CAE 208 / MMAE 320: Thermodynamics Fall 2023

September 21, 2023 Properties of Pure Substances (2)

Built Environment Research @ III] 🗫 🚓 M 🕂

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 3 is due tonight
- Assignment 4 is posted, and it is due next Thursday
- Midterm is currently scheduled for October 10. Should we change the date?

RECAP

- Pure substance: A substance that has a fix chemical composition throughout (e.g., water, nitrogen, carbon dioxide):
 - Does not have to be a single chemical element or compound
 - A mixture of various chemical elements or compounds qualifies as a pure substance as long as the mixture is homogenous
 - □ A mixture of oil and water is not a pure substance

- A mixture of two or more phases or a pure substance is still a pure substance as long as the chemical composition of all phases is the same:
 - A mixture of ice and liquid water for example is a pure substance
 - A mixture of liquid and gaseous air is not a pure substance

Recap

- We have three phases
 Solid
 Liquid
 - **G**as

• A material has several phases:

• Phases of a pure substance

Recap

• Phases of a pure substance

Compressed liquid (subcooled liquid)

□ Saturated liquid

□ Mixture (saturated liquid + saturated vapor)

□ Saturated vapor

□ Superheated vapor

• Now let's create the the T-v process diagram:

SATURATION TEMPERATURE AND SATURATION PRESSURE

• Water boils at 100 °C

Is this statement correct?

 The temperature at which water starts boiling depends on the pressure and therefore pressure is fixed, so the boiling temperature

 At a given pressure, the temperature at which a pure substance changes phase is called the saturation temperature (T_{sat}) (e.g., at a pressure of 101.325 kPa, T_{sat} is 99.97 °C

What's the saturation pressure at a temperature of 99.7 °C?

• For water, the liquid-vapor saturation vapor of a pure substance:

 P_{sat} , kPa

	TABLE 4–1				
	Saturation (or vapor) pressure of water at various temperatures				
	Temperature T, °C	Saturation pressure P_{sat} , kPa			
	-10	0.260			
	-5	0.403			
	0	0.611			
	5	0.872			
	10	1.23			
	15	1.71			
	20	2.34			
	25	3.17			
1	30	4.25			
	40	7.38			
	50	12.35			
	100	101.3 (1 atm)			
	150	475.8			
	200	1554			
	250	3973			
100 150 200 T_{sat} ,°C	300	8581			

• Let's think the previous table:

- It takes a large amount of energy to melt a solid or vaporize a liquid. The amount of energy absorbed or released during a phase-change process is called the *latent heat*
 - The amount of energy absorbed during melting is called the *latent heat of fusion* is equivalent to the amount of energy released during freezing
 - □ The amount of energy absorbed during vaporization is called the *latent heat of vaporization* is equivalent to the amount of energy released during condensation

• Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

TABLE 4–2				
Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude				
Elevation, m	Atmospheric pressure, kPa	Boiling temperature, °C		
0	101.33	100.0		
1,000	89.55	96.5		
2,000	79.50	93.3		
5,000	54.05	83.3		
10,000	26.50	66.3		
20,000	5.53	34.7		

PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES

• We always look at the property diagrams in this course

 Critical point is the point at which the saturated liquid and saturated vapor states are identical

 \Box Critical pressure (P_{cr})

 \Box Critical temperature (T_{cr})

□ Critical specific volume (v_{cr})

• At pressure above the critical pressure there is not a distinct phase-change process

• For the following materials

Material	Р _{сг} (МРа)	T _{cr} (C)	v _{cr} (m³/kg)
Water	22.06	373.95	0.003106
Helium	0.23	-267.85	0.01444

• Table A-1 (see Blackboard the "Resources" folder):

