{2}}{V_{1}})$
Polytropic	$\frac{\frac{P_2V_2 - P_1V_1}{1 - n}}{\frac{mR(T_2 - T_1)}{1 - n}}$

• We can sum the heat, work, and mass, and the heat transfer:

 For a closed system undergoing a cycle, the initial and final states are identical:

• We can write:

For a constant pressure process with constant mass, we have:

SPECIFIC HEATS

 How much heat do we need to add to increase temperature of 1 kg iron vs water for 10 °C?

• Specific heat is defined as the energy required to raise temperature of a unit mass of substance by one degree

- Specific heat is defined as the energy required to raise temperature of a unit mass of substance by one degree
 - \Box Specific heat at constant volume (c_v)
 - \Box Specific heat at constant pressure (c_p)

- Specific heat is defined as the energy required to raise temperature of a unit mass of substance by one degree
 - \Box Specific heat at constant volume (c_v)
 - \Box Specific heat at constant pressure (c_p)

 Let's start from the fixed mass in a stationary closed system that undergoes a constant volume process:

$$dE_{in} - dE_{out} = dU + dKE + dPE = \delta Q - \delta W$$

$$\delta Q = dU + \delta W = dU + PdV$$

$$c_{\nu} = \frac{1}{m} \left(\frac{\delta Q}{dT} \right)_{\nu} = \frac{1}{m} \left(\frac{\partial U}{\partial T} \right)_{\nu} = \left(\frac{\partial u}{\partial T} \right)_{\nu}$$

 $c_{v}dT = du$

Similarly, we can write the following for a constant pressure process:

$$\delta Q = dU + \delta W = dU + PdV$$

$$c_p = \frac{1}{m} \left(\frac{\delta Q}{dT} \right)_p = \frac{1}{m} \left(\frac{\partial H}{\partial T} \right)_p = \left(\frac{\partial h}{\partial T} \right)_p$$

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p$$

- c_p and c_v are defined based on properties. They must be properties too
- The energy required to raise the temperature of a substance by one degree is different at different temperatures and pressures

- A common unit for specific heats is $\frac{kJ}{kg C}$ or $\frac{kJ}{kg K}$ (why?)
- We can write them in the molar basis too $\frac{kJ}{kmol-^{\circ}C}$ or $\frac{kJ}{kmol-K}$ for $\overline{c_p}$ and $\overline{c_v}$

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF IDEAL GASES

 It has demonstrated mathematically and experimentally that internal energy is a function of temperature:

$$u = u(T)$$

 Using the definition of enthalpy and the equation of state of an ideal gas, we have:

$$u = u(T)$$

$$\begin{array}{l} h = u + Pv \\ Pv = RT \end{array} \} \quad \rightarrow \quad h = u + RT \quad \rightarrow h = h(T) \end{array}$$

• We have:

 The change in internal energy or enthalpy for an ideal gas during a process from state 1 to state 2 is determined by integrating these equations

$$\Delta u = u_2 - u_1 = \int_1^2 c_v \left(T\right) dt$$

$$\Delta h = h_2 - h_1 = \int_1^2 c_p \left(T\right) dt$$

- At low pressures, all real gases approach ideal-gas behavior, and therefore their specific heats depend on temperature only
- The specific heats of real gases at low pressures are called ideal-gas specific heats, or zero-pressure specific heats, and are often denoted c_{p0} and c_{v0}

Ideal gas constant pressure specific heats for some gases:

• Three ways to calculate Δh and Δu :

 Approach 1: By using the tabulated u and h data. This is the easiest and most accurate way when tables are readily available

- u and h data for a number of gases have been tabulated
- These tables are obtained by choosing an arbitrary reference point and performing the integrations by treating state 1 as the reference state

Т, К	u, kJ/kg	h, kJ/kg
0	0	0
•	•	•
300	214.07	300.19
310	221.25	310.24

• We can use the Table A-21

TABLE A-21											
Ideal-gas properties of air											
T K	<i>h</i> kJ/kg	<i>P_r</i>	u kJ/kg	U _r	s° kJ/kg ∙ K	T K	<i>h</i> kJ/kg	P _r	u kJ/kg	U _r	s° kJ/kg ∙ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589

Approach 2: By using the c_v or c_p relations (Table A-2c) as a function of temperature and performing the integrations. This is very inconvenient for hand calculations but quite desirable for computerized calculations. The results obtained are very accurate

