CAE 208 / MMAE 320: Thermodynamics Fall 2023

September 21, 2023 Properties of Pure Substances (2)

Built
Environment
Research
@ IIT

Advancing energy, environmental, and
sustainability research within the built environment www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 3 is due tonight
- Assignment 4 is posted, and it is due next Thursday
- Midterm is currently scheduled for October 10. Should we change the date?

RECAP

Recap

- Pure substance: A substance that has a fix chemical composition throughout (e.g., water, nitrogen, carbon dioxide):
\square Does not have to be a single chemical element or compound
\square A mixture of various chemical elements or compounds qualifies as a pure substance as long as the mixture is homogenous
\square A mixture of oil and water is not a pure substance

Recap

- A mixture of two or more phases or a pure substance is still a pure substance as long as the chemical composition of all phases is the same:
\square A mixture of ice and liquid water for example is a pure substance
\square A mixture of liquid and gaseous air is not a pure substance

(a) $\mathrm{H}_{2} \mathrm{O}$

(b) Air

Recap

- We have three phases

\square Solid
\square Liquid
\square Gas

(a)

(b)

(c)

Recap

- A material has several phases:

Heat

Recap

- Phases of a pure substance

Recap

- Phases of a pure substance
- Compressed liquid (subcooled liquid)
\square Saturated liquid
\square Mixture (saturated liquid + saturated vapor)
-Saturated vapor
\square Superheated vapor

Recap

- Now let's create the the T-v process diagram:

SATURATION TEMPERATURE AND SATURATION PRESSURE

Saturation Temperature and Pressure

- Water boils at $100^{\circ} \mathrm{C}$

Is this statement correct?

Saturation Temperature and Pressure

- The temperature at which water starts boiling depends on the pressure and therefore pressure is fixed, so the boiling temperature
- At a given pressure, the temperature at which a pure substance changes phase is called the saturation temperature ($\mathrm{T}_{\text {sat }}$) (e.g., at a pressure of $101.325 \mathrm{kPa}, \mathrm{T}_{\text {sat }}$ is $99.97^{\circ} \mathrm{C}$

What's the saturation pressure at a temperature of $99.7^{\circ} \mathrm{C}$?

Saturation Temperature and Pressure

- For water, the liquid-vapor saturation vapor of a pure substance:

TABLE 4-1

Saturation Temperature and Pressure

- Let's think the previous table:

Saturation Temperature and Pressure

- It takes a large amount of energy to melt a solid or vaporize a liquid. The amount of energy absorbed or released during a phase-change process is called the latent heat
-The amount of energy absorbed during melting is called the latent heat of fusion is equivalent to the amount of energy released during freezing
-The amount of energy absorbed during vaporization is called the latent heat of vaporization is equivalent to the amount of energy released during condensation

Saturation Temperature and Pressure

- Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

TABLE 4-2		
Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude		
Elevation, m	Atmospheric pressure, kPa	Boiling temperature, ${ }^{\circ} \mathrm{C}$
0	101.33	100.0
1,000	89.55	96.5
2,000	79.50	93.3
5,000	54.05	83.3
10,000	26.50	66.3
20,000	5.53	34.7

PROPERTY DIAGRAMS FOR PHASECHANGE PROCESSES

Property Diagrams For Phase-Change Processes

- We always look at the property diagrams in this course

Property Diagrams For Phase-Change Processes

- Critical point is the point at which the saturated liquid and saturated vapor states are identical
\square Critical pressure $\left(\mathrm{P}_{\mathrm{cr}}\right)$
\square Critical temperature $\left(\mathrm{T}_{\mathrm{cr}}\right)$
\square Critical specific volume (v_{cr})

Property Diagrams For Phase-Change Processes

- At pressure above the critical pressure there is not a distinct phase-change process

Property Diagrams For Phase-Change Processes

- For the following materials

Material	$\mathbf{P}_{\mathbf{c r}}(\mathbf{M P a})$	$\mathbf{T}_{\mathbf{c r}}(\mathbf{C})$	$\mathbf{v}_{\mathbf{c r}}\left(\mathbf{m}^{3} / \mathbf{k g}\right)$
Water	22.06	373.95	0.003106
Helium	0.23	-267.85	0.01444

Property Diagrams For Phase-Change Processes

- Table A-1 (see Blackboard the "Resources" folder):