TABLE A-1						
Molar mass, gas constant, and critical-point properties						
Substance	Formula	Molar mass, <i>M</i> kg/kmol	Gas constant, <i>R</i> kJ/kg · K*	Critical-point properties		
	Torindia	Formula World Indess, M Kg/Killor		Temperature, K	Pressure, MPa	Volume, m ³ /kmol
Air	-	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH ₃	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br_2	159.808	0.0520	584	10.34	0.1355

 The saturated liquid states can be connected by a line called saturated liquid line and similarly the saturated vapor line

Repeat the experiment to get the P-v diagram

 The P-v diagram of a pure substance is very much like the Tv diagram but T = constant lines on this diagram have a downward trend

• Extending the diagram to include solid phase:

(a) P-U diagram of a substance that contracts on freezing

(b) P-U diagram of a substance that expands on freezing (such as water)

• The states on the triple line of a substance have the same pressure and temperature but different specific volumes

 Triple point temperatures and pressures of various substances:

TABLE 4–3					
Triple-point temperatures and pressures of various substances					
Substance	Formula	<i>Т</i> _{tp} , К	P _{tp} , kPa		
Acetylene	C_2H_2	192.4	120		
Ammonia	NH ₃	195.40	6.076		
Argon	А	83.81	68.9		
Carbon (graphite)	С	3900	10,100		
Carbon dioxide	CO ₂	216.55	517		
Carbon monoxide	CO	68.10	15.37		
Deuterium	D_2	18.63	17.1		
Ethane	C_2H_6	89.89	8×10^{-4}		
Ethylene	C_2H_4	104.0	0.12		
Helium 4 (λ point)	He	2.19	5.1		
Hydrogen	H_2	13.84	7.04		
Hydrogen chloride	HCl	158.96	13.9		
Mercury	Hg	234.2	1.65×10^{-7}		
Water	H_2O	273.16	0.61		
Xenon	Xe	161.3	81.5		
Zinc	Zn	692.65	0.065		

 There are two ways a substance can pass from the solid to the vapor phase:

□ It melts first into a liquid and subsequently evaporates

It evaporates directly without melting first known as sublimation (occurs below at the triple-point value since a pure substance cannot exist in the liquid phase at those pressure)

• P-T diagram is known as the phase diagram

• P-v-T diagram

CLASS ACTIVITY

What's the common phase change in the atmospheric pressure for CO₂?

Class Activity

• Another example for Nitrogen:

• Similarly for Nitrogen:

PROPERTY TABLES

- For most substances, the relationships among thermodynamics properties are too complex to be expressed by simple equations
- We usually use a combination of measurable properties
- We rely on tables and a lot times we separate table for each region

APPENDIX 1

PROPERTY TABLES AND CHARTS (SI UNITS)

🕑 TABLE A-1	Molar mass, gas constant, and critical-point properties 852
🖾 TABLE A-2	Ideal-gas specific heats of various common gases 853
🕑 TABLE A-3	Properties of common liquids, solids, and foods 856
🕑 TABLE A-4	Saturated water—Temperature table 858
🖾 TABLE A-5	Saturated water—Pressure table 860
🖾 TABLE A-6	Superheated water 862
🕑 TABLE A-7	Compressed liquid water 866
TABLE A-8	Saturated ice–water vapor 867
🖾 FIGURE A-9	<i>T-s</i> diagram for water 868
🕑 FIGURE A-10	Mollier diagram for water 869
🕑 TABLE A-11	Saturated refrigerant-134a—Temperature table 870
🖾 TABLE A-12	Saturated refrigerant-134a—Pressure table 872
🖾 TABLE A-13	Superheated refrigerant-134a 873
FIGURE A-14	<i>P-h</i> diagram for refrigerant-134a 875
🖾 TABLE A-15	Properties of saturated water 876
🖾 TABLE A-16	Properties of saturated refrigerant-134a 877
🕑 TABLE A-17	Properties of saturated ammonia 878
🕑 TABLE A-18	Properties of saturated propane 879
🖾 TABLE A-19	Properties of liquids 880
🖾 TABLE A-20	Properties of liquid metals 881
🕑 TABLE A-21	Ideal-gas properties of air 882
🖾 TABLE A-22	Properties of air at 1 atm pressure 884
🖾 TABLE A-23	Properties of gases at 1 atm pressure 885
🕑 TABLE A-24	Properties of solid metals 887
🕑 TABLE A-25	Properties of solid nonmetals 890
🖾 TABLE A-26	Emissivities of surfaces 891
🖾 FIGURE A-27	The Moody chart 893
PIGURE A-28	Nelson–Obert generalized compressibility chart 894

