CAE 208 / MMAE 320: Thermodynamics Fall 2023

September 26, 2023 Properties of Pure Substances (3)

Built Environment Research @ III] 🗫 🚓 M 🕂

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 4 is due this coming Thursday
- Midterm is currently scheduled for October 10:
 Should we change the date?
 - □ How should you get ready for the exam?

RECAP

• We always look at the property diagrams in this course

 The saturated liquid states can be connected by a line called saturated liquid line and similarly the saturated vapor line

 The P-v diagram of a pure substance is very much like the T-v diagram but T = constant lines on this diagram have a downward trend

• P-T diagram is known as the phase diagram

APPENDIX 1

PROPERTY TABLES AND CHARTS (SI UNITS)

🖾 TABLE A-1	Molar mass, gas constant, and critical-point properties 852
🕑 TABLE A-2	Ideal-gas specific heats of various common gases 853
🕑 TABLE A-3	Properties of common liquids, solids, and foods 856
🕑 TABLE A-4	Saturated water—Temperature table 858
🖾 TABLE A-5	Saturated water—Pressure table 860
🖾 TABLE A-6	Superheated water 862
TABLE A-7	Compressed liquid water 866
🖾 TABLE A-8	Saturated ice–water vapor 867
PIGURE A-9	<i>T-s</i> diagram for water 868
PIGURE A-10	Mollier diagram for water 869
🕑 TABLE A-11	Saturated refrigerant-134a—Temperature table 870
🖾 TABLE A-12	Saturated refrigerant-134a—Pressure table 872
🖾 TABLE A-13	Superheated refrigerant-134a 873
🕑 FIGURE A-14	<i>P-h</i> diagram for refrigerant-134a 875
🖾 TABLE A-15	Properties of saturated water 876
🖾 TABLE A-16	Properties of saturated refrigerant-134a 877
🕑 TABLE A-17	Properties of saturated ammonia 878
🕑 TABLE A-18	Properties of saturated propane 879
🕑 TABLE A-19	Properties of liquids 880
🕑 TABLE A-20	Properties of liquid metals 881
🕑 TABLE A-21	Ideal-gas properties of air 882
🕑 TABLE A-22	Properties of air at 1 atm pressure 884
🕑 TABLE A-23	Properties of gases at 1 atm pressure 885
🕑 TABLE A-24	Properties of solid metals 887
🕑 TABLE A-25	Properties of solid nonmetals 890
🕑 TABLE A-26	Emissivities of surfaces 891
🕑 FIGURE A-27	The Moody chart 893
FIGURE A-28	Nelson–Obert generalized compressibility chart 894

See the references folder on Blackboard

APPENDIX 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

- Table A–1E Molar mass, gas constant, and critical-point properties 896 Table A–2E Ideal-gas specific heats of various common gases 897 Table A–3E Properties of common liquids, solids, and foods 900 Table A-4E Saturated water—Temperature table 902 Table A-5E Saturated water—Pressure table 904 Table A–6E Superheated water 906 Table A–7E Compressed liquid water 910 Table A-8E Saturated ice-water vapor 911 Figure A–9E T-s diagram for water 912 Figure A–10E Mollier diagram for water 913 Table A–11E Saturated refrigerant-134a—Temperature table 914 Table A–12E Saturated refrigerant-134a—Pressure table 915 Table A–13E Superheated refrigerant-134a 916 Figure A–14E P-h diagram for refrigerant-134a 918 Table A-15E Properties of saturated water 919 Table A–16E Properties of saturated refrigerant-134a 920 Table A–17E Properties of saturated ammonia 921 Table A–18E Properties of saturated propane 922 Table A–19E Properties of liquids 923 Table A–20E Properties of liquid metals 924 Table A-21E Ideal-gas properties of air 925 Table A-22E Properties of air at 1 atm pressure 927 Table A-23E Properties of gases at 1 atm pressure 928 Table A–24E Properties of solid metals 930 Table A-25E
 - Properties of solid nonmetals 932

See the references folder on Blackboard

())

