CAE 208 / MMAE 320: Thermodynamics Fall 2023

September 28, 2023 Properties of Pure Substances (4)

Built Environment Research @ III] 🗫 🚓 M 🕂

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 4 is due tonight
 Please submit one file only
 Always look at the solutions posted
- Assignment 5 will be posted next Tuesday
- Midterm is scheduled for October 10

Announcements

• Starting next week, I will gradually introduce the bonus parts for working with coding or the hands-on activity

RECAP

 The saturated liquid states can be connected by a line called saturated liquid line and similarly the saturated vapor line

APPENDIX 1

PROPERTY TABLES AND CHARTS (SI UNITS)

🖾 TABLE A-1	Molar mass, gas constant, and critical-point properties 852
🕑 TABLE A-2	Ideal-gas specific heats of various common gases 853
🕑 TABLE A-3	Properties of common liquids, solids, and foods 856
🕑 TABLE A-4	Saturated water—Temperature table 858
🖾 TABLE A-5	Saturated water—Pressure table 860
🖾 TABLE A-6	Superheated water 862
TABLE A-7	Compressed liquid water 866
TABLE A-8	Saturated ice–water vapor 867
🖾 FIGURE A-9	<i>T-s</i> diagram for water 868
PIGURE A-10	Mollier diagram for water 869
🕑 TABLE A-11	Saturated refrigerant-134a—Temperature table 870
🕑 TABLE A-12	Saturated refrigerant-134a—Pressure table 872
🕑 TABLE A-13	Superheated refrigerant-134a 873
🕑 FIGURE A-14	<i>P-h</i> diagram for refrigerant-134a 875
🕑 TABLE A-15	Properties of saturated water 876
🕑 TABLE A-16	Properties of saturated refrigerant-134a 877
🕑 TABLE A-17	Properties of saturated ammonia 878
🕑 TABLE A-18	Properties of saturated propane 879
🕑 TABLE A-19	Properties of liquids 880
🕑 TABLE A-20	Properties of liquid metals 881
🕑 TABLE A-21	Ideal-gas properties of air 882
🕑 TABLE A-22	Properties of air at 1 atm pressure 884
🕑 TABLE A-23	Properties of gases at 1 atm pressure 885
🕑 TABLE A-24	Properties of solid metals 887
🕑 TABLE A-25	Properties of solid nonmetals 890
🕑 TABLE A-26	Emissivities of surfaces 891
🖾 FIGURE A-27	The Moody chart 893
FIGURE A-28	Nelson–Obert generalized compressibility chart 894

See the references folder on Blackboard

APPENDIX 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

Table A–1E Molar mass, gas constant, and critical-point properties 896 Table A–2E Ideal-gas specific heats of various common gases 897 Table A–3E Properties of common liquids, solids, and foods 900 Table A-4E Saturated water—Temperature table 902 Table A-5E Saturated water—Pressure table 904 Table A–6E Superheated water 906 Table A–7E Compressed liquid water 910 Table A-8E Saturated ice-water vapor 911 Figure A–9E T-s diagram for water 912 Figure A–10E Mollier diagram for water 913 Table A-11E Saturated refrigerant-134a—Temperature table 914 Table A–12E Saturated refrigerant-134a—Pressure table 915 Table A–13E Superheated refrigerant-134a 916 Figure A–14E P-h diagram for refrigerant-134a 918 Table A-15E Properties of saturated water 919 Table A–16E Properties of saturated refrigerant-134a 920 Table A–17E Properties of saturated ammonia 921 Table A–18E Properties of saturated propane 922 Table A–19E Properties of liquids 923 Table A–20E Properties of liquid metals 924 Table A-21E Ideal-gas properties of air 925 Table A-22E Properties of air at 1 atm pressure 927 Table A-23E Properties of gases at 1 atm pressure 928 Table A–24E Properties of solid metals 930 Table A-25E Properties of solid nonmetals 932

See the references folder on Blackboard

())

 Could you show on the T-v or P-v diagram when do we use each table?

 If specific volume or enthalpy is given, how do we determine if the substance is a compressed liquid, saturated liquid, saturated liquid-vapor mixture, saturated vapor, or super heated? For the saturated liquid-vapor mixture, we need to define a new property named "quality"

$$x = \frac{m_{vapor}}{m_{total}}$$

 $m_{total} = m_{liquid} + m_{vapor} = m_f + m_g$

• We can write:

$$v_{avg} = v_f + x v_{fg}$$

$$u_{avg} = u_f + x u_{fg}$$

$$h_{avg} = h_f + x h_{fg}$$

CLASS ACTIVITY

 Determine temperature of water at a state of P = 0.5 MPa and h = 2,890 kJ/kg.