See the references folder on Blackboard

APPENDIX 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

Table A–1E Molar mass, gas constant, and critical-point properties 896 Table A–2E Ideal-gas specific heats of various common gases 897 Table A–3E Properties of common liquids, solids, and foods 900 Table A-4E Saturated water—Temperature table 902 Table A-5E Saturated water—Pressure table 904 Table A–6E Superheated water 906 Table A-7E Compressed liquid water 910 Table A-8E Saturated ice-water vapor 911 Figure A–9E T-s diagram for water 912 Figure A–10E Mollier diagram for water 913 Table A–11E Saturated refrigerant-134a—Temperature table 914 Table A–12E Saturated refrigerant-134a—Pressure table 915 Table A–13E Superheated refrigerant-134a 916 Figure A–14E P-h diagram for refrigerant-134a 918 Table A-15E Properties of saturated water 919 Table A–16E Properties of saturated refrigerant-134a 920 Table A–17E Properties of saturated ammonia 921 Table A–18E Properties of saturated propane 922 Table A–19E Properties of liquids 923 Table A–20E Properties of liquid metals 924 Table A-21E Ideal-gas properties of air 925 Table A-22E Properties of air at 1 atm pressure 927 Table A-23E Properties of gases at 1 atm pressure 928 Table A–24E Properties of solid metals 930 Table A-25E Properties of solid nonmetals 932

See the references folder on Blackboard

())

 For certain processes (e.g., power generation and refrigeration), a property is defined named enthalpy which is a combination of

$$h = u + Pv$$

$$H = U + PV \tag{42}$$

• Table A-4 and Table A-5

$$v_{fg} = v_g - v_f$$

$$h_{fg} = h_g - h_f$$

		Sat.	-	c volume ³ /kg
	Temp °C T	. press. kPa P _{sat}	Sat. liquid U _f	Sat. vapor U_g
	85 90 95 ↑	57.868 70.183 84.609	0.001032 0.001036 0.001040	2.3593
Те	emperatu	Ire	Specific volume of saturated liquid	
	sa	orrespond turation essure	ing	Specific volume of saturated vapor

• Table A-4 and Table A-5

TABLE A-4

Saturated water—Temperature table

Temp	Temp., Sat.		Specific volume, m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg		
T°C	press., P _{sat} kPa	Sat. liquid, ^v f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h_{fg}	Sat. vapor, h _g	
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	

• Table A-4 and Table A-5

TABLE A-5

Saturated water-Pressure table

Davas	Sat.	Specific volume, m ³ /kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
Press., <i>P</i> kPa	temp., T _{sat} °C	Sat. liquid, ^v f	Sat. vapor, v _g	Sat. liquid, <i>u</i> f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	

• Table A-6 for superheated

TABLE A-	-6								
Superhea	ted water								
T ℃	v m³/kg	<i>u</i> kJ/kg	h kJ/kg	s kJ/kg · K	u m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg ∙ K	v m ³ /kg
		P = 0.01 N	⁄IPa (45.81°C)*		P = 0.05	MPa (81.32°C	2)	
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941
50	14.867	2443.3	2592.0	8.1741					
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027

• Table A-7 for compressed liquid

TABLE	A7								
Compr	essed liquid water								
T ℃	U m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg ∙ K	v m³/kg
		P = 5 M	Pa (263.94°C)			$P = 10 { m M}$	IPa (311.00°C)		
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.000992
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.000995
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.001070
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.001092

• Let's look at at T-v diagram

CLASS ACTIVITY

A rigid tank contains 50 kg of saturated liquid water at 90 °C.
 Determine the pressure in the tank and the volume of the tank.

