CAE 208 / MMAE 320: Thermodynamics Fall 2023

August 24, 2023 Basic Concepts of Thermodynamics (I)

Built
Environment
Research
@ IIT

Advancing energy, environmental, and
sustainability research within the built environment www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Lecture recordings are available on Blackboard:

Announcements

- The annotated lectures are also available on Blackboard:
- CAE_208_MMAE_320.2024 10 (Thermodynamics)

Home
Syllabus
Content
Assignments
Discussions
Collaborate Ultra
Class Recording | Panopto

My Grades
Email
Galvin Library

Course Management

Control Panel

Content

cae208 mmae 320 f23 lecture01 Course overview and introduction to units
cae208 mmae 320 f23 lecture01 Course overview and introduction to units-Annotated
cae208 mmae 320 f23 lecture02 Basic concepts of thermodynamics (1).Past Exams

Announcements

- Assignment 1 is posted (Due next week)

RECAP

Recap

- Dimensions defines any physical quantity
- The magnitude of dimensions is expressed in units
- Relevant primary or fundamental units are:
- Temperature (θ)
\square Length (L)
\square Time (T)
\square Mass (m)

Recap

- Others are secondary or derived:
\square Velocity (LT-1)
\square Acceleration (LT-2)
\square Volume (L^{3})

Recap

- Two systems of units are
\square SI: International System which is based on scientific and engineering work
- $1 \mathrm{~m}=100 \mathrm{~cm}$
- $1 \mathrm{~km}=1,000 \mathrm{~m}$

I IP or English which has no apparent systematic numerical base

- $1 \mathrm{ft}=12 \mathrm{in}$
- 1 mile $=5280 \mathrm{ft}$
- $4 \mathrm{qt}=1 \mathrm{gal}$

Recap

- Examples of the two systems of units are \square Speed limit

SPEED LIMIT

What does this mean?

Recap

- Examples of the two systems of units are
\square Who likes to bake?

Recap

- Common units are:

Dimension	SI Unit	IP Unit
Length	m	ft or inch
Mass	kg	lb
Time	s	s
Temperature	K	F or R

Recap

- Some important SI and IP units
\square Force $=($ Mass $)($ Acceleration $)$

$$
\begin{gathered}
1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=1 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
1 \mathrm{lbf}=\left(\begin{array}{c}
(32.174 \mathrm{lbm})\left(1 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}\right)=32.174 \mathrm{lbm} \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
=1 \mathrm{slug}
\end{array}\right.
\end{gathered}
$$

Units and Dimensions

- Some important SI and IP units

W Weight = (Mass)(Gravitational Acceleration)

$$
\begin{gathered}
W=(1 \mathrm{~kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=9.81 \mathrm{~N} \\
W=(1 \mathrm{lbm})\left(32.174 \frac{\mathrm{ft}}{s^{2}}\right)=32.174 \mathrm{lbm} \times \frac{\mathrm{ft}}{\mathrm{~s}^{2}}=1 \mathrm{lbf}
\end{gathered}
$$

UNITS

Units

- Some important SI and IP units
\square Work $=($ Force $)($ Distance $)$

$$
1 J=(1 N)(1 m)=1 N . m
$$

What's 1 kJ ?

- 1 Btu (British Thermal Unit) = Energy required to increase 1 lbm of water at $68{ }^{\circ} \mathrm{F}$ by $1^{\circ} \mathrm{F}$
- $1 \mathrm{Btu}=1.0551 \mathrm{~kJ}$
- 1 Calorie $=$ The amount of energy needed to raise the temperature of 1 g of water at $14.5^{\circ} \mathrm{C}$ by $1^{\circ} \mathrm{C}(1$ calorie $=4.1868 \mathrm{~J})$

Units and Dimensions

- Some important SI and IP units
\square Power = Rate of Energy

$$
\begin{gathered}
1 \mathrm{~W}=1 \frac{\mathrm{~J}}{\mathrm{~S}} \\
1 \mathrm{hp}=746 \mathrm{~W}
\end{gathered}
$$

Be careful electrical power is usually provided in kWh

CLASS ACTIVITY

Unit Conversion

- A small diesel power plant could have a capacity of 5 MW . Could we convert this to hp?