• Table A-4 and Table A-5

TABLE A-4

Saturated water—Temperature table

Tours	Sat.	<i>Specific volume,</i> m ³ /kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
T°C	press., P _{sat} kPa	Sat. liquid, ^v f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	

• Table A-4 and Table A-5

TABLE A-5

Saturated water—Pressure table

5	Sat.	Specific volume, Sat. m ³ /kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
Press., P kPa	P kPa T_{sat} °C	Sat. liquid, ^v f	Sat. vapor, ^v g	Sat. liquid, <i>u_f</i>	Evap., <i>u</i> _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{f 8}	Sat. vapor, h _g	
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	

• Table A-6 for superheated

TABLE A-0	TABLE A-6										
Superheated water											
T ℃	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg ∙ K	v m³/kg		
$P = 0.01 \text{ MPa} (45.81^{\circ}\text{C})^*$						P = 0.05	MPa (81.32°C	C)			
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941		
50	14.867	2443.3	2592.0	8.1741							
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959		
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367		
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724		
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062		
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389		
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027		

• Table A-7 for compressed liquid

TABLE	TABLE A-7											
Compressed liquid water												
T ℃	U m ³ /kg	u kJ/kg	h kJ/kg	s kJ∕kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	U m ³ /kg			
		P = 5 MI	Pa (263.94°C)			$P = 10 { m M}$	IPa (311.00°C)					
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572			
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928			
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951			
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013			
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105			
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221			
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361			
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522			
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708			
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920			

CLASS ACTIVITY

 A mass of 200 g of saturated liquid water is completely vaporized at a constant pressure of 100 kPa. Determine (a) the volume change and (b) the amount of energy transferred to the water.

• Solution:

Sat.			Specific volume, m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			
P kPa	temp., T _{sat} °C	Sat. liquid, U _f	Sat. vapor, U _g	Sat. liquid, <i>u</i> f	Evap., u _{fg}	Sat. vapor, <i>u_g</i>	Sat. liquid, <i>h_f</i>	Evap., h _{f §}	Sat. vapor, h _g		
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7		
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7		
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9		
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4		
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8		
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7		
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7		
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0		
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9		
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3		
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9		
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5		
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6		
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1		
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2		
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4		
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0		

• Solution:

 $v_{fg} = v_g - v_f = 1.6941 - 0.001043 = 1.6931 \, m^3 / kg$

$$\Delta V = m v_{fg} = (0.2 \ kg) \left(1.6931 \frac{m^3}{kg} \right) = 0.3386 \ m^3$$

$$mh_{fg} = (0.2 \ kg) \left(22575.5 \frac{kJ}{kg}\right) = 451.5 \ kJ$$

SATURATED LIQUID-VAPOR MIXTURE

 During a vaporization process, a substance exists as part liquid and part vapor

 For the saturated liquid-vapor mixture, we need to define a new property named "quality"

$$x = \frac{m_{vapor}}{m_{total}}$$

 $m_{total} = m_{liquid} + m_{vapor} = m_f + m_g$

• We can write:

$$V = V_f + V_g$$
$$m_t = m_f + m_g$$
$$v_{avg} = v_f + xv_{fg}$$
$$x = \frac{v_{avg} - v_f}{v_{fg}}$$

• How can we derive this equation for v_{avg} ?

• We can write:

 $v_{avg} = v_f + x v_{fg}$

$$u_{avg} = u_f + uv_{fg}$$

$$h_{avg} = h_f + hv_{fg}$$

CLASS ACTIVITY

 A rigid tank contains 10 kg of water at 90 °C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank.