TABLE A-1						
Molar mass, gas constant, and critical-point properties						
Substance	Formula	Molar mass, $M \mathrm{~kg} / \mathrm{kmol}$	Gas constant, $R \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ *	Critical-point properties		
				Temperature, K	Pressure, MPa	Volume, $\mathrm{m}^{3} / \mathrm{kmol}$
Air	-	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_{3}	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.115	0.1064	562	4.92	0.2603
Bromine	Br_{2}	159.808	0.0520	584	10.34	0.1355

Property Diagrams For Phase-Change Processes

- The saturated liquid states can be connected by a line called saturated liquid line and similarly the saturated vapor line

Property Diagrams For Phase-Change Processes

- Repeat the experiment to get the P-v diagram

Heat

Property Diagrams For Phase-Change Processes

- The P-v diagram of a pure substance is very much like the Tv diagram but $T=$ constant lines on this diagram have a downward trend

Property Diagrams For Phase-Change Processes

- Extending the diagram to include solid phase:

(a) $P-\cup$ diagram of a substance that contracts on freezing

(b) $P-\cup$ diagram of a substance that expands on freezing (such as water)

Property Diagrams For Phase-Change Processes

- The states on the triple line of a substance have the same pressure and temperature but different specific volumes

Property Diagrams For Phase-Change Processes

- Triple point temperatures and pressures of various substances:

TABLE 4-3

Triple-point temperatures and pressures of various substances

Substance	Formula	$T_{\text {tp }}, \mathrm{K}$	$P_{\text {tp }}, \mathrm{kPa}$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	192.4	120
Ammonia	NH_{3}	195.40	6.076
Argon	A	83.81	68.9
Carbon (graphite)	C	3900	10,100
Carbon dioxide	CO_{2}	216.55	517
Carbon monoxide	CO_{2}	68.10	15.37
Deuterium	D_{2}	18.63	17.1
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	89.89	8×10^{-4}
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	104.0	0.12
Helium 4 (λ point $)$	He_{2}	2.19	5.1
Hydrogen	H_{2}	13.84	7.04
Hydrogen chloride	HCl^{2}	158.96	13.9
Mercury	Hg_{2}	234.2	1.65×10^{-7}
Water	$\mathrm{H}_{2} \mathrm{O}$	273.16	0.61
Xenon	Xe	161.3	81.5
Zinc	Zn	692.65	0.065

Property Diagrams For Phase-Change Processes

- There are two ways a substance can pass from the solid to the vapor phase:

Ilt melts first into a liquid and subsequently evaporates
It evaporates directly without melting first known as sublimation (occurs below at the triple-point value since a pure substance cannot exist in the liquid phase at those pressure)

Property Diagrams For Phase-Change Processes

- P-T diagram is known as the phase diagram

Property Diagrams For Phase-Change Processes

- P-v-T diagram

CLASS ACTIVITY

Class Activity

- What's the common phase change in the atmospheric pressure for CO_{2} ?

Class Activity

- Another example for Nitrogen:

Class Activity

- Similarly for Nitrogen:

PROPERTY TABLES

Property Tables

- For most substances, the relationships among thermodynamics properties are too complex to be expressed by simple equations
- We usually use a combination of measurable properties
- We rely on tables and a lot times we separate table for each region

Property Tables

APPENDIX 1

PROPERTY TABLES AND CHARTS（SI UNITS）

－TABLE A－1	Molar mass，gas constant，and critical－point properties 852
TABLE A－2	Ideal－gas specific heats of various common gases 853
TABLE A－3	Properties of common liquids，solids，and foods 856
TABLE A－4	Saturated water－Temperature table 858
T TABLE A－5	Saturated water－Pressure table 860
TABLE A－6	Superheated water 862
TABLE A－7	Compressed liquid water 866
T TABLE A－8	Saturated ice－water vapor 867
团 FIGURE A－9	T－s diagram for water 868
\square FIGURE A－10	Mollier diagram for water 869
TABLE A－11	Saturated refrigerant－134a－Temperature table 870
TABLE A－12	Saturated refrigerant－134a－Pressure table 872
团 TABLE A－13	Superheated refrigerant－134a 873
\square FIGURE A－14	P－h diagram for refrigerant－134a 875
\TABLE A－15	Properties of saturated water 876
囚 TABLE A－16	Properties of saturated refrigerant－134a 877
TABLE A－17	Properties of saturated ammonia 878
TABLE A－18	Properties of saturated propane 879
\TABLE A－19	Properties of liquids 880
，TABLE A－20	Properties of liquid metals 881
TABLE A－21	Ideal－gas properties of air 882
TABLE A－22	Properties of air at 1 atm pressure 884
，TABLE A－23	Properties of gases at 1 atm pressure 885
TABLE A－24	Properties of solid metals 887
TABLE A－25	Properties of solid nonmetals 890
T TABLE A－26	Emissivities of surfaces 891
\checkmark FIGURE A－27	The Moody chart 893
FIGURE A－28	Nelson－Obert generalized compressibility chart 894