• Solution:

Saturated water—Pressure table

TABLE A-5

Press., Sa P kPa T _{sat}	Sat.	Spec	<i>cific volume,</i> m ³ /kg	Ĺ	Internal ener kJ/kg	gy,	Enthalpy, kJ/kg		
	temp., T _{sat} °C	Sat. liquid, V _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1

• Solution:

on:									
	TABLE A-6								
	Superh	eated water							
	Т	U	и	h	S				
	°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K				
		P	= 0.50 M	Pa (151.83	3°C)				
	Sat.	0.37483	2560.7	2748.1	6.8207				
	200	0.42503	2643.3	2855.8	7.0610				
	250	0.47443	2723.8	2961.0	7.2725				
	300	0.52261	2803.3	3064.6	7.4614				
	350	0.57015	2883.0	3168.1	7.6346				
	400	0.61731	2963.7	3272.4	7.7956				
	500	0.71095	3129.0	3484.5	8.0893				
	600	0.80409	3300.4	3702.5	8.3544				

• Solution:

T (° C)	$h(\frac{kJ}{kg})$
200	2,855.8
т	2,890
250	2,961.0

$$y = mx + b$$

h = mT + b

$$m = \frac{\Delta y}{\Delta x} = \frac{\Delta h}{\Delta T} = \frac{2,961.0 - 2,855.8}{250 - 200} = 2.12$$

• Solution:

Т (° С)	$h(\frac{kJ}{kg})$
200	2,855.8
Т	2,890
250	2,961.0

h = mT + b

 $@T = 200 \ ^{\circ}C \rightarrow h = 2,855.8 = 2.12(200) + b \rightarrow b = 2,431.8$

h = 2.12T + 2431.8

$$h = 2,890 \frac{kJ}{kg} = 2.12T + 2431.8 \rightarrow T = 216.3 \,^{\circ}C$$

Superheated Vapor

 Compared to the saturated vapor, superheated vapor is characterized by

> Lower pressures ($P < P_{sat}$ at a given T) Higher temperatures ($T > T_{sat}$ at a given P) Higher specific volumes ($\upsilon > \upsilon_g$ at a given P or T) Higher internal energies ($u > u_g$ at a given P or T) Higher enthalpies ($h > h_g$ at a given P or T)

COMPRESSED LIQUID

Compressed Liquid

- Compressed liquid tables are not as commonly available (Table A-7)
- In the absence of compressed liquid data, a general approximation is to treat compressed liquid as saturated liquid at the given temperature

Compressed Liquid

• At low to moderate pressures and temperatures, we can say:

$$h \sim h_{f @ T} + v_{f @ T}(P - P_{sat @ T})$$

Compressed Liquid

In general, a compressed liquid is characterized by:

Higher pressures $(P > P_{sat} \text{ at a given } T)$ Lower temperatures $(T < T_{sat} \text{ at a given } P)$ Lower specific volumes $(U < U_f \text{ at a given } P \text{ or } T)$ Lower internal energies $(u < u_f \text{ at a given } P \text{ or } T)$ Lower enthalpies $(h < h_f \text{ at a given } P \text{ or } T)$

CLASS ACTIVITY

 Determine the internal energy of compressed liquid water at 80 °C and 5 MPa, using (a) data from compressed liquid table and (b) saturated liquid data. What is the error involved in the second case.

• Solution:

• Solution:

TABLE A-7										
Compressed liquid water										
Т	U	и	h	S						
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K						
	$P = 5 \text{ MPa} (263.94^{\circ}\text{C})$									
Sat.	0.0012862	1148.1	1154.5	2.9207						
0	0.0009977	0.04	5.03	0.0001						
20	0.0009996	83.61	88.61	0.2954						
40	0.0010057	166.92	171.95	0.5705						
60	0.0010149	250.29	255.36	0.8287						
80	0.0010267	333.82	338.96	1.0723						
100	0.0010410	417.65	422.85	1.3034						

• Solution: TABLE A-4

Saturated	saturated water—lemperature table										
Temp., T°C	Sat.	Specific vol Sat. m ³ /kg		volume, Internal energy, /kg kJ/kg				Enthalpy, kJ/kg			
	press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g		
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9		
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1		
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2		
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3		
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4		
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5		
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6		
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6		
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5		
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4		
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3		
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1		
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8		
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5		
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1		
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6		
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0		