• Approach 2: Table A-2c

APPENDIX PROPE (SI UNI	1 RTY TABLES AND CHARTS TS)	
🖾 TABLE A-1	Molar mass, gas constant, and critical-point properties 852	
🕑 TABLE A-2	Ideal-gas specific heats of various common gases 853	
🖾 TABLE A-3	Properties of common liquids, solids, and foods 856	
TABLE A-4	Saturated water—Temperature table 858	
	Saturated water - Brecoure table 960	

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(*T* in K, *c*_p in kJ/kmol · K)

Substance	Formula	а	b	С	d	Temper range, I
Nitrogen	N ₂	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273
Oxygen	O ₂	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273
Air	-	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273

 Approach 3: By using average specific heats. This is very simple and certainly very convenient when property tables are not available. The results obtained are reasonably accurate if the temperature interval is not very large

$$u_2 - u_1 = c_{v,avg}(T_2 - T_1)$$

$$h_2 - h_1 = c_{p,avg}(T_2 - T_1)$$

 For small temperature intervals, the specific heats may be assumed to vary linearly with temperature

• Interpolation:

(b) At various temperatures									
Temperature,	c _p kJ∕kg ∙ K	c _∪ kJ/kg · K	k	<i>c_p</i> kJ/kg ∙ K	c _∪ kJ/kg · K	k	<i>c_p</i> kJ/kg ∙ K		
K		Air		Carbo	n dioxide, CO_2		Carb		
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039		
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040		
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043		
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047		
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054		
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063		

• The relation $\Delta u = c_v \Delta T$ is valid for any kind of process, constant-volume or not

• Can we find a relation between c_p and c_v ?

h = u + RT

dh = du + RdT

 $c_p - c_v = R$ $dh = c_p dT$

 $du = c_v dT$

 $c_p dT = c_v dT + R dT$

Specific heat ratio (k):
 For monatomic (e.g., Helium) gases the value is 1.667
 For many diatomic gases, including air, the value is 1.4

$$k = \frac{c_p}{c_v}$$

CLASS ACTIVITY

- Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change in internal energy of air per unit mass from
 - a) Data from the air table (Table A-21)
 - b) The functional form of the specific heat (Table A-2c)
 - c) The average specific heat value (Table A-2b)

• Solution (a): TABLE A-21

Ideal-gas properties of air

T K	<i>h</i> kJ/kg	<i>P_r</i>	u kJ/kg	U _r	s° kJ/kg ∙ K	T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	U _r	s° kJ/kg ∙ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810

$$\Delta u = u_2 - u_1 = 434.78 - 214.07 = 220.71 \frac{kJ}{kg}$$

• Solution (b): Table 2A-c

(c) As a function of temperature									
		$\overline{c}_p = a + bT + cT^2 + dT^3$ (<i>T</i> in K, <i>c</i> _p in kJ/kmol · K)							
Substance	Formula	а	b	с	d Te				
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}				
Oxygen	O ₂	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}				
Air	-	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}				
Hydrogen	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}				

 $\bar{c_p} = a + bT + cT^2 + dT^3$

$$\overline{c_v} = \overline{c_p} - R_u = a + bT + cT^2 + dT^3$$

• Solution (b): Table 2A-c

 $\bar{c_p} = a + bT + cT^2 + dT^3$

$$\overline{c_v} = \overline{c_p} - R_u = a + bT + cT^2 + dT^3$$

$$\Delta \bar{u} = \int_{T_1}^{T_2} \bar{c_v}(T) \, dT = \bar{c_p} - R_u = \int_{T_1}^{T_2} [(a - R_u) + bT + cT^2 + dT^3] dT$$

$$\Delta \bar{u} = 6447 \frac{\text{kJ}}{\text{kmol}}$$

• Solution (b): Table A-1

$$\Delta \bar{u} = 6447 \frac{\text{kJ}}{\text{kmol}}$$

- -

TABLE A-1							
Molar mass, gas constant, and critical-point properties							
Substance	Formula	Molar mass, <i>M</i> kg/kmol	Gas constant, R kJ/kg · K*				
Air	-	28.97	0.2870				
Ammonia	NH_3	17.03	0.4882				
Argon	Ar	39.948	0.2081				
Benzene	C_6H_6	78.115	0.1064				

$$\Delta u = \frac{\Delta \bar{u}}{M} = \frac{6447 \frac{\text{kJ}}{\text{kmol}}}{28.97 \frac{\text{kg}}{\text{kmol}}} = 222.5 \frac{\text{kJ}}{\text{kg}}$$