Property Tables

APPENDIX 2

PROPERTY TABLES AND CHARTS（ENGLISH UNITS）

Table A－1E	Molar mass，gas constant，and critical－point properties 896
囚 Table A－2E	Ideal－gas specific heats of various common gases 897
囚 Table A－3E	Properties of common liquids，solids，and foods 900
T Table A－4E	Saturated water－Temperature table 902
园 Table A－5E	Saturated water－Pressure table 904
，Table A－6E	Superheated water 906
\checkmark Table A－7E	Compressed liquid water 910
\ Table A－8E	Saturated ice－water vapor 911
系 Figure A－9E	T－s diagram for water 912
，Figure A－10E	Mollier diagram for water 913
T Table A－11E	Saturated refrigerant－134a－Temperature table 914
团 Table A－12E	Saturated refrigerant－134a－Pressure table 915
，Table A－13E	Superheated refrigerant－134a 916
圂 Figure A－14E	P－h diagram for refrigerant－134a 918
\checkmark Table A－15E	Properties of saturated water 919
저 Table A－16E	Properties of saturated refrigerant－134a 920
团 Table A－17E	Properties of saturated ammonia 921
Table A－18E	Properties of saturated propane 922
\checkmark Table A－19E	Properties of liquids 923
\checkmark T Table A－20E	Properties of liquid metals 924
，	Ideal－gas properties of air 925
\checkmark Table A－22E	Properties of air at 1 atm pressure 927
저 Table A－23E	Properties of gases at 1 atm pressure 928
저 Table A－24E	Properties of solid metals 930
，＜Table A－25E	Properties of solid nonmetals 932

See the references folder on Blackboard

Property Tables

- For certain processes (e.g., power generation and refrigeration), a property is defined named enthalpy which is a combination of

$$
\begin{aligned}
& h=u+P v \\
& H=U+P V
\end{aligned}
$$

Property Tables

- Table A-4 and Table A-5

$$
\begin{aligned}
& v_{f g}=v_{g}-v_{f} \\
& h_{f g}=h_{g}-h_{f}
\end{aligned}
$$

Property Tables

- Table A-4 and Table A-5

TABLE A-4

Saturated water-Temperature table

Temp.,$T^{\circ} \mathrm{C}$	Sat. press., $P_{\text {sat }} \mathrm{kPa}$	Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, kJ/kg			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$		
		Sat. liquid, v_{f}	Sat. vapor, ${ }^{v}{ }_{g}$	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3

Property Tables

- Table A-4 and Table A-5

TABLE A-5									
Saturated water-Pressure table									
Press., $P \mathrm{kPa}$	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, $\mathrm{kJ} / \mathrm{kg}$			Enthalpy, kJ/kg		
		Sat. liquid, v_{f}	Sat. vapor, v_{8}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{s}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor h_{g}
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7

Property Tables

- Table A-6 for superheated

TABLE A-6

Superheated water

T c C	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h $\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	h kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$
	$P=0.01 \mathrm{MPa}\left(45.81^{\circ} \mathrm{C}\right)^{*}$				$P=0.05 \mathrm{MPa}\left(81.32^{\circ} \mathrm{C}\right)$				
Sat. ${ }^{\dagger}$	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941
50	14.867	2443.3	2592.0	8.1741					
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027

Property Tables

- Table A-7 for compressed liquid

TABLE A-7									
Compressed liquid water									
$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & u \\ & \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	h kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	h kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$
	$P=5 \mathrm{MPa}\left(263.94{ }^{\circ} \mathrm{C}\right)$				$P=10 \mathrm{MPa}\left(311.00^{\circ} \mathrm{C}\right)$				
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920

Property Tables

- Let's look at at T-v diagram

CLASS ACTIVITY

Class Activity

- A rigid tank contains 50 kg of saturated liquid water at $90^{\circ} \mathrm{C}$. Determine the pressure in the tank and the volume of the tank.