• Solution:

$$Error = \frac{334.94 - 333.82}{333.82} \times 100 = 0.34\%$$

QUIZ

Quiz

Quiz

THE IDEAL-GAS EQUATION OF STATE

Property tables provide very accurate information about the properties, but they are

Bulky

□ Vulnerable to typographical errors

• It would be nice to have a simple relationship

- Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state (there simple and complex ones)
- We used vapor and gas often interchangeably in the first three chapters

 The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state

$$P = R(\frac{T}{v})$$

Pv = RT

Ideal—gas equation of state

• We can define gas constant for each gas:

$$R = \frac{R_u}{M} \qquad \qquad (\frac{kJ}{kg.K} \text{ or } \frac{kPa.m^3}{kg.K})$$

 R_u is the universal gas constant

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

• Examples of gas constant for a few known gases:

Substance	$R, kJ/kg\cdot K$
Air	0.2870
Helium	2.0769
Argon	0.2081
Nitrogen	0.2968

- M is the molar mass
 - The mass of one mole of a substance in grams or the mas of kmol in kilograms
 - □ Or, the mass of 1 lbmol in lbm

(e.g., for Nitrogen we have N = 28 kg/kmol = 28 lbm/lbmol)

• Several variations of the ideal-gas equation of state

$$N = \frac{m}{M}$$

TABLE A-1										
Molar mass, gas constant, and critical-point properties										
Substance	Formula	Molar mass Mkg/kmol	Gas constant Pkl/kg . K*		Critical-p					
Substance	Formula	Molai mass, <i>M</i> kg/kmol	Gas constant, K KJ/Kg · K	Temperature, K	Pressur					
Air	-	28.97	0.2870	132.5	3.					
Ammonia	NH ₃	17.03	0.4882	405.5	11.					
Argon	Ar	39.948	0.2081	151	4.					
Benzene	C_6H_6	78.115	0.1064	562	4.					
Bromine	Br_2	159.808	0.0520	584	10.					
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.					
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.					
Carbon monoxide	СО	28.011	0.2968	133	3.					
Carbon tetrachloride	CCl ₄	153.82	0.05405	556.4	4.					
Chlorine	Cl ₂	70.906	0.1173	417	7.					
Chloroform	CHCl ₃	119.38	0.06964	536.6	5.					
Dichlorodifluoromethane (R-12)	CCl ₂ F ₂	120.91	0.06876	384.7	4					

• Several variations of the ideal-gas equation of state

$$v = -\frac{1}{m}$$
$$P\left(\frac{V}{m}\right) = RT \rightarrow PV = mRT$$

V

• Several variations of the ideal-gas equation of state

$$N = \frac{m}{M}$$

PV = (NM)RT

 $PV = NR_uT$

$$P\left(\frac{V}{N}\right) = R_u T \quad \to P\overline{V} = R_u T$$

• Properties per unit mole are:

ia

 By writing the equation twice for a fixed mass and simplifying we can write:

PV = mRT

 $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

CLASS ACTIVITY

 The gage pressure of an automobile tire is measure to be 210 kPa before a trip and 220 kPa after the trip at a location where the atmospheric pressure is 95 kPa. Assuming the volume of the tire remains constant and the air temperature before the trip is 25 °C, determine air temperature after the trip. • Solution:

$$P_1 = P_{gage,1} + P_{atm} = 210 + 95 = 305 \ kPa$$

$$P_2 = P_{gage,2} + P_{atm} = 220 + 95 = 315 \ kPa$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \frac{315 \ kPa}{305 \ kPa} (25 + 273.15 \ K) = 307.8 \ K = 34.8 \ ^\circ C$$

Is Water an Ideal Gas?

Percentage of error ($[|v_{table} - v_{total} + v_{table}] \times 100$) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with lespercent error.

COMPRESSIBILITY FACTOR – A MEASURE OF OF DEVIATION FROM IDEAL-GAS BEHAVIOR

Compressibility Factor

Percentage of error ($[|v_{table} - v_{ideal} | /v_{table}] \times 100$) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with les percent error.

Compressibility Factor

 Z factor for all gases is approximately the same at the same reduced temperature and pressure due to the principle of corresponding states

$$P_R = \frac{P}{P_{cr}}$$
$$T_R = \frac{T}{T_{cr}}$$

Compressibility Factor

- We can define a "generalized compressibility chart"
- Let's look at a few observations:

CLASS ACTIVITY

 Determine specific volume of refrigeratnt-134a at 1 MPa and 50 °C using (a) the ideal-gas equation of state and (b) the generalized compressibility chart. Compare the values obtained to the actual value of 0.021796 m³/kg and determine the error involved in each case.