• Solution:

TABLE A-4										
Saturated water—Temperature table										
Temp	Sat.	S	pecific volume, m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg		
T°C	press., P _{sat} kPa	Sat. liquid, ^v f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	

• Solution:

• Part (b) – Solution 1

$$V = V_f + V_g = m_f v_f + m_g v_g$$

$$V = (8 \ kg) \left(0.001036 \frac{m^3}{kg} \right) + (2 \ kg) \left(2.3593 \frac{m^3}{kg} \right) = 4.73 \ m^3$$

 $V = 4.73 m^3$

• Part (b) – Solution 2:

$$x = \frac{m_g}{m_t} = \frac{2}{2+8} = 0.2$$

$$v = v_f + xv_{fg} = \left(0.001036\frac{m^3}{kg}\right) + (0.2)\left(2.3593 - 0.001036\frac{m^3}{kg}\right) = 0.473\frac{m^3}{kg}$$

$$V = mv = (10 \ kg) \left(0.473 \frac{m^3}{kg} \right) = 4.73 \ m^3$$

CLASS ACTIVITY

 One pound-mass of water fills a 2.29 ft³ rigid container at an initial pressure of 250 psia. The container is then cooled to 100 °F. Determine the initial temperature and final pressure of the water.

• Solution:

TABLE A	–5E									
Saturated	Saturated water—Pressure table									
Drace D	Sat.	Specific ft ³ ,	r volume, /lbm	Internal energy,Bt						
psia	temp., T _{sat} °F	Sat. liquid, U _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., <i>u</i> _{fg}					
1	101.69	0.01614	333.49	69.72	973.99					
2	126.02	0.01623	173.71	94.02	957.45					
3	141.41	0.01630	118.70	109.39	946.90					
4	152.91	0.01636	90.629	120.89	938.97					
5	162.18	0.01641	73.525	130.17	932.53					
190	377.52	0.01833	2.4040	350.24	763.31					
200	381.80	0.01839	2.2882	354.78	759.32					
250	400.97	0.01865	1.8440	375.23	741.02					
300	417.35	0.01890	1.5435	392.89	724.77					
350	431.74	0.01912	1.3263	408.55	709.98					

$$v_i = \frac{V}{m} = \frac{2.29 ft^3}{1 \, lbm} = 2.29 \frac{ft^3}{lbm}$$

 $v_i > v_g$

• Solution:

TABLE A-6E								
Superheated water								
<i>T</i> °F	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/lbm · R				
		<i>P</i> = 250 p	psia (400.	97°F)				
Sat.	1.8440	1116.3	1201.6	1.5270				
450	2.0027	1141.3	1234.0	1.5636				
500	2.1506	1164.1	1263.6	1.5953				
550	2.2910	1185.6	1291.5	1.6237				
600	2.4264	1206.3	1318.6	1.6499				
650	2.5586	1226.8	1345.1	1.6743				

$$\begin{cases} P_1 = 250 \ psia \\ v_1 = 2.29 \ ft^3/lbm \end{cases}$$

• Solution:

$$T_2 = 100 \,^{\circ}F$$

$$v_2 = v_1 = 2.29 ft^3/lbm$$

$$P_2 = P_{sat @ 100 F} = 20.9505 \, psia$$

CLASS ACTIVITY
Determine temperature of water at a state of P = 0.5 MPa and h = 2,890 kJ/kg.

• Solution:

TABLE A-5

Saturated water—Pressure table

Press., <i>P</i> kPa	Sat.	<i>Specific volume,</i> m ³ /kg		i	Internal energy, kJ/kg			<i>Enthalpy,</i> kJ/kg		
	temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, V _g	Sat. liquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	

• Solution:

TABLE A-6								
Superheated water								
T ℃	v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	s kJ/kg ∙ K				
	ŀ	P = 0.50 M	Pa (151.8	3°C)				
Sat.	0.37483	2560.7	2748.1	6.8207				
200	0.42503	2643.3	2855.8	7.0610				
250	0.47443	2723.8	2961.0	7.2725				
300	0.52261	2803.3	3064.6	7.4614				
350	0.57015	2883.0	3168.1	7.6346				
400	0.61731	2963.7	3272.4	7.7956				
500	0.71095	3129.0	3484.5	8.0893				
600	0.80409	3300.4	3702.5	8.3544				

 $T = 216.3 \ ^{\circ}C$

COMPRESSED LIQUID

Compressed Liquid

- Compressed liquid tables are not as commonly available (Table A-7)
- In the absence of compressed liquid data, a general approximation is to treat compressed liquid as saturated liquid at the given temperature