Class Activity

- Solution:

TABLE A-4									
Saturated water-Temperature table									
	Sat.	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy,$\mathrm{kJ} / \mathrm{kg}$			Enthalpy,$\mathrm{kJ} / \mathrm{kg}$		
$T^{\circ} \mathrm{C}$	press., $P_{\text {sat }} \mathrm{kPa}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	$\begin{aligned} & \text { Evap., } \\ & h_{f g} \end{aligned}$	Sat. vapor, h_{g}
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6

Class Activity

- Solution:

$$
\begin{aligned}
& P=P_{\text {sat at } 90^{\circ} \mathrm{C}}=79.183 \mathrm{kPa} \\
& v=v_{f \text { at } 90^{\circ} \mathrm{C}}=0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{aligned}
$$

$V=(50 \mathrm{~kg})\left(0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.0518 \mathrm{~m}^{3}$

CLASS ACTIVITY

Class Activity

- A piston-cylinder device contains $2 \mathrm{ft}^{3}$ of saturated water vapor at 50-psia pressure. Determine the temperature and the mass of the vapor inside the cylinder

Class Activity

- Solution:

TABLE A-5E												
Saturated water-Pressure table												
Press., P psia	$\begin{aligned} & \text { Sat. temp., } T_{\text {sat }} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	Specific volume, $\mathrm{ft}^{3} / \mathrm{lbm}$		Internal energy, Btu/lbm			Enthalpy, Btu/lbm			Entropy, Btu/lbm • R		
		Sat. liquid, v_{f}	Sat. vapor, U_{g}	Sat. liquid, u_{f}	Evap., u_{f}	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}	Sat. liquid, s_{f}	Evap., $s_{f g}$	Sat. vapot s_{g}
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35	259.25	0.01708	11.901	227.92	862.19	1090.1	228.03	939.16	1167.2	0.38093	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	856.09	1092.1	236.14	933.69	1169.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588

Class Activity

- Solution:

$$
\begin{aligned}
& T=T_{\text {sat at } 50 \text { psia }}=280.99^{\circ} \mathrm{F} \\
& v=v_{\text {g at } 50 \text { psia }}=8.5175 \frac{\mathrm{ft}^{3}}{\mathrm{lbm}} \\
& m=\frac{V}{v}=\frac{2 f t^{3}}{8.5175 \frac{f t^{3}}{l b m}}=0.235 \mathrm{lbm}
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- A mass of 200 g of saturated liquid water is completely vaporized at a constant pressure of 100 kPa . Determine (a) the volume change and (b) the amount of energy transferred to the water

$$
v_{f g}=v_{g}-v_{f}=1.6941-0.001043=1.6931 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\Delta V=m v_{f g}=(0.2 \mathrm{~kg})\left(1.6931 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.3386 \mathrm{~m}^{3}
$$

$$
m h_{f g}=(0.2 \mathrm{~kg})\left(22575.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=451.5 \mathrm{~kJ}
$$

Class Activity

- Solution:

Press.,$P \mathrm{kPa}$	$\begin{gathered} \text { Sat. } \\ \text { temp., } \\ T_{\text {sat }}{ }^{\circ} \mathrm{C} \end{gathered}$	Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy,$\mathrm{kJ} / \mathrm{kg}$			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$		
		Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid. u_{f}	$\begin{aligned} & \text { Evap., } \\ & u_{f g} \end{aligned}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0

Class Activity

- Solution:

$$
\begin{gathered}
v_{f g}=v_{g}-v_{f}=1.6941-0.001043=1.6931 \mathrm{~m}^{3} / \mathrm{kg} \\
\Delta V=m v_{f g}=(0.2 \mathrm{~kg})\left(1.6931 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.3386 \mathrm{~m}^{3}
\end{gathered}
$$

$$
m h_{f g}=(0.2 \mathrm{~kg})\left(22575.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=451.5 \mathrm{~kJ}
$$

SATURATED LIQUID-VAPOR MIXTURE

Saturated Liquid-Vapor Mixture

- During a vaporization process, a substance exists as part liquid and part vapor

Saturated Liquid-Vapor Mixture

- During a vaporization process, a substance exists as part liquid and part vapor

Saturated Liquid-Vapor Mixture

- Quality is

Saturated Liquid-Vapor Mixture

- We can write:

$$
\begin{aligned}
& V=V_{f}+V_{g} \\
& m_{t}=m_{f}+m_{g}
\end{aligned}
$$

$$
\begin{aligned}
& v_{a v g}=v_{f}+x v_{f g} \\
& x=\frac{v_{a v g}-v_{f}}{v_{f g}}
\end{aligned}
$$