Class Activity

- Convert 12 ft to meter

Class Activity

- Convert 24 inch to meter

Class Activity

- Convert $5 \mathrm{ft} / \mathrm{s}$ to km/h

CLASS ACTIVITY

Class Activity

- Calculate the mass of water (in both kg and lbm) for a tank with a volume of $2 \mathrm{~m}^{3}$ (assume density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}$)

CLASS ACTIVITY

Class Activity

- Electricity bills are usually expressed in kWh

A day by day breakdown

You used the most on Sunday.

Class Activity

- Assuming someone buys a USB power adaptor for an iPhone. If an iPhone requires about 3 hours to get fully charged, calculate the total energy used and also the electricity cost (Note: ComEd's rate is about 10 cents per kWh).

5W USB power adapter

UNIT CONVERSION

Unit Conversion

- Can we convert $1 \mathrm{~m}^{3} / \mathrm{min}$ to $1 \mathrm{~m}^{3} / \mathrm{hr}$?

Unit Conversion

- How about converting this range hood from $\mathrm{ft}^{3} / \mathrm{min}$ (or CFM) to $\mathrm{m}^{3} / \mathrm{min}$.

30 in. 900 CFM Ducted Wall Mount with LED Light Range Hood in Stainless Steel
$\star \star \star \star \star$ (15) \vee Questions \& Answers (19)

CLASS ACTIVITY

Class Activity

- Given the heatwave today, you are asked to confirm the following window unit can fully cool a room of $500 \mathrm{ft}^{2}$. What do you do? (A rule of thumb for the cooling load is to assume $20 \mathrm{Btu} / \mathrm{ft}^{2}$).

SYSTEMS AND CONTROL VOLUMES

Systems and Control Volume

- A system is defined as quantity of matter or a region in space chosen for study
- A few important aspects of a system: Boundary (movable or fixed) and surrounding

Systems and Control Volume

- A system could be
- Closed system known as "control mass"
\square Open system known as "control volume"

Systems and Control Volume

- Closed system known as "control mass"
\square No Mass
\square Energy Yes (if no energy we call it isolated)

Systems and Control Volume

- Open system known as "control volume"
\square Mass Yes
\square Energy Yes

PROPERTIES OF A SYSTEM

Properties of a System

- Property = Any characteristics of a system
- Pressure (P)
- Temperature (T)
- Volume (V)
\square.
\square.
\square.
- Thermal conductivity (k)

Properties of a System

- Properties are.
\square Intensive: Independent of mass
\square Extensive: Depends on the size - extent - of a system

Properties of a System

- Is there a criterion for understanding intensive vs extensive properties?

Properties of a System

- Can we convert an extensive property to an intensive property?

DENSITY AND SPECIFIC GRAVITY

Density and Specific Gravity

- Density = Mass per unit volume
- Specific volume = Volume per mass

Density and Specific Gravity

- What is the density of water and air?

Material	SI $\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	IP $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$
Water	997	62.4
Air	1.2754	0.763

Density and Specific Gravity

- Density in general of is a function of pressure and temperature
Material Temperature Pressure

Gas

Liquid

Solid

Density and Specific Gravity

- Specific gravity or relative density is the ratio of the density of a substance to the density of some standard substance at a specific temperature (usually water $4^{\circ} \mathrm{C}$ and $\rho=1000$)

$$
S G=\frac{\rho}{\rho_{H 2 O}}
$$

Density and Specific Gravity

- Specific weight

$$
\gamma_{s}=\rho g
$$

CLASS ACTIVITY

Class Activity

- The density of water liquid is defined as $\rho=1000-\frac{T}{2}$ with T in Celsius. If the temperature increases, what happens to the density and specific volume.

CLASS ACTIVITY

Class Activity

- A $1 \mathrm{~m}^{3}$ container is filled with $0.12 \mathrm{~m}^{3}$ of granite, $0.15 \mathrm{~m}^{3}$ of sand and $0.2 \mathrm{~m}^{3}$ of liquid water at $25^{\circ} \mathrm{C}$, and the rest of the volume, $0.53 \mathrm{~m}^{3}$, is air. Find the overall (average) specific volume and density.
- The following densities could be used for the calculations

$$
\begin{aligned}
& \text { } \rho_{\text {granite }}=2750 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \rho_{\text {sand }}=1500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \rho_{\text {water }}=997 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \rho_{\text {air }}=1.15 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

Class Activity