Compressed Liquid

• At low to moderate pressures and temperatures, we can say:

$$h \sim h_{f @ T} + v_{f @ T}(P - P_{sat @ T})$$

Compressed Liquid

In general, a compressed liquid is characterized by:

Higher pressures $(P > P_{sat} \text{ at a given } T)$ Lower temperatures $(T < T_{sat} \text{ at a given } P)$ Lower specific volumes $(U < U_f \text{ at a given } P \text{ or } T)$ Lower internal energies $(u < u_f \text{ at a given } P \text{ or } T)$ Lower enthalpies $(h < h_f \text{ at a given } P \text{ or } T)$

CLASS ACTIVITY

 Determine the internal energy of compressed liquid water at 80 °C and 5 MPa, using (a) data from compressed liquid table and (b) saturated liquid data. What is the error involved in the second case.

• Solution:

• Solution:

TABLE A-7								
Compressed liquid water								
Т	υ	и	h	S				
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K				
		P = 5 MPa	(263.94°C)				
Sat.	0.0012862	1148.1	1154.5	2.9207				
0	0.0009977	0.04	5.03	0.0001				
20	0.0009996	83.61	88.61	0.2954				
40	0.0010057	166.92	171.95	0.5705				
60	0.0010149	250.29	255.36	0.8287				
80	0.0010267	333.82	338.96	1.0723				
100	0.0010410	417.65	422.85	1.3034				

• Solution: TABLE A-4

Saturated	water—Temper	ature table								
T	Sat.	Spe	ecific volume, m³/kg	Int	<i>ernal energ</i> kJ/kg	у,		Enthalpy, kJ/kg		
T°C	press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	

• Solution:

$$Error = \frac{334.94 - 333.82}{333.82} \times 100 = 0.34\%$$

THE IDEAL-GAS EQUATION OF STATE

Property tables provide very accurate information about the properties, but they are

Bulky

□ Vulnerable to typographical errors

• It would be nice to have a simple relationship

- Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state (there simple and complex ones)
- We used vapor and gas often interchangeably in the first three chapters

 The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state

$$P = R(\frac{T}{v})$$

$$Pv = RT$$

Ideal—gas equation of state

• We can define gas constant for each gas:

$$R = \frac{R_u}{M} \qquad \qquad (\frac{kJ}{kg.K} \text{ or } \frac{kPa.m^3}{kg.K})$$

R_u is the universal gas constant

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

• Examples of gas constant for a few known gases:

Substance	$R, kJ/kg\cdot K$
Air	0.2870
Helium	2.0769
Argon	0.2081
Nitrogen	0.2968

- M is the molar mass
 - The mass of one mole of a substance in grams or the mas of kmol in kilograms
 - □ Or, the mass of 1 lbmol in lbm

(e.g., for Nitrogen we have N = 28 kg/kmol = 28 lbm/lbmol)

• Several variations of the ideal-gas equation of state

$$N = \frac{m}{M}$$

TABLE A-1									
Molar mass, gas constant, and critical-point properties									
Substance	Formula	Molar mass Mkg/kmol	Gas constant PkI/kg, K*	Critical-p					
Substance	Pormula	wolar mass, w kg/kmoi	Gas constant, K KJ/Kg · K	Temperature, K	Pressur				
Air	-	28.97	0.2870	132.5	3.				
Ammonia	NH ₃	17.03	0.4882	405.5	11.				
Argon	Ar	39.948	0.2081	151	4.				
Benzene	C_6H_6	78.115	0.1064	562	4.				
Bromine	Br_2	159.808	0.0520	584	10.				
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.				
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.				
Carbon monoxide	СО	28.011	0.2968	133	3.				
Carbon tetrachloride	CCl_4	153.82	0.05405	556.4	4.				
Chlorine	Cl ₂	70.906	0.1173	417	7.				
Chloroform	CHCl ₃	119.38	0.06964	536.6	5.				
Dichlorodifluoromethane (R-12)	CCl ₂ F ₂	120.91	0.06876	384.7	4				