Saturated Liquid-Vapor Mixture

- We can write:

$$
\begin{aligned}
& v_{a v g}=v_{f}+x v_{f g} \\
& u_{a v g}=u_{f}+u v_{f g} \\
& h_{a v g}=h_{f}+h v_{f g}
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- A rigid tank contains 10 kg of water at $90^{\circ} \mathrm{C}$. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank

Class Activity

- Solution:

TABLE A-4									
Saturated water-Temperature table									
Temp.,$T^{\circ} \mathrm{C}$	Sat. press., $P_{\text {sat }} \mathrm{kPa}$	Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy,$\mathrm{kJ} / \mathrm{kg}$			Enthalpy,$\mathrm{kJ} / \mathrm{kg}$		
		Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	$\begin{aligned} & \text { Evap., } \\ & u_{f g} \end{aligned}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	or,
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6

Class Activity

- Part (b) - Solution 1

$$
\begin{aligned}
& V=V_{f}+V_{g}=m_{f} v_{f}+m_{g} v_{g} \\
& V=(8 \mathrm{~kg})\left(0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+(2 \mathrm{~kg})\left(2.3593 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=4.73 \mathrm{~m}^{3} \\
& V=4.73 \mathrm{~m}^{3}
\end{aligned}
$$

Class Activity

- Part (b) - Solution 2:

$$
\begin{aligned}
& x=\frac{m_{g}}{m_{t}}=\frac{2}{2+8}=0.2 \\
& v=v_{f}+x v_{f g}=\left(0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+(0.2)\left(2.3593-0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.473 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& V=m v=(10 \mathrm{~kg})\left(0.473 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=4.73 \mathrm{~m}^{3}
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- One pound-mass of water fills a $2.29 \mathrm{ft}^{3}$ rigid container at an initial pressure of 150 psia. The container is then cooled to $100^{\circ} \mathrm{F}$. Determine the initial temperature and final pressure of the water.

Class Activity

- Solution:

$$
v_{i}=\frac{V}{m}=\frac{2.29 \mathrm{ft}^{3}}{1 \mathrm{lbm}}=2.29 \frac{\mathrm{ft}^{3}}{\mathrm{lbm}}
$$

TABLE A-5E
 Saturated water-Pressure table

	Specific volume, $\mathrm{ft}^{3} / \mathrm{lbm}$					Internal energy,Bt	
Press., P psia	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{F}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$		
1	101.69	0.01614	333.49	69.72	973.99		
2	126.02	0.01623	173.71	94.02	957.45		
3	141.41	0.01630	118.70	109.39	946.90		
4	152.91	0.01636	90.629	120.89	938.97		
5	162.18	0.01641	73.525	130.17	932.53		
190	377.52	0.01833	2.4040	350.24	763.31		
200	381.80	0.01839	2.2882	354.78	759.32		
250	400.97	0.01865	1.8440	375.23	741.02		
300	417.35	0.01890	1.5435	392.89	724.77		
350	431.74	0.01912	1.3263	408.55	709.98		

$$
v_{i}>v_{g}
$$

Class Activity

- Solution:

TABLE A-6E				
Superheated water				
$T^{\circ} \mathrm{F}$	$\mathrm{ft}^{3} / \mathrm{lbm}$	u Btu/lbm	h Btu/lbm	$\mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$
	$P=250 \mathrm{psia}\left(400.97^{\circ} \mathrm{F}\right)$			
Sat.	1.8440	1116.3	1201.6	1.5270
450	2.0027	1141.3	1234.0	1.5636
500	2.1506	1164.1	1263.6	1.5953
550	2.2910	1185.6	1291.5	1.6237
600	2.4264	1206.3	1318.6	1.6499
650	2.5586	1226.8	1345.1	1.6743

$$
\left\{\begin{array}{c}
P_{1}=250 \mathrm{psia} \\
v_{1}=2.29 \mathrm{ft}^{3} / \mathrm{lbm}
\end{array}\right.
$$

Class Activity

- Solution:

$$
\begin{aligned}
& T_{2}=100^{\circ} \mathrm{F} \\
& v_{2}=v_{1}=2.29 \mathrm{ft}^{3} / \mathrm{lbm}
\end{aligned}
$$

$$
P_{2}=P_{\text {sat @ } 100 F}=20.9505 \text { psia }
$$