• Solution:

TABLE A-4										
Saturated water—Temperature table										
Temp., Sat.		Specific volume, m ³ /kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
T°C	press., P _{sat} kPa	Sat. liquid, ^v f	Sat. vapor, ^v g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	

• Solution:

$$P = P_{sat at 90 \circ C} = 79.183 \ kPa$$

$$v = v_{f \ at \ 90 \ ^{\circ}C} = 0.001036 \frac{m^3}{kg}$$

$$V = (50kg) \left(0.001036 \frac{m^3}{kg} \right) = 0.0518 \ m^3$$

CLASS ACTIVITY

 A piston-cylinder device contains 2 ft³ of saturated water vapor at 50-psia pressure. Determine the temperature and the mass of the vapor inside the cylinder

• Solution:

Saturated w	ater—Pressure table											
		Specific vol	<i>ume,</i> ft ³ /lbm	Inter	mal energy,B	tu/lbm	E	nthalpy, Btu/	lbm	Enti	ropy, Btu/Ibi	m · R
Press., P psia	Sat. temp., T _{sat} °F	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapo
		U _f	Ug	u_f	u _{fg}	u_g	h_{f}	h_{fg}	h_g	S_f	Sfg	s_g
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35	259.25	0.01708	11.901	227.92	862.19	1090.1	228.03	939.16	1167.2	0.38093	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	856.09	1092.1	236.14	933.69	1169.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588

• Solution:

V

$$T = T_{sat \ at \ 50 \ psia} = 280.99 \ ^{\circ}F$$

$$v = v_{g \ at \ 50 \ psia} = 8.5175 \frac{ft^3}{lbm}$$

$$m = \frac{V}{v} = \frac{2 \ ft^3}{8.5175 \frac{ft^3}{lbm}} = 0.235 \ lbm$$

CLASS ACTIVITY

 A mass of 200 g of saturated liquid water is completely vaporized at a constant pressure of 100 kPa. Determine (a) the volume change and (b) the amount of energy transferred to the water

$$v_{fg} = v_g - v_f = 1.6941 - 0.001043 = 1.6931 \, m^3 / kg$$

$$\Delta V = mv_{fg} = (0.2 \, kg) \left(1.6931 \frac{m^3}{kg} \right) = 0.3386 \, m^3$$

$$mh_{fg} = (0.2 \, kg) \left(22575.5 \frac{kJ}{kg} \right) = 451.5 \, kJ$$

100

 U_g

• Solution:

Deces	Sat.	S	Specific volume, m ³ /kg		Internal energ kJ/kg	0;		Enthalpy, kJ/kg	
Press., <i>P</i> kPa	temp	Sat. liquid, V _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u ₈	Sat. liquid, h _f	Evap., h _{f §}	Sat. vapor, h _g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0

• Solution:

 $v_{fg} = v_g - v_f = 1.6941 - 0.001043 = 1.6931 \, m^3 / kg$

$$\Delta V = m v_{fg} = (0.2 \ kg) \left(1.6931 \frac{m^3}{kg} \right) = 0.3386 \ m^3$$

$$mh_{fg} = (0.2 \ kg) \left(22575.5 \frac{kJ}{kg}\right) = 451.5 \ kJ$$

SATURATED LIQUID-VAPOR MIXTURE

 During a vaporization process, a substance exists as part liquid and part vapor

$$m_{total} = m_{liquid} + m_{vapor} = m_f + m_g$$

 During a vaporization process, a substance exists as part liquid and part vapor

• Quality is

• We can write:

 $V = V_f + V_g$ $m_t = m_f + m_g$ $v_{avg} = v_f + x v_{fg}$ $x = \frac{v_{avg} - v_f}{v_{fg}}$

P or *T*

$$x = \frac{\overline{AB}}{\overline{AC}}$$

$$A \underbrace{\bigcup_{avg} - \bigcup_{f}}_{U_{avg}} B \underbrace{\bigcup_{fg}}_{U_{g}} \bigcup_{g} \bigcup_{$$

• We can write:

 $v_{avg} = v_f + x v_{fg}$

$$u_{avg} = u_f + uv_{fg}$$

$$h_{avg} = h_f + hv_{fg}$$

CLASS ACTIVITY

 A rigid tank contains 10 kg of water at 90 °C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank

• Solution:

TABLE A-4										
Saturated water—Temperature table										
Sat.		Specific volume, m ³ /kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
T°C	press., P _{sat} kPa	Sat. liquid, ^v f	Sat. vapor, ^v g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	

• Part (b) – Solution 1

$$V = V_f + V_g = m_f v_f + m_g v_g$$
$$V = (8 \, kg) \left(0.001036 \frac{m^3}{kg} \right) + (2 \, kg) \left(2.3593 \frac{m^3}{kg} \right) = 4.73 \, m^3$$

 $V = 4.73 m^3$

• Part (b) – Solution 2:

$$x = \frac{m_g}{m_t} = \frac{2}{2+8} = 0.2$$

$$v = v_f + xv_{fg} = \left(0.001036\frac{m^3}{kg}\right) + (0.2)\left(2.3593 - 0.001036\frac{m^3}{kg}\right) = 0.473\frac{m^3}{kg}$$

$$V = mv = (10 \ kg) \left(0.473 \frac{m^3}{kg} \right) = 4.73 \ m^3$$

CLASS ACTIVITY

 One pound-mass of water fills a 2.29 ft³ rigid container at an initial pressure of 150 psia. The container is then cooled to 100 °F. Determine the initial temperature and final pressure of the water.

• Solution:

Saturated	d water—P	ressure table	9		
Press., P	Sat.		r volume, /lbm	Intern	al energy,Bt
psia	temp., T _{sat} °F	Sat. liquid, U _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., <i>u</i> _{fg}
1	101.69	0.01614	333.49	69.72	973.99
2	126.02	0.01623	173.71	94.02	957.45
3	141.41	0.01630	118.70	109.39	946.90
4	152.91	0.01636	90.629	120.89	938.97
5	162.18	0.01641	73.525	130.17	932.53
190	377.52	0.01833	2.4040	350.24	763.31
200	381.80	0.01839	2.2882	354.78	759.32
250	400.97	0.01865	1.8440	375.23	741.02
300	417.35	0.01890	1.5435	392.89	724.77
350	431.74	0.01912	1.3263	408.55	709.98

$$v_i = \frac{V}{m} = \frac{2.29 ft^3}{1 \, lbm} = 2.29 \frac{ft^3}{lbm}$$

 $v_i > v_g$

• Solution:

TABL	E A6E						
Superheated water							
T°F	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/lbm · R			
		<i>P</i> = 250 p	psia (400.	97°F)			
Sat.	1.8440	1116.3	1201.6	1.5270			
450	2.0027	1141.3	1234.0	1.5636			
500	2.1506	1164.1	1263.6	1.5953			
550	2.2910	1185.6	1291.5	1.6237			
600	2.4264	1206.3	1318.6	1.6499			
650	2.5586	1226.8	1345.1	1.6743			

$$\begin{cases} P_1 = 250 \ psia \\ v_1 = 2.29 \ ft^3/lbm \end{cases}$$

• Solution:

$$T_2 = 100 \,{}^{\circ}F$$

$$v_2 = v_1 = 2.29 ft^3/lbm$$

$$P_2 = P_{sat @ 100 F} = 20.9505 \, psia$$