• Solution (a):

TABLE A-1						
Molar mass, gas constant, and critic	cal-point properties					
					Critical-point prop	erties
Substance	Formula Mol	ar mass, <i>M</i> kg/kmol	Gas constant, R kJ/kg · K*	Temperature, K	Pressure, MPa	Volume, m ³ /km
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO_2	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF_3CH_2F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCl_3F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

$$v = \frac{RT}{P} = \frac{\left(0.0815 \frac{kJ}{kg.K}\right)(50 + 273.15 K)}{1000 \, kPa} = 0.026325 \frac{m^3}{kg}$$

$$Error = \frac{0.026325 - 0.021796}{0.021796} = 0.208$$

• Solution (b):

$$P_R = \frac{P}{P_{cr}} = \frac{1 MPa}{4.059 MPa} = 0.246$$

Z = 0.84

$$T_R = \frac{T}{T_{cr}} = \frac{323 \ K}{374.2 \ K} = 0.863$$

$$v_{actual} = Zv_{ideal} = (0.84) \left(0.026325 \frac{m^3}{kg} \right) = 0.022113 \frac{m^3}{kg}$$

$$Error = \frac{0.022113 - 0.021796}{0.021796} \sim 0.02$$

CLASS ACTIVITY

- Determine the specific volume of refrigerant-134a vapor at 0.9 MPa and 70°C based on
 - a) The ideal-gas equation
 - b) The generalized compressibility chart
 - c) Data from tables. Also, determine the error involved in the first two cases.

• Solution (a):

TABLE A-1

Molar mass, gas constant, and critical-point properties

Substance	Formula	Molar mass Mkg/kmol	Gas constant RkUkg . K*		Critical-point properties			
Substance	rormula	Wolai mass, W kg/kmoi	Gas constant, K KJ/Kg · K	and, it korke th		Pressure, MPa	Volume, m ³ /kmol	
Propane	C_3H_8	44.097	0.1885		370	4.26	0.1998	
Propylene	C_3H_6	42.081	0.1976		365	4.62	0.1810	
Sulfur dioxide	SO ₂	64.063	0.1298		430.7	7.88	0.1217	
Tetrafluoroethane (R-134a)	CF ₃ CH ₂	F 102.03	0.08149		374.2	4.059	0.1993	
Trichlorofluoromethane (R-11)	CCl_3F	137.37	0.06052		471.2	4.38	0.2478	
Water	H_2O	18.015	0.4615		647.1	22.06	0.0560	
Xenon	Xe	131.30	0.06332		289.8	5.88	0.1186	

$$R = 0.08149 \frac{kJ}{kg - K}$$

 $T_{cr} = 374.2 K$

 $P_{cr} = 4.049 MPa$

• Solution (a):

Pv = RT

$$v = \frac{RT}{P} = \frac{(0.08149 \frac{kJ}{kg - K})(273.15 + 70 K)}{0.9 \times 10^3 kPa} = 0.03105 \frac{m^3}{kg}$$

• Solution (b):

• Solution (b):

$$v = Zv_{ideal} = (0.894) \left(0.03105 \frac{m^3}{kg} \right) = 0.02776 \frac{m^3}{kg}$$

• Solution (c):

TABL	E A-13									
Superheated refrigerant-134a										
T °C	v m ³ /kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	s kJ/kg ∙ K	v m ³ /kg	<i>u</i> kJ/kg	h kJ/kg	s kJ/kg ∙ K		
	$P = 0.80 \text{ MPa} (T_{\text{sat}} = 31.31^{\circ}\text{C})$				$P = 0.90 \text{ MPa} (T_{\text{sat}} = 35.51^{\circ}\text{C})$					
Sat.	0.025645	246.82	267.34	0.9185	0.022686	248.82	269.25	0.9169		
40	0.027035	254.84	276.46	0.9481	0.023375	253.15	274.19	0.9328		
50	0.028547	263.87	286.71	0.9803	0.024809	262.46	284.79	0.9661		
60	0.029973	272.85	296.82	1.0111	0.026146	271.62	295.15	0.9977		
70	0.031340	281.83	306.90	1.0409	0.027413	280.74	305.41	1.0280		
80	0.032659	290.86	316.99	1.0699	0.028630	289.88	315.65	1.0574		
90	0.033941	299.97	327.12	1.0982	0.029806	299.08	325.90	1.0861		