Average Temp =
$$\frac{T_1 + T_2}{2}$$
$$c_{v,avg} = c_{v,450 K} = 0.7333 \frac{kJ}{kg - K}$$

• Solution (c): Table A-2b

$$\Delta u = \left(0.7333 \frac{kJ}{kg - K}\right)(600 - 300) = 220 \frac{kJ}{kg}$$

(b) At various temperatures								
Temperature,	c _p kJ/kg ∙ K	c _∪ kJ/kg · K	k					
K		Air						
250	1.003	0.716	1.401					
300	1.005	0.718	1.400					
350	1.008	0.721	1.398					
400	1.013	0.726	1.395					
450	1.020	0.733	1.391					
500	1.029	0.742	1.387					
550	1.040	0.753	1.381					
600	1.051	0.764	1.376					
650	1.063	0.776	1.370					
700	1.075	0.788	1.364					
750	1.087	0.800	1.359					
800	1.099	0.812	1.354					
900	1.121	0.834	1.344					
1000	1.142	0.855	1.336					

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

- Incompressible substance is a substance whose specific volume (or density) is constant.
- Solids and liquids are incompressible substances.

$$c_p = c_v = c$$

• Internal energy changes:

$$du = c_v dT = c(T)dt$$

$$\Delta u = u_2 - u_1 = \int_1^2 c(T)dt$$

$$\Delta u \cong c_{avg}(T_2 - T_1)$$

• Enthalpy changes:

h = u + PV

 $dh = du + dP \times V + P \times dV$

 $\Delta h \cong \Delta u + V \times \Delta P \sim c_{avg} \times \Delta T + v \times \Delta P$

We can say:
 □ For solids:

$$\Delta h = \Delta u + V \times \Delta P \cong c_{avg} \times \Delta T + v \times \Delta P \cong c_{avg} \times \Delta T$$

□ For liquids (constant pressure process such as heaters):

$$h = \Delta u \cong c_{avg} \times \Delta T$$

□ For liquids (constant temperature process such as pumps):

$$h = v \times \Delta P$$

• The enthalpy of a compressed liquid:

$$h_{@P,T} \cong h_{f@T} + v_{f@T}(P - P_{sat @T})$$

$$h_{@P,T} \cong h_{f@T}$$

EXTRA EXAMPLE

Extra Example

- Determine the internal energy change Δu of hydrogen, in kJ/kg, as it is heated from 200 to 800 K, using
 - a) The empirical specific heat equation as a function of temperature (Table A–2c)
 - b) The cv value at the average temperature (Table A–2b)
 - c) The cv value at room temperature (Table A-2a)

Extra Example

• Solution (a):

$$\bar{c}_{v}(T) = \bar{c}_{p}(T) - R = (a - R) + bT + cT^{2} + dT^{3}$$

- From Table A-2c:
 a = 29.11
 b = -0.1916×10-²
 - \Box c = 0.4003×10⁻⁵
 - \Box d = -0.8704×10⁻⁹

$$\Delta \bar{u} = \int_{1}^{2} \bar{c}_{v}(T) = \left[(a - R) + bT + cT^{2} + dT^{3} \right] dT = 12,487 \frac{kJ}{kmol}$$

$$\Delta u = \frac{12,487 \frac{kJ}{kmol}}{2.016 \ kmol} = 6,194 \ kJ$$

 Solution (b): Using a constant c_p value from Table A-2b at the average temperature of 500 K

$$c_{v,avg} = c_{v @ 500K} = 10.389 \frac{kJ}{kg - K}$$

$$\Delta u = c_{v @ 500K} (T_2 - T_1) = 10.389 \frac{kJ}{kg - K} (800 - 200K) = 6,233 \frac{kJ}{kg}$$

Extra Example

 Solution (c): Using a constant c_p value from Table A-2a at room temperature

$$c_{v,avg} = c_{v @ 300K} = 10.183 \frac{kJ}{kg - K}$$

$$\Delta u = c_{v @ 500K} (T_2 - T_1) = 10.183 \frac{kJ}{kg - K} (800 - 200K) = 6,110 \frac{kJ}{kg}$$