• Several variations of the ideal-gas equation of state

$$v = \frac{V}{m}$$

$$P\left(\frac{V}{m}\right) = RT \to PV = mRT$$

• Several variations of the ideal-gas equation of state

$$N = \frac{m}{M}$$

PV = (NM)RT

$$PV = NR_uT$$

$$P\left(\frac{V}{N}\right) = R_u T \quad \to P\bar{V} = R_u T$$

• Properties per unit mole are:

ia

 By writing the equation twice for a fixed mass and simplifying we can write:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

CLASS ACTIVITY

 The gage pressure of an automobile tire is measure to be 210 kPa before a trip and 220 kPa after the trip at a location where the atmospheric pressure is 95 kPa. Assuming the volume of the tire remains constant and the air temperature before the trip is 25 °C, determine air temperature after the trip. • Solution:

$$P_1 = P_{gage,1} + P_{atm} = 210 + 95 = 305 \ kPa$$

$$P_2 = P_{gage,2} + P_{atm} = 220 + 95 = 315 \ kPa$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \frac{315 \ kPa}{305 \ kPa} (25 + 273.15 \ K) = 307.8 \ K = 34.8 \ ^\circ C$$

Is Water an Ideal Gas?

Percentage of error ($[|v_{table} - v_{tdeal} | /v_{table}] \times 100$) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with lespercent error.

COMPRESSIBILITY FACTOR – A MEASURE OF OF DEVIATION FROM IDEAL-GAS BEHAVIOR

Percentage of error ($[|v_{table} - v_{tdeal} | /v_{table}] \times 100$) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with lespercent error.

 Z factor for all gases is approximately the same at the same reduced temperature and pressure due to the principle of corresponding states

$$P_R = \frac{P}{P_{cr}}$$

$$T_R = \frac{T}{T_{Cr}}$$

• Generalized compressibility chart

• A few observations: 1.1 . 1.0 $T_{R} = 2.00$ 0.9 $T_{R} = 1.50$ 0.8 × × × $T_{R} = 1.30$ 0.7 $Z = \frac{PU}{RT}$ X 0.6 $T_R = 1.20$ 0.5 $T_{R} = 1.10$ Legend: 0.4 × Methane Iso-pentane $T_{R} = 1.00$ • n-Heptane O Ethylene 0.3 ▲ Ethane △ Nitrogen O Propane Carbon dioxide • Water □ n-Butane 0.2 Average curve based on data on hydrocarbons 0.1 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Reduced pressure P_R

CLASS ACTIVITY

 Determine specific volume of refrigeratnt-134a at 1 MPa and 50 °C using (a) the ideal-gas equation of state and (b) the generalized compressibility chart. Compare the values obtained to the actual value of 0.021796 m³/kg and determine the error involved in each case.
Class Activity

• Solution (a):

TABLE A-1						
Molar mass, gas constant, and critic	cal-point properties					
			Gas constant, <i>R</i> kJ/kg · K*	Critical-point properties		
Substance	Formula Molar	mass, M kg/kmol		Temperature, K	Pressure, MPa	Volume, m ³ /km
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO ₂	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF_3CH_2F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCl_3F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

$$v = \frac{RT}{P} = \frac{\left(0.0815 \frac{kJ}{kg.K}\right)(50 + 273.15 K)}{1000 \, kPa} = 0.026325 \frac{m^3}{kg}$$

$$Error = \frac{0.026325 - 0.021796}{0.021796} = 0.208$$

• Solution (b):

$$P_R = \frac{P}{P_{cr}} = \frac{1 MPa}{4.059 MPa} = 0.246$$

Z = 0.84

$$T_R = \frac{T}{T_{cr}} = \frac{323 \ K}{374.2 \ K} = 0.863$$

$$v_{actual} = Zv_{ideal} = (0.84) \left(0.026325 \frac{m^3}{kg} \right) = 0.022113 \frac{m^3}{kg}$$

$$Error = \frac{0.022113 - 0.021796}{0.021796} \sim 0.02$$